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Abstract  

The hippocampus and its extended network contribute to encoding and recall of episodic experiences. Drawing 

from recent anatomical, physiological, and behavioral studies, we propose that hippocampal engrams function as 

indices to mediate memory recall. We broaden this idea to discuss potential relationships between engrams and 

hippocampal place cells, as well as the molecular, cellular, physiological and circuit determinants of engrams that 

permit flexible routing of information to intra- and extra-hippocampal circuits for re-instatement, a feature critical 

to memory indexing. Incorporating indexing into frameworks of memory function opens new avenues of study 

and even therapies for hippocampal dysfunction. 
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Introduction 

A few keywords typed into the Google search bar will, more often than not, immediately lead to the exact piece 

of information we are seeking. While the details of how this magic happens are proprietary, the general idea is 

transparent; Google has managed to index vast swaths of the internet and uses our search terms to quickly point 

to the most appropriate information (https://www.google.com/search/howsearchworks). The system is 

surprisingly flexible, using history, context or location to hone results, completing or anticipating partial bits of 

information, and finding and separating similar items by detecting small differences. These properties, which 

underlie both its efficiency and popularity, echo the abilities of the memory systems operating in our own brains, 

particularly the episodic memory circuits dependent on the hippocampus (Squire et al., 2004; Tulving, 2002). The 

hippocampus is crucial for the encoding of memory, it is adept at integrating and interpreting contextual cues to 

drive recall, and it is efficient at both discrimination and association (Maren et al., 2013). Thus, much like how 

Google works as an index of information, one parsimonious explanation for hippocampal function is that it 

functions as an index of memories (Guo et al., 2018; Miller and Sahay, 2019; Tanaka, 2020; Tanaka and McHugh, 

2018; Tanaka et al., 2018; Tonegawa et al., 2018). This is not a new idea (McClelland et al., 1995; Teyler and 

DiScenna, 1985, 1986; Teyler and Rudy, 2007), however recent work has begun to lend direct experimental 

evidence to this theory and edifying putative, underlying circuit mechanisms. Here we will explore and examine 

these findings in depth and discuss possible indexing mechanisms, as well as how these ideas could shape a better 

understanding of memory processes in both the healthy and diseased brain. 

 

Space and Memory 

The discovery of place cells, neurons in the hippocampus that have receptive fields tuned to discrete locations 

within a context (O’Keefe and Dostrovsky, 1971), revolutionized the experimental approach to studying 

hippocampal function (Moser et al., 2017). One of the earliest and most influential theories to emerge linking 



© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license  
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

3 

 

place cell activity and episodic memory was the Cognitive Map Theory (O’Keefe and Nadel, 1978), positing that 

the primary role of the hippocampus is to provide a spatial framework that permits the location and association 

of the items and events that constitute a given experience. While the authors suggested that this cognitive map 

may not be limited to physical space and could be applied to map episodic experience more broadly, place cells 

and their properties have proved a useful substrate to examine and test these ideas. For example, as different 

ensembles of neurons are recruited to represent different spatial experiences, the hippocampus could continuously 

provide a new underlying scaffolding across space (and time) that would allow memories to remain both related 

and distinct. Subsequent retrieval could then be triggered by a reinstatement of the original spatial map triggered 

by the cues that define a given context (Wikenheiser and Redish, 2015). Over time, other theoretical models have 

built on and expanded these ideas, and, as noted in other sections below, have proposed anatomical substrates for 

hippocampal functions that include novelty detection (Lisman and Otmakhova, 2001; Vinogradova, 2001), rapid 

encoding, pattern completion and separation (Kesner and Rolls, 2015; Knierim and Neunuebel, 2016; Nadel and 

Moscovitch, 1997), as well as their relation to spatial coding. Moreover, frameworks that encompass the place 

cell data, but are not tied to a specific spatial function of the hippocampus, have also been described. These posit 

that place cells may reflect a broader functionality related to general-purpose sequence generation (Buzsáki and 

Tingley, 2018) or relational memory (Cohen and Eichenbaum, 1993; Eichenbaum et al., 1994), allowing the 

extension of both hippocampal memory and physiology (Aronov et al., 2017; MacDonald et al., 2011; Pastalkova 

et al., 2008) beyond the domain of physical space. 

 

Hand in hand with the growing characterization of place cell physiology, there developed a deeper understanding 

of the anatomical, behavioral and computational properties of the hippocampal circuit. This resulted in specific 

mnemonic functions being linked to the anatomic and physiological properties of discrete subregions of the 

structure (Fanselow and Dong, 2010; Nadel et al., 2013; Strange et al., 2014). In this framework, the classic model 
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of sequential processing along the trisynaptic loop has the large number and sparse activity of granule cells in the 

dentate gyrus (DG) providing orthogonalization of similar cortical inputs leading to pattern separation 

(Hainmueller and Bartos, 2020; Leal and Yassa, 2018; McHugh et al., 2007); the DG providing input to the 

recurrent CA3 network to facilitate autoassociation and pattern completion (Cayco-Gajic and Silver, 2019; Kesner 

and Rolls, 2015; Knierim and Neunuebel, 2016; McHugh et al., 2007; Nakazawa et al., 2002); and finally, CA1 

broadcasting the results back to the cortex (Soltesz and Losonczy, 2018; Valero and de la Prida, 2018). This 

framework has served as the backbone of relating place cell activity to memory processing, insofar as place cells 

may coordinate the pattern separation, completion, and reinstatement properties noted above.  

 

Building on this framework, advances in genetic approaches have led to activity-dependent memory tagging 

systems in rodent models, which allow for the examination and artificial reactivation or inhibition of distinct 

memory traces (Josselyn and Tonegawa, 2020). These traces fulfill the properties of the memory engram, a 

moniker for the physical basis of memory first proposed by zoologist and biologist Richard Semon (Schacter et 

al., 1978; Semon, 1921), in that they can be viewed as the physical instantiation of an experience registered in 

enduring changes in synaptic connectivity and physiology of an ensemble of neurons. Tagging systems employed 

include the tetracycline-regulated transcriptional activation system, in which time-locked expression of actuators 

such as opsins or chemogenetic receptors are induced via activity-dependent promoters [e.g., c-Fos- or Arc-

expressing; (Liu et al., 2012)] or immediate early gene (IEG)-binding elements (Sun et al., 2020), as well as the 

Cre-ERT transcription system (TRAP mice), which utilizes a tamoxifen-sensitive modified estrogen receptor to 

drive experience-driven expression of Cre-dependent constructs in activated cells (Guenthner et al., 2013). Such 

methods have allowed for the artificial triggering of memory-related behavior even in contexts where no such 

behavior would be expected. While these methods are not without their caveats (discussed further in sections 

below), engram-labeling studies have shown that optogenetic or chemogenetic stimulation or inhibition of 
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excitatory neurons in the dentate gyrus (DG) [e.g., (Guo et al., 2018; Lacagnina et al., 2019; Liu et al., 2012)], 

CA3 [e.g., (Denny et al., 2014)], or CA1 [e.g., (Ghandour et al., 2019; Ryan et al., 2015; Tanaka et al., 2014)] 

reinstates or impedes (respectively) behavioral recall of that experience. While many engram studies have focused 

on measures of conditioned fear, these and other studies report hippocampal engram-driven behavior for a variety 

of context-specific behaviors, including place [e.g., (Ramirez et al., 2013)] or social avoidance [e.g., (Zhang et 

al., 2019)], as well as appetitive conditioning and place preference [e.g., (Redondo et al., 2014)]. 

 

These findings raise several key questions. First, how can a small number of experience-tagged hippocampal 

engram cells, much fewer in fraction than that of active place cells [e.g., (Tanaka et al., 2018)], encode a complex 

behavioral experience? Indeed, activation of a very small percentage (2-3%) of DG granule cells labeled during 

learning can reproduce context-appropriate behaviors [see (Liu et al., 2012) for examples]. Further, activation in 

the DG could harness the pattern completion abilities of the downstream CA3 network to amplify their activity 

via attractor dynamics (Colgin et al., 2010; Knierim and Neunuebel, 2016) and lead to a robust brain-wide 

reinstatement of a memory-related ensemble. However, reactivation of a subset of CA1 neurons, which lack 

recurrent connectivity, can also trigger behavioral reinstatement, and presumably memory recall [e.g., (Ryan et 

al., 2015)]. It is plausible that downstream activation of the entorhinal cortex and/or re-entrant excitation of the 

DG and CA3 adds these features thereby functioning like a recurrent network, although experimental evidence 

supporting this interpretation is lacking.  

 

Additionally, 50 years of hippocampal physiology in rodents has revealed that place cell activity is exquisitely 

structured not only across space, but also across time (Howard and Eichenbaum, 2015). During exploration, the 

dominant theta oscillation in the hippocampal local field potential (LFP) organizes ensembles of place cells with 

spatially adjacent receptive fields into sequences, expressed on the time scale of a single theta cycle of ~125 ms 
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(Burgess and O’Keefe, 2011). These sequences can be re-expressed during sharp-wave ripples (SWR) that occur 

during pauses in movement on an even shorter timescale, compressed into fast events lasting only 10’s of 

milliseconds (Foster, 2017). This precise temporal arrangement of activity has made the gap between place cell 

and engram-based memory studies difficult to bridge, as the latter have demonstrated that simultaneous 

optogenetic activation of ensembles of neurons in temporal and spatial patterns that are not observed under natural 

physiological conditions are sufficient to evoke behaviors mimicking memory recall. One can interpret this gap 

in the temporal dynamics between optically induced behavioral reinstatement and place cell activity as reflecting 

the dispensability of these temporal pattern for behaviors driven by contextual recognition, or perhaps this 

disconnect could simply be due to technical limitations in the place cell recording, as the retrieval of a 

hippocampal-dependent memory can occur very rapidly and in the absence of the exploration needed to drive 

extensive place cell activity, precluding a robust sampling of activity. For instance, when rodents receive a 

footshock immediately after placement in a previously exposed chamber, context exploration may be minimal, 

yet animals successfully retrieve the contextual memory and associate it with shock, resulting in context-

dependent behavior during subsequent memory tests (Wiltgen et al., 2001). One possibility is that reinstatement 

of even a single place field is sufficient for memory reinstatement. However, long-term monitoring of the stability 

of place cell representations across repeated visits on the timescale of weeks, now possible due to advances in in 

vivo imaging approaches in mice, suggests that there exists a hitherto unappreciated high degree of instability in 

the spatial representation of a familiar environment [(Ziv et al., 2013); but, also see (Gonzalez et al., 2019)]. If 

only a fraction (~15%) of place cells show stability across several weeks, it becomes more difficult to draw a 

direct connection between memory recall and a completely stable spatial representation. It is possible that a small 

fraction of stable place cells can serve as a partial cue to reinstate the full representation of memory through a 

process of pattern completion in downstream regions, however this view is challenged by a recent study 

examining the physiological nature of engram cells in the hippocampus, which is discussed below (Tanaka et al., 
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2018). Thus, while place cell studies have provided insight into the anatomical organization and potential memory 

mechanisms of the hippocampus, we, like many others, struggle to reconcile these potential spatial coding 

properties with the core role of the system as a memory storage device (Tanaka, 2020). Further, it is important, 

both through hypothesis and experiments, to attempt to identify the rules of transformation that allow 

simultaneous activation of hippocampal engrams to generate appropriate patterns of downstream activation and 

behavior (Lisman et al., 2017). Perhaps then, we should reconsider what the activity of hippocampal neurons 

during memory formation and recall truly represent and how place cells that have driven much of the thinking in 

the field for the last fifty years can inform us about the hippocampus as a memory system (Figure 1). 

 

Instantiating the Hippocampal Index 

The Hippocampal Memory Indexing Theory posits that the hippocampus does not “contain” the episodic memory 

itself, rather it generates a code or “index” that binds neuronal activity patterns underlying an experiential event, 

which is stored across distributed neocortical (and potentially subcortical) modules (Teyler and DiScenna, 1985, 

1986; Teyler and Rudy, 2007). In other words, the hippocampus encodes a linked representation of brain activity 

at the time of an experience or episode, which can subserve subsequent recall via activation of that hippocampal 

representation. What is presumed to make these patterns of activity unique from other experience-induced patterns 

in the brain, such as ensemble activity in the sensory cortex activated by a stimulus, is their conjunctive and 

associational nature and the ability of the hippocampal ensemble to reinstate the original spatial and temporal 

patterns of cortical/subcortical activity of an experience (McClelland et al., 1995; Teyler and Rudy, 2007). 

Important to note is that the Indexing Theory is not mutually exclusive to the Cognitive Map Theory. Instead, it 

simply remains agnostic to what, if anything, the hippocampal neurons involved in memory indexing must 

represent in terms of behaviorally relevant information; spatial coding would be acceptable if these neurons had 

properties consistent with that of an index, as summarized and presented in Figure 2. In the following and 
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subsequent sections, we elaborate on these features and discuss how the brain’s circuit architecture support a view 

of hippocampal function through the lens of indexing. 

 

Engrams as Indices 

Numerous studies have now shown that photoactivation of a sparse hippocampal engram drives IEG activity in 

select downstream brain regions thought to be involved in the original learning [e.g., (Ramirez et al., 2013, 2015; 

Roy et al., 2017)]. Such observations, together with the reinstatement of behavior following optogenetic engram 

stimulation, support the idea that the hippocampus is capable of indexing and triggering memory recall by 

reinstating learning-dependent activity in memory-related extrahippocampal brain systems. However, increased 

IEG induction in extrahippocampal structures following artificial activation of engram-bearing hippocampal cells 

does not necessarily indicate that these are the precise extrahippocampal neurons involved in the original learning. 

Moreover, specific controls, such as untagged, context-exposed and nonreinforced animals, are often essential to 

address issues of memory vs. performance; indeed, animals may be able to use alternative learning or 

generalization strategies to achieve task-dependent behavior [e.g., (Wiltgen et al., 2010)], even in the absence of 

the hippocampus [see (Maren et al., 2013) for discussion]. So, what is the evidence for learning-specific and 

hippocampus-dependent reinstatement of neural activity? To this end, one study has shown that photoinhibition 

of learning-tagged CA1 pyramidal cells resulted in the reduction of fear behavior in a shock-associated context 

and that this coincided with reduced reinstatement of c-Fos expression specifically in other c-Fos-tagged and 

presumably, engram-bearing, cortical and subcortical cells of the brain (Tanaka et al., 2014). In a separate study 

(Guo et al., 2018), it was found that contextual fear learning increased mossy fiber synaptic contacts of tagged 

engram-bearing dentate granule cells (DGCs) with stratum lucidum parvalbumin-positive inhibitory neurons (PV+ 

SLINs) to a significantly greater extent than a random population of DGCs. This engram-dependent recruitment 

of PV+ SLINs returned to pre-learning levels with time-dependent memory generalization. By genetically 
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enhancing the coupling of engram-bearing DGCs with PV+ SLINs, the authors increased feed-forward inhibition 

in DG-CA3 circuitry and stabilized the hippocampal engram. Critically, this was shown to confer optogenetic 

behavioral reinstatement and context-specific reactivation of a distributed fear memory trace in hippocampal-

cortical-subcortical networks at remote time points. Collectively, these findings mirror natural recall, insofar as 

contextual fear memory retrieval in the original learning context is associated with the specific reactivation of 

learning-dependent tagging in the hippocampus and some extrahippocampal targets. However, formal 

demonstration for how hippocampus may in fact coordinate extrahippocampal reinstatement in an experience-

dependent manner is absent. 

 

In light of understanding hippocampal engram functions through the lens of indexing, it is important to emphasize 

that although behavioral reinstatement does not equate to neural reinstatement, the behavioral outcomes of 

optogenetic manipulations of hippocampal engrams appear experience-dependent. For example, as noted above, 

stimulation of contextual fear conditioning-tagged cells in the DG results in increased freezing in a safe (no shock) 

context [e.g., (Liu et al., 2012)]. However, if such stimulation of the DG occurs for neurons that were tagged 

following the extinction of fear in a shock-associated context, then this manipulation results in reduced freezing 

in a shock-associated context and decreased spontaneous recovery of contextual fear (Lacagnina et al., 2019). 

Likewise, inhibition of context fear-tagged DG cells attenuates freezing in a shock-associated context (Tanaka et 

al., 2014), but inhibition of extinction-tagged DG cells can increase defensive responding in a previously 

extinguished context (Lacagnina et al., 2019). These experience-specific findings are complemented by other 

studies where the behavioral response (beyond defensive behavior) of DG engram reactivation reflects the valence 

of the reinforcing stimuli associated the context or engram [e.g., (Ramirez et al., 2015; Redondo et al., 2014)]. 

Also, consider that simply reactivating engram cells that were tagged during homecage exploration or exposure 
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to a context in which shock never occurred does not appear to induce abnormal locomotion or overt defensive 

behaviors [e.g., (Ghandour et al., 2019)]. 

 

While indexing may explain the capacity for photoactivation of tagged hippocampal engram cells to trigger 

memory-specific behavior in different contexts, reinstatement of behavior, is often notably less than what would 

be expected through natural recall (i.e., returning the animal to the original training context). In the framework of 

indexing, we propose there are number of reasons why this may be the case beyond the fact that natural recall is 

presumably most effective in reactivating the index. Importantly, the abovementioned tagging systems, while 

experimentally time-locked, are still thought to open a window of tagging that may be on the order of at least 

several hours. Thus, when artificially reactivating these cells, it is possible that the experimenter may also be 

triggering activation of other non-specific indices and/or experiences such as activity in the homecage and pre- 

or post-training handling. These patterns are not specific to the primary learning episode in question and thus may 

compete for behavioral expression. Contextual stimuli present in the test context may also trigger interference as 

well, acting as external inhibitors. Thereby, a number of controls (e.g., nonreinforced, homecage, etc.) for better 

isolating and assessing the degree of experienced-dependent behavioral reinstatement should be performed. 

Additionally, hippocampal indices are proposed not only to encode the relevant brain systems activated during 

an experience but may also represent the sequential patterns of such activation (Buzsáki and Tingley, 2018). 

Current methods of optogenetic reactivation of hippocampal engram cells lack such sequence-based reactivation 

(Carrillo-Reid et al., 2019), beyond what is inherently structured in the linkage of hippocampal engram-bearing 

circuits. Further technological advancements, which may better constrain the window of tagging to a particular 

experience or may be able to reactivate cells in sequence-dependent manners, are crucial to improve the readouts 

and interpretation of this reinstatement.  
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Is the hippocampus alone in its potential capacity for indexing? Association cortices such as sensory association 

cortex and entorhinal cortex (EC) may also exhibit indexing properties due to their convergence of sensory input, 

thereby contributing to a hierarchical indexing scheme (McClelland et al., 1995). Thus, the hippocampus may 

serve to some extent as an index of indices in the EC and other input structures as information is routed in and 

then back out again. Assuming such hippocampal signals can be decompressed to reinstate activity in cortical and 

subcortical nuclei (as noted above), an exact one-to-one representation in the hippocampus of cortical modules 

(for example) seems unlikely and may not be necessary. In fact, convergence of neural activity into the 

hippocampus might be essential for its abilities to form conjunctive contextual representations (Rudy and 

O’Reilly, 1999). Other critical targets of the hippocampus, such as the retrosplenial cortex (RSC) (Cowansage et 

al., 2014; Mao et al., 2018) or lateral septum (LS) (Bender et al., 2015; Besnard et al., 2019; Tingley and Buzsáki, 

2018), may also maintain such convergence of processing, and may thereby be part of a hierarchical indexing 

scheme, assuming these structures are capable of reinstating patterns of experience-specific assembly patterns. 

Indeed, one study found that reactivation of cells of the RSC that were tagged at conditioning is sufficient to 

induce behavioral expression of fear, even in the absence of a fully functional hippocampus (Cowansage et al., 

2014). Importantly, this study showed that optogenetic activation of the RSC engram, like natural recall, recruited 

overlapping downstream circuits in the amygdala and EC, demonstrative of reinstatement of experiential activity. 

Thus, indexing may not necessarily be unique to the hippocampus, however, the hippocampus may be uniquely 

positioned to index episodic events, given the significantly greater extent to which it integrates complex and 

hierarchical sensory information from across the brain (see sections below), as well as due to its discriminative 

coding and circuit architecture. Unpublished findings indicating that reactivation of engram-tagged neural 

structures, outside the hippocampus, does not equally reinstate behavior may support the particular importance of 

hippocampal indexing (Roy et al., 2019).  
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Memory Indexing in Humans? 

Electrophysiological studies in humans have suggested that the human hippocampus also possesses properties 

consistent with indexing. For example, in epileptic patients implanted with depth electrodes into the medial 

temporal lobe, free recall of an audiovisual experience was shown to follow the selective reactivation of 

hippocampal and EC cells that were active during the prior experience (Gelbard-Sagiv et al., 2008). Likewise, 

successful retrieval in an object association task coincided with reinstatement of spiking activity in hippocampal 

and EC cells, with hippocampal activity preceding EC firing, and with decoding analyses of EC activity predicting 

the identity of the recalled object (Staresina et al., 2019). Other intracranial recordings have shown that behavioral 

recall was linked to coordinated hippocampal-lateral temporal cortical representational reinstatement of item-

context associations (Pacheco Estefan et al., 2019). In this study, hippocampal reinstatement preceded that seen 

in the neocortex and hippocampal-cortical gamma phase synchrony during hippocampal reinstatement predicted 

neocortical reinstatement. Moreover, these findings are mirrored in additional studies that have found memory-

related reinstatement in the human hippocampus is underscored by a sparse and distributed set of active cells 

(Wixted et al., 2014, 2018).  

 

Human functional magnetic resonance imaging (fMRI) studies support a similar interpretation. For example, one 

fMRI study (Harand et al., 2012) reported that hippocampal BOLD (blood-oxygen-level-dependent) activity 

during an episodic learning experience matched its activity at recall (i.e., recognition of previously shown visual 

cues), particularly when subjects reported the remembering of episodic details of the learning event. Interestingly, 

this episodic reinstatement of hippocampal activity occurred for remembered cues at three days and even three 

months following learning. Moreover, for successful retrieval of experiential memory (in tasks such as object 

recall and recognition), regions including the RSC, parahippocampal cortex (PHC), perirhinal cortex (PRC), and 

prefrontal cortex (PFC) have all been shown to exhibit recall-dependent reinstatement along with or in close 
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temporal proximity to hippocampal reinstatement, suggestive of hippocampal-dependent routing [e.g., (Arnold et 

al., 2018; Jonker et al., 2018; Schultz et al., 2019)]. Again, while reinstatement and temporal patterns of activation 

alone do not demonstrate indexing, these findings are consistent with data from rodents and leaves open the 

possibility that future experiments may directly test this idea in humans. 

 

An Integrated Circuit Model of the Hippocampal Index 

In the decades since the introduction of the Hippocampal Memory Indexing Theory, considerable advances have 

been made in our understanding of the complexity and diversity of hippocampal circuits. If experience-tagged 

hippocampal engrams serve as episodic indices, how might the circuit architecture of the brain be employed for 

encoding and recall? To these ends, the conjunctive, sparse and compressed code generated in the DG via pattern 

separation would support indexing by minimizing memory interference (Feature i of Figure 2) (Cayco-Gajic and 

Silver, 2019; Hainmueller and Bartos, 2020; Knierim and Neunuebel, 2016; McHugh et al., 2007), while DG 

outputs, together with direct EC inputs (alongside the diverse afferents described below), onto CA3 cells would 

bias attractor dynamics in the recurrent network to store an experience as a new memory, or catalyze the retrieval 

or updating of a previously encoded memory by pattern completion (Features ii, iii, and iv of Figure 2). 

Accordingly, the experience is registered in a sparse hippocampal code or engram composed of principal cells 

(and inhibitory neurons) across the different subregions (DG, CA3, CA2 and CA1), with their coordinated activity 

permitting intra- and extrahippocampal reinstatement of the original experience through dynamic routing 

(Features v, vi, and vii of Figure 2; Figure 3-4). We elaborate on this idea with recent examples in the next 

sections. 
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Dynamic Routing: Hippocampal Afferents 

In this framework, the DG-CA3-CA2-CA1 circuit can be perceived as a template of nodes, with each node 

receiving diverse intra- and extra-hippocampal inputs allowing for the integrative, dynamic and flexible 

incorporation of cognitive and visceral information into memory representations (Figure 3A). These properties 

would enable the hippocampus to participate in many “types” of memories—spatial, goal-oriented, social, future-

planning—all which may comprise diverse episodic experiences. For example, direct long-range GABAergic 

projections from the lateral hypothalamus to CA3 have been recently identified (Zhou et al., 2019a); these neurons 

synapse onto CA3 interneurons and appear to have critical functions in tasks of object recognition and 

discrimination, revealing a direct pathway by which CA3 may integrate endocrine signals in learning and memory 

processes. CA3 neurons also incorporate locus coeruleus (LC) input, and one study found that LC projections to 

dorsal CA3 (dCA3; but not to CA1 or DG) are required for encoding (but not retrieval; which may be mediated 

by CA3-CA1, see below) of a contextual representation (as assessed by distance traveled in a previously explored 

context or via single-trial contextual fear conditioning) (Wagatsuma et al., 2018). Additionally, parallel circuits 

projecting from neurons in the supramammillary nucleus (SUM) to the DG and CA2 have been found to carry 

contextual and social novelty signals respectively, allowing hypothalamic sculpting of hippocampal memory in a 

task specific manner (Chen et al., 2020); see also (Li et al., 2020; Hashimotodani et al., 2018). These recent 

discoveries broaden our understanding of the diversity of mammalian hippocampal afferents and point to multiple 

sources via which the hippocampus may integrate signals for memory formation or recall. Activity of these 

distinct sets of inputs (alongside other important inputs, including from the amygdala and anterior cingulate 

cortex), recruited based on ongoing experience, may govern which hippocampal routes are deployed for encoding 

and/or recall.  
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Dynamic Routing: Hippocampal Efferents 

Further arguing against a simple sequential processing loop, it is clear that each node within the DG-CA3-CA2-

CA1 circuit projects to distinct outputs (Figure 3B). In the framework of Index Theory, these outputs may be 

flexibly deployed by engram cells to reinstate an experience (whether that experience is appetitive, aversive, etc.). 

An example of this potential selective routing can be found in ventral CA1 (vCA1) neurons (Ciocchi et al., 2015). 

In this study, vCA1 cells were tracked based on their projections to the PFC, nucleus accumbens (NAc), and 

amygdala during behavior, revealing that activity in these neurons were task- and pathway-dependent. These 

findings critically suggest that signals out of CA1 are not uniformly transmitted to its targets; rather, it supports 

the idea of that efferent hippocampal signals are routed based on task and mnemonic demands. With particular 

relevance to indexing, dorsal CA1 (dCA1) tetrode recordings paired with circuit-specific optogenetics have 

shown that expression of conditioned place preference (CPP) depends on the reinstatement of dCA1 

representations that were active during training (Trouche et al., 2019). Furthermore, CPP expression is lost if 

dCA1 terminals in NAc are photoinhibited, despite dCA1 pyramidal cells maintaining their context-dependent 

cell assemblies during testing [also, see (Zhou et al., 2019b)].  

 

This routing ability is not restricted to CA1; CA3 output neurons may route information via projections to CA1, 

CA2, or the DLS. Indeed, brain-wide analyses of co-activated circuits accompanying contextual fear 

discrimination identified a CA3-DLS module (Besnard et al., 2019). This pathway appears to recruit somatostatin 

(SST)+ DLS cells to gate conditioned freezing, as in vivo calcium imaging found SST+ DLS cell activity reliably 

discriminated shock-associated vs. safe contexts. In support of these findings, optogenetic terminal specific 

silencing of dCA3 terminals in dCA1 and DLS have suggested distinct roles for dCA3-CA1 and dCA3-DLS 

projections to contextual fear learning (or consolidation) and discrimination, respectively (Besnard et al., 2020).  
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For CA2, its efferent network positions it strongly for memories involving social recognition, discrimination and 

aggression (Middleton and McHugh, 2019). Indeed, CA2 (and CA3) efferents do not uniformly regulate 

discrimination (Raam et al., 2017). Optogenetic experiments have demonstrated that anterior/dorsal CA2 (dCA2) 

neurons targeting dCA1 are essential for novel object recognition but not for discrimination between novel and 

familiar conspecifics. The opposite was true for dCA2/dCA3 projections to posterior CA1. Photoinhibition of 

dCA2/dCA3 projections to the DLS were instead shown to somewhat enhance social discrimination, but with no 

effect on object discrimination or recognition. In social behaviors, axons from dCA2 neurons targeting ventral 

hippocampus were shown to be critically involved in maintaining memory of a familiar animal (Meira et al., 

2018; Raam et al., 2017), while  pharmacogenetic inhibition of CA2 terminals in the DLS attenuates social 

aggression (Leroy et al., 2018), a pathway that, when active, appeared to invoke DLS-innervation of the 

ventromedial hypothalamus to drive attack behavior. 

 

In total, multiple non-overlapping engrams within these diverse hippocampal routes may compete through 

updating or ongoing learning to modify behavioral output. For example, 2P imaging of DG and CA3 engrams in 

vivo revealed that the updating of a reward location promoted activity remapping in CA1 and CA3 but not in the 

DG (Hainmueller and Bartos, 2018). Recent work has also demonstrated that contextual fear extinction recruits a 

distinct DG engram from that encoding the original context-shock association, which reduces levels of freezing 

in the training context, but can be overcome by the original engram to induce relapse (Lacagnina et al., 2019). 

Likewise, prolonged optogenetic or chemogenetic reactivation of a DG fear memory engram in the training 

context without the unconditioned stimulus promoted extinction of the conditioned response (Khalaf et al., 2018). 

Of course, the hippocampus is not unique in this type of broad connectedness, other hubs in the brain, including 

the claustrum (Jackson et al., 2020) and the thalamus (Halassa and Sherman, 2019) may surpass it in terms of 

total connectivity. However, these data suggest that the hippocampus is capable of integrating and routing 
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complex information from a variety of source structures, supporting its role in the binding of cognition and 

emotion to subserve memory (Figure 4A). 

Dynamic Routing: Inhibitory Microcircuits 

How might these diverse communication channels running through the hippocampus be managed? Hippocampal 

inhibitory neurons (INs) are well-positioned to function as arbiters of information flow in the hippocampus as 

they target different cellular compartments of principal neurons, are reciprocally connected with other 

interneurons and project locally within- and across different subregions and lamellae and out of the hippocampus 

to association cortices and subcortical circuits (long-range INs) (Caroni, 2015). Moreover, hippocampal INs 

modulate neuronal excitability, summation of excitatory inputs and neuronal firing in addition to generation of 

network oscillations (theta and gamma oscillations) and as such, are thought to play critical roles in local circuit 

computations underlying exploration and encoding, action selection, memory consolidation, retrieval and 

reinstatement (Cardin, 2018; Makino et al., 2019; Roux and Buzsáki, 2015; Sosa et al., 2018). Indeed, recent 

studies have uncovered a diverse population of INs in CA1 and CA3 that exert perisomatic and dendritic inhibition 

on dentate granule cells, and which are modulated by sharp-wave ripples. 

 

Local INs may regulate information flow within a hippocampal subregion by biasing recruitment of principal 

cells, thereby creating parallel channels as evidenced in a study that identified biased PV+ BCs connectivity with 

deep and superficial CA1 neurons of the ventral hippocampus (Lee et al., 2014). The authors found that PV+ BCs 

preferentially innervated deep CA1 pyramidal neurons but received greater excitatory inputs from superficial 

CA1 pyramidal neurons. At the level of output, PV+ BCs exert greater inhibition onto BLA-projecting deep CA1 

neurons than those that projected to the PFC and, in turn, received greater excitatory input from PFC than BLA. 

These data suggest that PV+ BCs do not uniformly inhibit CA1, but instead, it is likely that PV+ BC-principal cell 

microcircuits bias information flow to distinct ventral CA1 outputs including PFC, BLA, NAc, DLS and LH 
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(serving dynamic and flexible routing). Local INs may also differentially regulate theta phase-locking and burst 

firing of CA1 neurons through somatic or dendritic inhibition, respectively (Royer et al., 2012). Because burst 

firing of pyramidal cells is thought to increase synaptic communication by increasing excitation of downstream 

targets, local INs may modulate CA1 outputs through this mechanism (Graves et al., 2012; Lisman, 1997; 

Takahashi and Magee, 2009). Importantly, rhythmic optogenetic activation of PV+ INs in CA1 to mimic that seen 

during learning enhanced theta, delta and ripple oscillations, stabilized functional connectivity between CA1 

neurons and reliably promoted ensemble reactivation (Ognjanovski et al., 2014). The exact role these oscillations 

play in the ability of an index to reactivate downstream targets remains largely untested, however evidence 

suggests the coherence or coordination of activity they provide may facilitate both the encoding and recall of 

memories across various structures by ensuring temporal coordination of activity (Buzsáki, 2015; Corcoran et al., 

2016; Igarashi et al., 2014; Joo and Frank, 2018; Lin et al., 2017; Makino et al., 2019; Wirt and Hyman, 2019). 

 

Pioneering in vivo recordings and imaging studies in rats identified extensively connected inhibitory neurons with 

extra-hippocampal (septum, subiculum, para and pre-subiculum, RSC)-projections that coordinate network 

oscillations (Bonifazi et al., 2009; Jinno, 2009). Long-range inhibitory projection neurons of the LEC suppress 

CA1 CCK+ interneurons that relay feed-forward inhibition from CA3 to CA1 ex vivo (Basu et al., 2016). This 

disinhibition of CA1 interneurons induced enhanced dendritic spiking within a specific temporal window, a 

mechanism by which sensory information and mnemonic information arriving from excitatory LEC inputs and 

CA3, respectively may be integrated. More recently, a class of long-range inhibitory nNOS-expressing cells in 

CA1 (LINC neurons) has been identified that project both locally and extra-hippocampally (Christenson Wick et 

al., 2019). These neurons inhibit superficial and deep principal cells and other INs in CA1 and project to diverse 

extra-hippocampal targets including tenia tecta, subiculum, hypothalamus, olfactory bulb and EC. Optogenetic 

activation of LINC neurons entrained hippocampal oscillations and hippocampal-frontal cortex (tenia tecta) 
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coherence. Thus, converging evidence has begun to illuminate how cell physiology, activity-dependent gene 

expression, and microcircuit connectivity support hippocampal engram cell-dependent indexing (i.e., encoding 

of experiences and routing of information to mediate reinstatement). We discuss these features of engram cell 

identity next. 

 

Index Cell Identity 

Given the long-standing focus on rodent hippocampal place cells, an obvious question is what aspect of contextual 

memory is encoded within the hippocampal engram? Behavioral studies using variations of contextual fear 

conditioning suggest that the hippocampus generates a conjunctive representation of multimodal sensory 

information formed through physical exploration of a context [(Fanselow, 2000); also, see (Krasne et al., 2015)]. 

For example, one study preexposed rats to either the conditioning context or independent features of that context, 

and found context fear after an immediate shock is facilitated only when these multimodal cues are presented 

together, suggesting that the hippocampus represents the conjunction of the cues defining the context (Rudy and 

O’Reilly, 1999). Indeed, temporary pharmacological inactivation of the hippocampus during the context 

preexposure prevents the contextual fear conditioning of immediate shock (Matus-Amat et al., 2004). Past studies 

of IEG expression in the hippocampus support this this view [e.g., (Huff et al., 2006; Zhu et al., 1997)]; the 

strongest IEG response is achieved when a novel combination of multimodal cues is presented to the animal. 

Conversely, hippocampal IEG expression is weak or non-existent when a highly habituated stimulus is given. 

Note that immediate shock upon context entry in the absence of pre-exposure (and extensive post-exposure) does 

not appear to elevate levels of IEGs in the hippocampus relative to a habituated homecage [also, see: (Erwin et 

al., 2020)]. These data suggest that IEG-expressing engram neurons may not necessarily or exclusively store 

spatial information, as rodents will have active place cells even in the most familiar of contexts, but rather 

hippocampal circuits detect novelty in the combination of sensory cues and encode it as a contextual 
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representation supporting the episodic experience. Indeed, optogenetic stimulation of CA1 neurons tagged in a 

novel context the day prior to immediate shock delivery in the same context, but not a different context, resulted 

in retrieval of the contextual fear memory [(Ghandour et al., 2019); also, see (Ramirez et al., 2013)]. Thus, a 

memory engram, defined by active principal cells during contextual learning, may preferentially encode 

conjunctive contextual information, as opposed to specific locations that could be biased by a specific cue or 

subset of cues. 

 

Physiology 

Key insights into the precise identity of engram-bearing cells came from in vivo recording of CA1 neurons in a 

mouse in which c-Fos-positive neurons labelled during a novel context exposure were tagged with 

channelrhodopsin (ChR2) and subsequently optically identified (Tanaka et al., 2018). As expected, roughly 50% 

of all CA1 pyramidal cells could be classified as place cells, however only a quarter of these place cells also 

expressed c-Fos (optogenetically identified); in short, engram cells were place cells, but only a quarter of place 

cells were engram cells. During memory encoding, these engram-bearing (c-Fos) cells are distinguished by higher 

mean firing rates [as also seen in a calcium imaging study (Ghandour et al., 2019)], repetitive bursts of action 

potentials at the theta frequency and higher entrainment by the local fast gamma oscillation compared to the non-

c-Fos-expressing place cells; again, highlighting the role inhibitory circuits and oscillations may play in the 

formation of the index. Interestingly, when mice were returned to the context the next day, c-Fos-positive engram 

neurons, while remaining place cells, meaning they still demonstrated a reliable in-session spatially receptive 

field, showed a much higher degree of spatial instability compared to the encoding session (remapping) than the 

c-Fos negative place cell population. These data can be seen as paradoxical; how is it that the neurons shown to 

be capable of reinstating context appropriate behavior show relatively lower spatial specificity than the remaining 

active cells? Importantly, when only firing rate, and not location, was considered, it was clear that the engram 
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cells faithfully encoded contextual identity, but not specific location. A return to the encoding context resulted in 

c-Fos-positive neurons reinstating their average firing rates, which were highly correlated between the first and 

second visits, while the firing rates in a distinct context were strongly altered. It worth noting that this strong 

correlation of activity emerges as soon as animal is placed in the environment, suggesting their activity could 

support rapid retrieval of contextual memory, consistent with the Indexing Theory. Further, these findings of a 

unique physiology suggest the importance of the temporal relationship between input from CA3 and the EC in 

triggering CA1 pyramidal cell plasticity and activity in vivo (Bittner et al., 2017; Ketz et al., 2013). 

 

Complementary results were also found in a physiological study in which c-Fos-positive CA1 neurons were 

inhibited during recall (Trouche et al., 2016). In this study, engram neurons, defined by c-Fos expression 

associated with the acquisition of a cocaine-rewarded CPP, were labeled with an inhibitory opsin. Inactivation of 

this ensemble during a subsequent recall session reduced conditioned place preference behavior and interestingly, 

led to a global remapping of the c-Fos-negative active place cell population. Together, these data suggest that the 

role of the c-Fos-positive place cells is to serve as a context-specific memory index and their activity is crucial 

for the stable reinstatement of a more detailed spatial map, consisting of the remainder of the place cell population, 

that would permit animals precise navigation. 

 

While it may seem odd at first that the neurons indispensable for inducing memory recall in CA1 show spatial 

instability, recent computational modeling lends support to this view (Benna and Fusi, 2019). Based on an 

assumption that the hippocampus encodes correlations of incoming sensory information, similar to the 

interpretation from contextual conditioning and IEG studies, the model predicted instability in the spatial 

representation of the hippocampus. Their ultrametric tree-like network generated sparse and compressed 

representations of inputs to efficiently store uncorrelated patterns in a hippocampal-like network. When spatial 
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navigation in a 2D open field is simulated, activities of hippocampal cells in the model exhibit strong modulation 

by the animal’s location within the environment (i.e., place cells). However, similar to the experimental 

observations above, these place fields significantly remapped between epochs in the same environment, 

suggesting instability of firing location as a reflection of correlation coding rather than spatial coding. Taken 

together, these studies support a view that activity of the hippocampal engram reflects more than just space and 

suggest at least a subset of neurons are dedicated to capturing the conjunctive correlations that define the larger 

context of the experience. 

 

Activity-Dependent Regulation of Gene Expression and Connectivity 

Hippocampal engrams are generated and maintained by strengthening or modification of synapses among 

activated cells within and across subregions. One study found that c-Fos-tagged CA3 cells preferentially 

responded to stimulation of engram-tagged DGCs (Ryan et al., 2015), results indicative of experience-driven 

connectivity of DG-CA3. Likewise, context fear-dependent increases in the number and size of spines in engram-

bearing cells of CA1 coincides with direct input from engram-tagged cells from CA3 (Choi et al., 2018).  

Additionally, DG engram cells were shown to exhibit greater connectivity with stratum lucidum PV inhibitory 

neurons than non-engram DG cells (Guo et al., 2018). These observations have motivated investigations into how 

developmental programs and activity-dependent gene expression prescribes engram formation. First, principal 

neurons may have differing propensities towards recruitment into engrams based on developmentally 

programmed intrinsic firing properties, and connectivity (Cembrowski and Spruston, 2019; Soltesz and Losonczy, 

2018). Second, activity-dependent transcription factors and combinations thereof, enable neurons to read patterns 

of neural activity and transcribe molecular specifiers of connectivity to facilitate strengthening or modification of 

synapses (Tyssowski et al., 2018). For example, cAMP (cyclic adenosine monophosphate) response element 

binding protein (CREB)-overexpression studies have revealed that enhancing basal activity and excitability of 
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principal cells in the hippocampus (or subsets of amygdalar neurons, etc.) prior to learning can bias the allocation 

and tagging process to these cells, without altering the overall size of the engram per se (Josselyn and Frankland, 

2018; Josselyn and Tonegawa, 2020). A recent report using RNA sequencing of engram-tagged DG cells 

(following contextual fear conditioning) identified a unique learning-dependent genetic profile for engram-

bearing cells, with CREB-dependent transcription networks being differentially regulated and required for 

consolidation (Rao-Ruiz et al., 2019). Interestingly, many of these genes were previously shown to regulate 

somatic inhibition [e.g., neuronal PAS domain protein 4 (NPAS4), proenkephalin (Penk), and brain-derived 

neurotrophic factor (BDNF)] (Bloodgood et al., 2013). Consistent with these findings, within the DG, contextual 

fear learning regulates CREB-dependent levels of neuropeptide Y (NPY) in SST+ hilar perforant path-associated 

(HIPP) interneurons, which may regulate SST+ HIPP-mediated feedback and feedforward inhibition in the DG to 

govern the size of the engram (Raza et al., 2017; Stefanelli et al., 2016). Not surprisingly, different immediate 

early gene transcription factors (including NPAS4) have been functionally implicated in linking principal cells 

with distinct inhibitory neuron networks to support engram formation (Sun et al., 2020). Thus, experiential input 

may drive unique IEG expression to govern functional allocation of engram-bearing cells to work in concert for 

memory expression (Figure 4B).  

 

Hippocampal Index Stability and Memory Fidelity 

Memory consolidation is thought to involve transformation and reorganization of hippocampal-linked cognate 

cortical representations and a gradual decay of the hippocampal engram over time (DeNardo et al., 2019; 

Guskjolen et al., 2018; Kitamura et al., 2017; Roy et al., 2017; Tayler et al., 2013; Winocur et al., 2007). 

Consolidated memories have been shown to generalize or lack detail, including the extent to which they may 

elicit visceral or physiological reactions, leading to the suggestion that the role the hippocampus plays in memory 

is to contribute episodic detail (Yonelinas et al., 2019). If this contribution relies on the initial memory trace or 
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not remains a contested topic. For example, it has been argued that hippocampal memory traces remain, even for 

older memories (Moscovitch and Nadel, 2019), but others have argued there is a shift in the role the hippocampus, 

from one of recall to reconstruction in the absence of the original trace, with the activity serving to index 

consolidated neocortical traces (Barry and Maguire, 2019a, 2019b). These observations raise the following 

questions: is the hippocampal index always necessary for memory retrieval or whether cortical indexes acquire 

this function over time? Is the cortical index equivalent to the hippocampal index?  

 

Several lines of evidence support the notion that the hippocampal index may be necessary for maintenance and 

retrieval of only highly precise memories. First, although hippocampal damage at remote timepoints may still 

permit retrieval of detailed contextual representations, the extent of memory retrieval is often much less robust 

(Wang et al., 2009), suggesting that extra-hippocampal indices may not fully compensate for the loss of the 

hippocampal index. Indeed, while a similar degree of hippocampal activation is seen for recent and remote 

memories, the reactivation patterns are different [(Tayler et al., 2013); also, see (Guskjolen et al., 2018)]. Second, 

artificially stabilizing the engram within DG-CA3 decreases remote memory generalization [and maintains 

behavioral reinstatement of remote DG engram stimulation; (Guo et al., 2018)], providing a direct link between 

maintenance of the hippocampal index and remote memory precision.  

 

However, maintenance of separate hippocampal indices for all episodic memories is thought to require 

significantly greater capacity than is available to avoid memory interference (McClelland et al., 1995; Miller and 

Sahay, 2019; Skaggs and McNaughton, 1992). In CA1, the various methods employed to genetically label engram 

neurons typically capture about 20% of the pyramidal cells in the region (Tanaka et al., 2018) and in vivo imaging 

suggested the identity of these allocated neurons shifts over the timescale of hours (Cai et al., 2016); thus, it 

appears that natural decay of hippocampal indices ensures the time-dependent re-organization of memory traces 
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to support different degrees of generalization and generation of schema to facilitate new learning. It may be that 

some hippocampal indexes, perhaps for salient life events, are maintained for longer periods of time thereby 

permitting recall of remote memories with high fidelity. 

 

The integrity and composition of the cortical indices depends on how competition for representation of episodic 

memories and abstraction of statistical commonalities across ensembles dictates the balance between preservation 

of details versus generation of schema to facilitate memory generalization. This may involve time-dependent 

changes in the exact number of cells and patterns of efferent connectivity of cortical ensembles and linkage of 

distinct engrams of separate experiences via some degree of overlapping and synchronous activation (during 

recall or reconsolidation) of engram-bearing cells (Abdou et al., 2018; DeNardo et al., 2019; Kitamura et al., 

2017; Ohkawa et al., 2015; Oishi et al., 2019; Pignatelli et al., 2019; Ramirez et al., 2013; Redondo et al., 2014).  

 

While no one model can explain all the current data, from the perspective of engrams and indexing we favor the 

hypothesis of a time-dependent shift in the indexing function from the hippocampus to cortical traces concurrent 

with a silencing or loss of the original hippocampal index (Tonegawa et al., 2018). Ultimately, time-dependent 

shifts in hippocampus-dependent episodic detail may be useful in the development of experiential schemas and 

broader knowledge. 

 

Hippocampal Dysfunction 

“Indexopathies” 

Memory deficits and hippocampal dysfunction accompany traumatic brain injury, epilepsy, age-related cognitive 

decline, Alzheimer’s Disease (AD) and numerous other psychiatric disorders, including posttraumatic stress 

disorder (PTSD) and schizophrenia (Besnard and Sahay, 2016; Haberman et al., 2017; Small et al., 2011). Can 
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these disorders of experiential memory be classified as “indexopathies”, insofar as they are marked by an inability 

to accurately or precisely encode or effectively implement hippocampus-dependent routing of information (i.e., 

indexing)? For example, recent work documented declining hippocampal and cortical reinstatement in aging 

individuals (Trelle et al., 2020). Disease- or aging-induced excitation-inhibitory imbalance in hippocampal 

circuits, which may impede indexing, may underlie much of these memory dysfunctions. Indeed, excitation-

inhibition imbalance (hypo- or hyperactivity) at the level of CA1 [e.g., (Oh et al., 2013)]  and CA3 [e.g., (Simkin 

et al., 2015; Wilson et al., 2005)] and loss of feedforward inhibition in DG-CA3 [e.g., (Guo et al., 2018)] are 

associated with memory imprecision in preclinical models of aging and memory disorders. Human imaging 

studies have further reported similar activity changes (e.g., hyperactivity) of hippocampal structures (Haberman 

et al., 2017), such as in presymptomatic familial AD (FAD) individuals (Quiroz et al., 2010) or in patients with 

amnestic mild cognitive impairment (Bakker et al., 2012). 

 

Such cellular, circuit and network level alterations may disrupt the balance between pattern separation and pattern 

completion, thereby promoting aberrant index-dependent reinstatement and recall. What previously may have 

been subthreshold to trigger CA3-dependent memory recall prior to disease, may be sufficient after disease onset, 

thereby promoting excessive reinstatement and memory expression in contexts that may not be optimal. For 

example, aberrant or excessive retrieval of past experiences has been suggested to underlie psychosis in 

schizophrenia (Tamminga et al., 2010). Additionally, degradation of flexible routing to extrahippocampal targets, 

due to connectivity losses in disease or injury, may also impede the abilities of the hippocampus to effectively 

integrate cortical and subcortical information for proper encoding and retrieval. Perhaps related to such circuit 

loss, AD is considered, in part, a disease of memory retrieval failure (Leal and Yassa, 2018; Roy et al., 2016).  
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Promoting Indexing: New Directions in Therapy 

Recent advances in technology and medicine have led to a number of new therapeutic avenues for memory 

disorders—strategies that may be effective, in part, because they promote or reestablish hippocampal indexing 

functions. For example, growing interest has centered on deep-brain and closed-loop feedback neuroprosthetics 

for symptom management in individuals where other lines of treatment have failed (Grosenick et al., 2015; 

Takeuchi and Berényi, 2020). Perhaps by restoring context-dependent routing (and thereby indexing), these real-

time electrophysiological (or opto- or chemogenetic, potentially) methods could dynamically normalize aberrant 

activity or restore cell excitability in perturbed brain circuits (e.g., in hippocampal-amygdalar or hippocampal-

prefrontal loops). Additionally, recent developments in targeted gene-editing approaches (Knott and Doudna, 

2018) may permit molecular re-allocation or re-specification of connectivity aimed at promoting memory 

precision and accuracy. Indeed, quieting disease-related hyperexcited CA3 pyramidal cells may involve targeting 

feedforward inhibitory mechanisms of DG-CA3 (Guo et al., 2018; Viana da Silva et al., 2019), CA2-CA3 

connections (Boehringer et al., 2017), or inhibiting aberrant LH-CA3 activity (Zhou et al., 2019a), for example. 

Other pharmaco- or gene therapies that promote neurogenesis in aging or disease states may also exist as 

beneficial therapeutic avenues for memory impairments (Miller and Sahay, 2019). 

 

Novel treatments for memory impairments may not be limited to invasive techniques and may involve 

supplementing existing procedures to best tap into the indexing properties of the hippocampus. For example, 

although the use of mnemonic devices for memory treatments is not new, recent developments in technology, 

such as augmented reality or 3D interactive environments, may provide novel avenues for improving memory 

recall within and beyond the clinic. Indeed, the growing ubiquity of personal handheld devices may make mobile 

reminders or mnemonic cues (to facilitate reinstatement of memory) for treatments or symptom management for 

memory impairments more accessible or specialized. When combined with psychological treatments in the clinic, 
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these and the abovementioned possibilities may yield new successes in treatment-resistant memory disorders. 

Moving forward, indexing may be a useful framework for improving clinical therapies for memory dysfunction.  

 

Conclusions: Moving Memory Forward 

Perhaps the brain’s most powerful search engine, the hippocampus sits at the center of the acquisition and recall 

of episodic memory. While the mechanisms of how this is achieved has been the focus of decades of research 

across many species and disciplines, it is often challenging to relate disparate lines of inquiry. Here we have 

highlighted human and animal work based on recent genetic, physiological, anatomical and computational 

approaches that together support an expanded view of the Hippocampal Memory Indexing Theory. In particular, 

we argue that (1) the functional roles of putative hippocampal engram cells include indexing, which may facilitate 

detailed recall of episodic experiences, (2) this episodic recall is facilitated by the reinstatement of engram cell 

activity and in their experience-sculpted connectivity, (3) indexing may not be unique to the hippocampus, but 

the hippocampus may be uniquely positioned to index experiential memory, (4) disease of the hippocampus may 

impede truly episodic memory by disrupting its capacity for precise context-specific reinstatement. Nonetheless, 

there remain a number of outstanding questions for the field and for future work (Figure 5). Future work that 

integrates these levels of analyses will be required to understand how the dynamics of information flow in the 

hippocampal circuit contributes to the encoding and recall processes it supports.  
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Figure Legends 

 

Figure 1. Comparing and contrasting hippocampal place cells and engram-tagged (immediate early gene-expressing) 

neurons. Place cell activity has precise temporal structure both during exploration and rest, whereas engram-tagged neurons 

are simultaneously and experimentally reactivated. Place cell density appears moderate, and this density of active place cells 

is relatively stable in any given context. Conversely, engram-tagged cells in the hippocampus are sparse, with familiar 

contexts exhibiting low levels of tagged expression. Engram cells exhibit considerably less stability in their context-

dependent reinstatement over time as compared to place cells, although both are highly unstable with time. Remote 

timepoints for reactivation of experience-dependent engram cells remain unknown. While there are overlapping behavioral 

correlates of place and engram cell activity, place cell research has led the field in its correlation to behavior. 

 

Figure 2. Hippocampal Memory Indexing Theory.   

 

 

Figure 3. Hippocampal (DG-CA3-CA2-CA1) circuit architecture and anatomical loops permits flexible integration 

and routing of experiential information. (A) Examples of hippocampal inputs (blue arrows). (B) Examples of 

hippocampal outputs (orange arrows). Note that the projections shown are not exhaustive. Brain regions: anterior cingulate 

cortex (ACC); bed nucleus of the stria terminalis (BNST); basolateral/basomedial amygdala (BLA/BMA); central amygdala 

(CEA); dentate gyrus (DG); dorsal raphe nucleus (DRN); entorhinal cortex (EC); cornu ammonis regions (CA1-3); 

infralimbic cortex (IL); locus coeruleus (LC); anterior/lateral hypothalamic area (A/LHA); lateral septum (LS); medial 

septum (MS); nucleus accumbens (NAC); orbital frontal cortex (OFC); prelimbic cortex (PL); nucleus reuniens (RE); 

retrosplenial cortex (RSC); subiculum (SUB); supramammillary nucleus (SUM); ventral tegmental area (VTA). Brain 

region images were generated using Brain Explorer 2.0 [Allen Mouse Brain Atlas; (Lein et al., 2007)].  

 

 

Figure 4. Hippocampal engrams may index experience to reinstate experiential memory. (A) Distinct experiences are 

thought to be encoded within DG-CA3-CA2-CA1 connections, with engram-bearing cells being functionally linked to other 

neurons for the same episode. Recall can then be driven by partial input (cues) that reinstate activity (filled-in 

circles/squares) within hippocampal circuits to drive extrahippocampal reinstatement via its diverse outputs and connectivity 

to other engram-bearing cells. PCs: principal cells; INs: inhibitory neurons. (B) Hippocampal cells may register more than 

one experience in distinct patterns of connectivity prescribed by activity-dependent gene expression (shown here as 

combinations of 1 and 0’s).  

 

 
 

Figure 5. Outstanding challenges for hippocampal indexing and memory research.  
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