
Lightcone expansions of conformal blocks in
closed form

Author Wenliang Li
journal or
publication title

Journal of High Energy Physics

volume 2020
number 6
page range 105
year 2020-06-16
Publisher Springer Nature
Rights (C) 2020 The Author(s) 
Author's flag publisher
URL http://id.nii.ac.jp/1394/00001534/

doi: info:doi/10.1007/JHEP06(2020)105

Creative Commons Attribution 4.0 International(https://creativecommons.org/licenses/by/4.0/)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OIST Institutional Repository

https://core.ac.uk/display/352722132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


J
H
E
P
0
6
(
2
0
2
0
)
1
0
5

Published for SISSA by Springer

Received: February 27, 2020

Accepted: May 29, 2020

Published: June 16, 2020

Lightcone expansions of conformal blocks in closed

form

Wenliang Li

Okinawa Institute of Science and Technology Graduate University,

1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan

E-mail: lii.wenliang@gmail.com

Abstract: We present new closed-form expressions for 4-point scalar conformal blocks in

the s- and t-channel lightcone expansions. Our formulae apply to intermediate operators

of arbitrary spin in general dimensions. For physical spin `, they are composed of at most

(`+ 1) Gaussian hypergeometric functions at each order.

Keywords: Conformal Field Theory, Conformal and W Symmetry, Nonperturbative Ef-

fects

ArXiv ePrint: 1912.01168

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP06(2020)105

mailto:lii.wenliang@gmail.com
https://arxiv.org/abs/1912.01168
https://doi.org/10.1007/JHEP06(2020)105


J
H
E
P
0
6
(
2
0
2
0
)
1
0
5

Contents

1 Introduction 1

2 Lightcone limits of conformal blocks 5

3 Lightcone expansions of conformal blocks 7

3.1 The t-channel lightcone expansion 7

3.2 The s-channel lightcone expansion 10

4 Conclusion 13

A Alternative s-channel lightcone expansion 14

B Sums of t-channel conformal blocks 15

1 Introduction

Conformal blocks are fundamental to the conformal bootstrap program [1, 2], which aims to

classify and solve conformal field theories (CFTs) by general consistency requirements, such

as associativity of operator product expansion (OPE). In two dimensions, the conformal

symmetry is infinite-dimensional, and the conformal bootstrap program can be carried

out rather successfully [3]. The well-known examples include the minimal models, which

describe the critical phenomena of 2d statistical models, such as the Lee-Yang, Ising, and

Potts models [4]. On the other hand, the d > 2 conformal bootstrap is considerably more

challenging as the conformal symmetry is usually finite-dimensional.

When performing operator product expansions in conformal field theories, the contri-

butions of a primary and its descendants are related by conformal symmetry. A conformal

block is defined by the contributions of a full conformal multiplet, which includes a primary

and infinitely many descendants. The study of conformal blocks has a long history [5–9],

which dates back to the 1970’s when the conformal bootstrap proposal was just formulated.

The understanding of conformal blocks was significantly advanced by the works of Dolan

and Osborn [10–12], in which they found explicit analytic expressions in d = 2, 4, 6 dimen-

sions, recursion relations and Casimir differential equations in general dimensions. These

results had paved the road for the revival of the d > 2 conformal bootstrap [13], where a

new numerical conformal bootstrap method was proposed. Let us mention here the precise

determinations of 3d Ising critical exponents [14–17], but refer to [18] for a comprehensive

review on many other impressive results.1

1See also [19–22] for useful lecture notes.
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For the numerical conformal bootstrap, it may be adequate to be able to evaluate

conformal blocks efficiently using the Zamolodchikov-like recursion relations [23–25] in the

radial coordinates [26, 27]. For the analytic conformal bootstrap, it is more desirable to have

closed-form expressions of conformal blocks to enable general analytic computations, with

the dream in mind that the 3d Ising CFT will eventually be solved analytically. Besides

those mentioned earlier, 4-point conformal blocks in position space have been studied in

various approaches [28–51]. In this paper, we will focus on conformal blocks with external

scalars. In principle, spinning conformal blocks can be obtained from the scalar case using

differential operators.

In the analytic conformal bootstrap, considerable recent efforts have been devoted to

solving the crossing equations near the lightcone, where the correlator is dominated by the

contributions of low twist operators.2 The crossing equations follow from OPE associativity

when applied to 4-point functions of scalar primaries. By considering the double lightcone

limit, one can show that the leading contribution from the identity operator indicates the

existence of infinitely many higher spin operators whose twists are asymptotic to the sum of

two external scaling dimensions [64, 65].3 The double-twist phenomena were noticed earlier

in a more concrete context [68]. The same argument can be extended to subleading twists,

but one needs to be more careful about the potential mixing of different twist families.

In some sense, these large spin sectors behave like mean fields or generalized free fields.

Then the next step is to study the systematic corrections to the “free” theories [69–81].

Naturally, one can formulate the problem as a perturbation theory in large spin. As in

many perturbation problems, the results are asymptotic series in the expansion parameter,

i.e. 1/` [74]. However, it turned out that the results for the leading twist family of the

3d Ising CFT are consistent with the numerical values down to spin two [73, 78]. The

lightcone bootstrap should admit a convergent formulation.

The asymptotic issue was later resolved by the elegant Lorentzian inversion formula

proposed in [82], which upgrades the asymptotic expansion to a convergent integral trans-

form and establishes the analyticity in spin assumed earlier [83].4 An alternative derivation

was presented in [85] and a generalization to the spinning case was given in [86]. In two

and four dimensions, general closed-form results of the Lorentzian inversion of a conformal

block can be found in [87]. In d 6= 2, 4 dimensions, the nonperturbative Lorentzian inver-

sion in the lightcone limit has also been studied in [49, 88, 89], which encodes the OPE

data of the leading twist spectrum. Interestingly, it was shown that the analyticity in spin

extends to spin-0 in some cases [90–93], despite the presence of a singularity between ` = 0

and ` = 2 related to a poor Regge limit. More recently, a closely related dispersion relation

for conformal field theory was proposed in [94], which expresses a correlator as an integral

over the double discontinuity.5

2Other active analytic approaches include the Polyakov-Mellin bootstrap [52–56], analytic function-

als [57–61], and Tauberian theorems [62, 63].
3We assume that the vacuum state has the lowest twist and the twist spectrum has a gap. In 2d CFTs

the twist-0 spectrum is usually degenerate due to the vacuum Virasoro module. See [66, 67] for the lightcone

bootstrap in 2d.
4In [84], convergent results were obtained from a different approach.
5See also [95] for another recently proposed dispersion relation, which is based on single discontinuity.
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In this paper, we will focus on the 4-point functions of scalar primaries:

〈ϕ1 ϕ2 ϕ3 ϕ4〉 =

(
x24

x14

)2a(x14

x13

)2b G(u, v)

x∆1+∆2
12 x∆3+∆4

34

, (1.1)

where xi indicates the positions of the external scalars ϕi, and xij = |xi − xj | is the

distance between two operators. In general, the external operators can have different

scaling dimensions, and their differences are denoted by

a =
∆1 −∆2

2
, b =

∆3 −∆4

2
. (1.2)

The functional form of the 4-point function is determined by conformal symmetry up to a

function of two conformally invariant cross-ratios

u =
x2

12 x
2
34

x2
13 x

2
24

, v =
x2

14 x
2
23

x2
13 x

2
24

. (1.3)

In the Lorentzian signature, the first cross-ratio u vanishes when the pair of operators in

the s-channel OPE, i.e. ϕ1×ϕ2, are light-like separated, so we will call u→ 0 the s-channel

lightcone limit. Analogously, v → 0 will be called the t-channel lightcone limit, which is

related to ϕ2 × ϕ3. Usually, correlators develop singularities in the lightcone limits, which

are associated with ambiguities in time ordering when operators are time-like separated.

It is sometimes convenient to switch to (z, z̄), which are real, independent coordinates in

the Lorentzian signature.6 They are related to (u, v) by

u = zz̄ , v = (1− z)(1− z̄) . (1.4)

It is straightforward to obtain the lightcone expansions in terms of z, z̄ from those in terms

of u, v via (1.4).

For an intermediate scalar, i.e. ` = 0, the double lightcone expansion of a 4-point scalar

conformal block is known in closed form in general dimensions,7 given by hypergeometric

functions of two variables [10]:

G
(d,a,b)
∆,0 (u, v) = u∆/2 v

a−b
2

[
Γ(b− a)

(∆/2)−a (∆/2)b
v
a−b
2

∞∑
k1, k2=0

C
(`=0)
k1, k2

uk1vk2 + (a↔ b)

]
, (1.5)

where the series coefficients take the form

C
(`=0)
k1,k2

=
1

k1! k2!

(∆/2 + a)k1+k2 (∆/2− b)k1+k2

(∆− d/2 + 1)k1 (1 + a− b)k2
. (1.6)

The two-variable hypergeometric functions belong to Appell’s function of type F4. One can

carry out the k1 or k2 summation, which corresponds to a hypergeometric function of type

2F1. Therefore, at each order of the s- or t-channel lightcone expansion, the dependence

on the other cross-ratio is encoded in one Gaussian hypergeometric function.

6In the Euclidean signature, z, z̄ are complex conjugate to each other. In terms of u, v, the boundary

between the Lorentzian and Euclidean regimes is given by (1 + u− v)2 = 4u.
7This is the main reason that we use u, v rather than z, z̄.
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The main goal of this paper is to extend (1.5) to the case of generic `. For physical

spin `, we find that the s- and t-channel lightcone expansions of a generic 4-point scalar

conformal block read:

G
(d,a,b)
τ,` (u, v) ∼ uτ/2 v

a−b
2

[
v
a−b
2

∞∑
k=0

uk
∑̀
n=0

Ak,n (1− v)`−n2F1[. . . , v] + (a↔ b)

]
, (1.7)

G
(d,a,b)
τ,` (u, v) ∼ uτ/2 v

a−b
2

[
v
a−b
2

∞∑
k=0

vk
∑̀
n=0

Bk,n (1− u)`−n un2F1[. . . , u] + (a↔ b)

]
, (1.8)

where for simplicity some normalization factors and the parameters in the 2F1 hypergeo-

metric functions have been omitted. As generalizations of the ` = 0 case, the dependence on

the other cross-ratio is now encoded in at most (`+ 1) Gaussian hypergeometric functions.

The precise formulae and closed-form coefficients can be found in (3.11)–(3.15), (3.18)

and (3.2), (3.3), (3.5), (3.9). The same formulae also apply to the case of generic `, but

the n-summation should be from 0 to 2k for (1.7) and from 0 to ∞ for (1.8). The double

lightcone expansion can be obtained from either (1.7) or (1.8):

G
(d,a,b)
τ,` (u, v) ∼ uτ/2 v

a−b
2

[
v
a−b
2

∞∑
k1, k2=0

Ck1, k2 u
k1 vk2 + (a↔ b)

]
, (1.9)

where the series coefficients Ck1,k2 are finite sums of Ak,n in (3.16) or Bk,n in (3.8). The

double power series (1.9) furnishes a general, explicit solution to the quadratic and quartic

Casimir equations, which are partial differential equations of two variables.

For comparison, we will briefly discuss below other complete analytic formulae of 4-

point scalar conformal blocks in general dimensions :

• According to (1.4), the conformal blocks are symmetric functions in z, z̄, so it is

natural to expand the conformal blocks in terms of building blocks that are manifestly

symmetric in z, z̄. In [11], the conformal blocks with non-negative integer spin ` are

given by an infinite sum of Jack polynomials, which are symmetric polynomials in

z, z̄. The coefficients are presented in closed-form in terms of 4F3 hypergeometric

series. More explicitly, the two-variable Jack polynomials can be expressed as the

Gegenbauer polynomials in (z + z̄)/(2
√
zz̄ ) times a power function of zz̄. However,

this formula is not very convenient for the lightcone expansions considered in this

paper. For instance, the lightcone limits receive contributions from infinitely many

Jack polynomials.

• In Mellin space, 4-point scalar conformal blocks in general dimensions are also known

in closed form for non-negative integer `. The essential part is known as the Mack

polynomials [12, 96], which are the counterparts of Ak,n, Bk,n in position space.8 Due

to our choices of basis functions, Ak,n, Bk,n are much simpler than the results from the

Mack polynomials at low orders of the lightcone expansions. In addition, Ak,n, Bk,n

8The Mack polynomials are related to the continuous Hahn polynomials [52, 53]. Similarly, Ak,n, Bk,n
may be related to some orthogonal polynomials.
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directly apply to generic `, as opposed to only non-negative integer ` in the case of

the Mack polynomials.9

• As shown in [38], the quadratic Casimir equation can be mapped to the Schrödinger

equations for integrable Calogero-Sutherland models. Then 4-point scalar confor-

mal blocks are related to the Harish-Chandra functions, which can be written as

double infinite sums of Gaussian hypergeometric functions in z, z̄ with power law

insertions [46]. To the best of our knowledge, while it is straightforward to derive

the s-channel lightcone expansion, i.e. z � 1, from the explicit results in [46], it is

more difficult to obtain compact formulae for the t-channel lightcone expansion, i.e.

1− z̄ � 1. Our s-channel lightcone expansion also seems to be simpler, at least at low

orders. As solutions of the quadratic Casimir equation, the formulae in this paper

provide alternative expressions for the Harish-Chandra functions in the small zz̄ or

(1− z)(1− z̄) expansion.

2 Lightcone limits of conformal blocks

In this section, we will give a brief overview of 4-point scalar conformal blocks in the

lightcone limits. After performing the s-channel operator product expansion, the conformal

invariant part decomposes into s-channel conformal blocks

G(u, v) =
∑
i

PiG
(d,a,b)
τi,`i

(u, v) , (2.1)

where Pi is the product of two OPE coefficients associated with the intermediate primary

operator Oi, and (τi, `i) are the twist and spin of Oi. Note that the primary operator is

labeled by twist

τ = ∆− ` , (2.2)

rather than the scaling dimension ∆, because twist appears naturally in the lightcone

limit. The s-channel conformal block G
(d,a,b)
τi,`i

(u, v) encodes the contributions of Oi and its

descendants in the s-channel OPE, and satisfies the quadratic Casimir differential equation

D Ḡ =
1

2

[
(τ + `)(τ + `− d) + `(`+ d− 2)

]
Ḡ , (2.3)

where

D = 2D2
u − dDu +

1− u− v
v

[
D2
v −

(
a− b

2

)2]
−(1 + u− v)

[
(Du +Dv)

2 −
(
a+ b

2

)2]
, (2.4)

and

Ḡ = v−
a−b
2 G

(d,a,b)
τ,` (u, v), Du = u ∂u, Dv = v ∂v . (2.5)

9See [97] for a recent generalization to continuous spin.
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As the differential operator D is symmetric in a and b, two independent solutions can be re-

lated by interchanging a and b. The boundary condition is given in the short distance limit:

G
(d,a,b)
τ,` (u, v) =

Γ(τ/2 + `)2

Γ(τ + 2`)
uτ/2 (1− v)`, as u→ 0, v → 1 . (2.6)

For physical operators, the spin ` is a non-negative integer, i.e. ` = 0, 1, 2, · · · . We will

consider conformal blocks with generic ` using the Casimir equation (2.3), which can be

considered as analytic continuation of the physical conformal blocks. Operators of generic

spin ` are nonlocal. They play a significant role in the Lorentzian inversion formula [82]

and can be understood as a combination of the spin-shadow and light transforms of local

operators [86]. Analogous to the shadow transform, these transforms can be viewed as

Weyl reflections. From the perspective of conformal Casimirs, the eigenvalues are invariant

under the Weyl reflections10

∆↔ d−∆ , `↔ 2− d− ` , ∆↔ 1− ` , (2.7)

which correspond to the shadow, spin-shadow and light transforms. Note that the spin-

shadow transform also appears in the closed-form expressions of conformal blocks in even

dimensions.

In the s-channel lightcone limit u → 0, the coefficients of Du, Dv in (2.4) are regular,

so we can substitute Du with the leading exponent τ/2 and set u to 0. Then we obtain a

second order differential equation in v for the leading term, whose explicit solution reads:

G
(d,a,b)
τ,` (u, v)

∣∣
u→0

=
Γ(τ/2 + `)2

Γ(τ + 2 `)
uτ/2 (1− v)` 2F1

[
τ/2 + `− a, τ/2 + `+ b

τ + 2 `
; 1− v

]
. (2.8)

The conformal blocks are normalized such that the double lightcone limit with a = b = 0 is

G
(d,0,0)
τ,` (u, v)

∣∣
u,v→0

= −uτ/2
(

log v + 2Hτ/2+`−1

)
, (2.9)

where Hx = H(x) is the Harmonic number.

In the t-channel lightcone limit v → 0, the quadratic Casimir equation does not reduce

to an equation for the leading term, but one can make use of both the quadratic and quartic

Casimir equations to derive a closed equation [82]. As the resulting equation is of fourth

order, it is more challenging to obtain explicit solutions, in contrast to the standard second

order equation from the small u limit. Nevertheless, a general closed-form expression for

the small v limit was recently found in [49]:

G
(d,a,b)
τ,` (u, v)

∣∣
v→0

= v
a−b
2

[
Γ(b− a)

(τ/2 + `)−a (τ/2 + `)b

uτ/2 v
a−b
2

(1− u)(d−2)/2+(a−b) (2.10)

×F 0,2,2
0,2,1

[∣∣∣∣ −`, 3− d− `γ, 2− d/2− `

∣∣∣∣ γ/2− a, γ/2 + b

γ/2 + τ/2 + `

∣∣∣∣u,−u]+ (a↔ b)

]
,

10Here the independent labels are (∆, `). These Weyl reflections are not independent.

– 6 –



J
H
E
P
0
6
(
2
0
2
0
)
1
0
5

where

γ = τ − d+ 2 , (x)y =
Γ(x+ y)

Γ(x)
. (2.11)

For ` > 0, the anomalous dimension is given by γ. It is straightforward to verify that (2.10)

solves the quartic differential equation. Here we have introduced a two-variable hypergeo-

metric function, the Kampé de Fériet function. In our notation, the function is defined as

F 0,2,2
0,2,1

[∣∣∣∣ α1, α2

β1, β2

∣∣∣∣ α3, α4

β3

∣∣∣∣x, y] =
∞∑

m,n=0

(α1)n (α2)n
(β1)n (β2)n

(α3)m+n (α4)m+n

(β3)m+n

xm yn

m!n!
. (2.12)

Note that our definition is not standard. Usually the terms with (m+n) are on the left of

those with m or n. In our notation, it is more clear that the n-summation terminates for

physical spin ` due to the Pochhammer symbol (−`)n. Then for each n the m-summation

corresponds to a 2F1 hypergeometric function. More explicitly, we can write (2.10) as

G
(d,a,b)
τ,` (u, v)

∣∣
v→0

= v
a−b
2

[
Γ(b− a)

(τ/2 + `)−a (τ/2 + `)b
v
a−b
2

∑̀
n=0

B0,n g0,n(u) +(a↔ b)

]
, (2.13)

where the factorized coefficients are

B0,n =
`!

n!(`− n)!

(3− d− `)n
(γ)n (2− d/2− `)n

(γ/2− a)n (γ/2 + b)n
(γ/2 + τ/2 + `)n

, (2.14)

and the basis functions are

g0,n(u) =
uτ/2+n

(1− u)(d−2)/2+(a−b) 2F1

[
γ/2 + n− a, γ/2 + n+ b

γ/2 + n+ τ/2 + `
; u

]
. (2.15)

The subscript 0 indicates the lowest order in the small v expansion.

3 Lightcone expansions of conformal blocks

The lightcone limits of 4-point scalar conformal blocks are the leading terms of the lightcone

expansions. In this section, we will consider the subleading terms. We will first generalize

the formula for the v → 0 limit to all orders in the small v expansion. Then we will discuss

the small u expansion. The double lightcone expansion can be readily derived from either

of them.

3.1 The t-channel lightcone expansion

In the v → 0 limit, (1.5) should be equivalent to (2.10) with ` = 0. To show their

equivalence, let us perform a linear transformation of the 2F1 function associated with the

m-summation

u∆/2
2F1

[
∆/2 + k + a,∆/2 + k − b

∆/2 + γ/2
; u

]
=

u∆/2

(1− u)(d−2)/2+(a−b)+2k 2F1

[
γ/2− k − a, γ/2− k + b

γ/2 + ∆/2
; u

]
, (3.1)

– 7 –
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which is precisely g0,n(u) with ` = n = 0 when k = 0. The coefficient of 2F1 also matches

with B0,n in (2.14) with ` = n = 0. In (3.1), we have intentionally preserved the k-

dependence, which suggests the general basis functions should be

gk,n(u) =
uτ/2+n

(1− u)(d−2)/2+(a−b)+2k 2F1

[
γ/2 + n− k − a, γ/2 + n− k + b

γ/2 + n+ τ/2 + `
; u

]
, (3.2)

where γ = τ −d+ 2. For ` = 0, 1, 2, . . . , the small v expansion of a generic conformal block

then reads

G
(d,a,b)
τ,` (u, v) = v

a−b
2

[
Γ(b− a)

(τ/2 + `)−a (τ/2 + `)b

∞∑
k=0

v
a−b
2

+k
∑̀
n=0

Bk,n gk,n(u) + (a↔ b)

]
.

(3.3)

It is not surprising that conformal blocks can be expanded in terms of gk,n(u), since

gk,n(u) ∼ uτ/2+n + · · · where the leading exponent increases with n. The nice feature

is that the n-summation always terminates at n = ` when ` is a non-negative integer,

generalizing a property of the small v limit to all the subleading terms. Note that for a

generic ` the n-summation does not terminate for both the leading and subleading terms.

The next step is to find a general expression for Bk,n. One can compute Bk,n using

the quadratic Casimir equation (2.3) order by order. For example, we find

B1,n =
B0,n

(γ/2 + n− a− 1)(γ/2 + n+ b− 1)

×
[
(γ/2− a− 1)(γ/2 + b− 1)

(
− `+

(τ/2 + `+ a)(τ/2 + `− b)
1 + a− b

)
−n

2

(
τ + `− 1

2− d− `+ n
(d− 2)(−a+ b− d/2− 1)

− (τ + `− 1)2

(1− d− `+ n)2

(
2`(n− `) + (d− 2)(1− 2`+ n)

))]
, (3.4)

where B0,n is defined in (2.14). In general, they are rational functions of (`, τ, a, b, d). One

can decompose them into factorized rational functions according to their poles, i.e. the

zeros of the denominators. It turns out that Bk,n can be expressed as

Bk,n =

k∑
nk=0

n∑
ni=0

(−`)nk+n3 (`− n+ 1)n−n1 (d−2
2 + n3)n1−n3 (τ + `− 1)n2+n3

(k − nk)! (nk − n2)! (n− n1)! (n1 − n2)! (n2 − n3)! (n2 + n3 − n1)!

×(τ/2 + `+ a)k−nk (τ/2 + `− b)k−nk
(1 + a− b)k−nk

(
− a+ b− d− 2

2
− 2k

)
n2−n3

× (3− d− `)n−n1

(γ)n (2− d/2− `)n
(γ/2 + n2 − k − a)n−n2 (γ/2 + n2 − k + b)n−n2

(γ/2 + τ/2 + `)n
, (3.5)

where ni indicates (n1, n2, n3). To arrive at (3.5), the poles from 1/(1 + a − b)m are

particularly helpful. The last line of (3.5) also shares some nice features of the leading

term in (2.14), where several terms coincide with the parameters in the associated 2F1

– 8 –
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functions. Since (p!)−1 vanishes if p is a negative integer, there are additional conditions

for non-vanishing summands

nk ≥ n2 , n1 ≥ n2 ≥ n3, n2 + n3 ≥ n1. (3.6)

The dependence on nk is relatively simple, so it is straightforward to carry out the nk-

summation. The (n1, n2, n3) are more entangled with each other, but n1 can be eliminated

easily as well. So there remain at most two summations. Although (3.5) is guessed from low

order expressions, we have tested it at much higher orders using the Casimir equation (2.3),

which can be performed efficiently by setting (`, τ, a, b, d) to rational numbers.

Then we can derive the double lightcone expansion from (3.3):

G
(d,a,b)
τ,` (u, v) = v

a−b
2

[ ∞∑
k1, k2=0

Ck1, k2 u
τ/2+k1 v

a−b
2

+k2 + (a↔ b)

]
, (3.7)

where the coefficients Ck1,k2 are sums of Bk,n in (3.5):

Ck1,k2 =
Γ(b− a)

(τ/2 + `)−a (τ/2 + `)b

k1∑
n,m=0

Bk2,n
(a− b+ d−2

2 + 2k2)k1−n−m

(k1 − n−m)!

× (γ/2 + n− k2 − a)m (γ/2 + n− k2 + b)m
m! (γ/2 + n+ τ/2 + `)m

. (3.8)

Before moving to the small u expansion, let us discuss some properties of the building

block gk,n(u). After a linear transformation, gk,n(u) becomes

gk,n(u) = uτ/2+n (1− u)`−n 2F1

[
τ/2 + `+ k + a, τ/2 + `+ k − b

τ/2 + `+ γ/2 + n
; u

]
. (3.9)

The alternative expression (3.9) may look simpler than (3.2), but the parameters of the

2F1 function do not match with those in Bk,n. One may wonder whether the termination

of the n-summation for non-negative integer ` is associated with the exponent of (1 − u).

We will see that this is indeed the case.

The boundary condition of conformal blocks is given in the limit u → 0, v → 1. The

s-channel OPE in the u→ 0 limit is dominated by the contributions of low twist operators.

Now we can also consider the dual limit u → 1 of conformal blocks, which reduces to

expanding gk,n(u) around u = 1:

gk,n(u) =
Γ(−1 + a− b+ d/2 + `− n+ 2k) Γ(τ + `− d/2 + 1 + n)

Γ(τ/2 + `+ k + a) Γ(τ/2 + `+ k − b)

× uτ/2+n

(1− u)(d−2)/2+(a−b)+2k 2F1

[
γ/2 + n− k − a, γ/2 + n− k + b

2− a+ b− d/2− `+ n− 2k
; 1− u

]
+

Γ(1− a+ b− d/2− `+ n− 2k) Γ(τ + `− d/2 + 1 + n)

Γ(γ + n− k − a) Γ(γ + n− k + b)

×uτ/2+n (1− u)`−n 2F1

[
τ/2 + `+ k + a, τ/2 + `+ k − b

a− b+ d/2 + `− n+ 2k
; 1− u

]
. (3.10)
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The leading exponents are universal, which means that we are not able to organize the

spectrum according to the asymptotic behaviour in the u → 1 limit. In the first part,

the leading exponent of (1 − u) is independent of n, which is in accordance with the facts

that gk,n are natural basis functions for the lightcone expansion and g0,n was first found by

stripping off this part in the small u expansion. From the second part, we can see that the

n-summation terminates naturally for physical spin ` when the leading exponent of (1−u)

becomes zero.

3.2 The s-channel lightcone expansion

Above, we discuss the small v expansion. Now let us consider the small u expansion. In

general, the v-dependence can be encoded in (2k+1) hypergeometric functions of type 2F1

at order uτ/2+k. As a generalization of the small u limit in (2.8), we can expand a generic

conformal block as11

G
(d,a,b)
τ,` (u, v) =

Γ(τ/2 + `)2

Γ(τ + 2`)

∞∑
k=0

uτ/2+k
2k∑
n=0

Ak,n fk,n(v) , (3.11)

where the basis functions12 are

fk,n(v) = (1− v)`−n 2F1

[
τ/2 + `+ k − n− a, τ/2 + `+ k − n+ b

2(τ/2 + `+ k − n)
; 1− v

]
. (3.12)

At order k, the leading exponent of (1−v) is (`−2k), which decreases as −2k due to the sec-

ond order nature of the Casimir differential equation (2.3). To derive the double lightcone

expansion, we first perform a linear transformation. Then the small u expansion reads:

G
(d,a,b)
τ,` (u, v) = v

a−b
2

[
Γ(b− a)

(τ/2 + `)−a (τ/2 + `)b

∞∑
k=0

uτ/2+k
2k∑
n=0

Ãk,n f̃k,n(v) + (a↔ b)

]
,

(3.13)

where

Ãk,n =
(τ + 2 `)2(k−n)

(τ/2 + `− a)k−n(τ/2 + `+ b)k−n
Ak,n , (3.14)

f̃k,n(v) = (1− v)`−n 2F1

[
τ/2 + `+ k − n+ a, τ/2 + `+ k − n− b

1 + a− b
; v

]
. (3.15)

11Similar expansions in terms of z, z̄ were discussed in [78]. Note that A1,1 in (3.17) has a simpler

expression than the counterpart Ar,s1,0 in [78].
12Note that (1 − v)τ/2+kfk,n(v) takes the same functional form as an SL(2,R) block parametrized by

τ/2 + ` + k − n. It should be useful to make the substitution u → ũ (1 − v), as one can systematically

adapt the resummation techniques of the SL(2,R) blocks for the leading order terms to those at subleading

orders.
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The series coefficients of the double lightcone expansion (3.7) can be expressed as sums

of Ãk,n:

Ck1,k2 =
Γ(b− a)

(τ/2 + `)−a (τ/2 + `)b

k2∑
n,m=0

Ãk1,n
(n− `)k2−m
(k2 −m)!

× (τ/2 + `+ k1 − n+ a)m (τ/2 + `+ k1 − n− b)m
m! (1 + a− b)m

. (3.16)

Then we can compute the coefficients Ak,n by matching Ck1,k2 in (3.16) with that in (3.8)

order by order. At order k, we need to solve a system of (2k + 1) linear equations. The

explicit solutions at low orders are

A0,0 = 1 , A1,0 =
(τ + `− 1)2

∏
α=±a,±b(τ/2 + `+ α)

(τ + 2`− 1)2 (τ + 2`)2 (τ + `− d/2 + 1)
,

A1,1 = − 4ab ` (τ + `− 1)

(τ − d+ 2)(τ + 2`)(τ + 2`− 2)
, A1,2 =

` (`− 1)

2− d/2− `
, (3.17)

which take simple factorized forms. From the concrete examples, we notice several inter-

esting properties of Ak,n:

• They are symmetric in a2 and b2.

• They are proportional to ab when n is an odd integer, so the odd-n cases vanish when

two external operators have the same scaling dimension, i.e. ∆1 = ∆2 or ∆3 = ∆4.

• If the spin ` is a non-negative integer, they always vanish when n > `. Then the

n-summation terminates at n = ` at arbitrarily high orders,13 which is similar to the

small v expansion (3.3).

To find a general expression, we decompose the low order coefficients into factorized rational

functions as in the case of Bk,n. The dependence on (a, b) is again particularly useful, which

suggests the factorized building blocks should be symmetric in ±a,±b. Then we are able

to write these low order coefficients as double summations. In the end, we obtain a general

formula for Ak,n:

Ak,n =

n1∑
m1,m2=0

(−1)n+m1+1 4m1+m2
(−`)n (−n1)m1+m2(k − n1 + 1/2)m1

n!m1!m2! (k − n+m1)!

×
(τ + `− 1)2k−n (−τ + d/2− `)n−k−m1−m2 (−τ + d− 1)2(n1−m2)−n

(τ + 2 `− n− 1)2k−n (τ + 2 `)2(k+m1−n1)−n

× (1− d/2− `− k + n−m1 +m2) (3/2− d/2− `+ n2)m2

(2− d/2− `)−k+n+m2 (−1 + d/2 + `−m2)k−n+m1+m2+1

×
∏

α=±a,±b

(
τ

2
+ `+ α

)
k−n+m1

(
γ

2
+ α

)
m2

×
{

1 if n ≡ 0

4ab if n ≡ 1
(mod 2) , (3.18)

13At low orders, the n-summations terminate at n = 2k if 2k < `.
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where we have introduced

n1 = bn/2c , n2 = b(n+ 1)/2c (3.19)

to encode the minor differences between even and odd n expressions, and bxc is the floor

function. Due to (−n1)m1+m2 and 1/(k − n + m1)!, there are additional constraints for

nonzero summands:

n1 ≥ m1 +m2 , m1 ≥ n− k , (3.20)

which imply the general expression of Ak,n becomes simpler when n is close to 0 or 2k. 14

Note that a, b only appear in the last line of (3.18), and m1,m2 are the arguments of the

associated Pochhammer symbols. One may notice that Ak,n have poles at τ + 2` = m with

m = 1, 2, . . . , but they are due to the basis functions (3.12). In appendix A, we discuss

an alternative expansion without these spurious poles. As the concrete decompositions of

Ak,n are simpler than those of Bk,n, we need to study higher order terms to see the general

pattern of the (a, b) independent part. For large k, it is much more efficient to compute

Ak,n by matching the double lightcone expansion coefficients (3.16) with (3.7) than solving

the Casimir differential equation (2.3). Since our results here are based on the formulae in

section 3.1, we discuss the expansion in small v before that in small u. We have also tested

the formula (3.18) to much higher orders using the Casimir equation (2.3) with rational

parameterizations. After the substitution (1.4), the small z or z̄ expansion of (3.11) is also

consistent with the closed-form expressions in d = 2, 4, 6 dimensions [10, 11].15

Using the complete expression of the small u expansion, we can also expand the con-

formal blocks around the fully crossing symmetric point [99]

u = v = 1 , (3.21)

where the cross-ratios are invariant under all the crossing transformations, such as 1 ↔ 2

and 1↔ 3.16 As we are in the Euclidean regime, let us assume ` is a non-negative integer,

so the v → 1 limit is regular. The leading terms then read

G
(d,a,b)
τ,` (u, v) =

Γ(τ/2 + `)2

Γ(τ + 2`)

∞∑
k=0

[
Ak,` +Ak,` (τ/2 + k) (u− 1)

−
(
Ak,`−1 +Ak,`

(τ/2 + k − a)(τ/2 + k + b)

2(τ/2 + k)

)
(v − 1) + · · ·

]
. (3.22)

The fully crossing symmetric point is interesting in that all the crossing constraints can be

systematically solved by expanding the correlator, i.e. G(u, v), around this point order by

order. Then we only need to decompose the manifestly crossing symmetric correlator into

physical conformal blocks [98].

14The simplicity of Ak,2k and Ak,2k−1 was noticed earlier in [98].
15One should first set ` to a non-negative integer, and then set d to an even integer. The two limits

do not commute due to the singularities of Ak,n at d/2 + ` = integer. If we take the even-d limit first,

then the closed-form expressions in [10, 11] are sums of (3.11) and its spin-shadow version. Furthermore,

there are some typos in the last line of eq. (2.20) in [11] for the 6d expression, where in the denominator

(∆ + `− 4)(∆ + `− 6) should be (∆− `− 4)(∆− `− 6).
16In terms of (z, z̄), the fully crossing symmetric point is at z = e+iπ/3, z̄ = e−iπ/3.
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4 Conclusion

In summary, we have presented new analytic expressions of 4-point scalar conformal blocks

in the lightcone expansions in (3.3) and (3.11), with closed-form coefficients in (3.5)

and (3.18). They are explicit solutions of the Casimir differential equations in general

dimensions for intermediate operators of arbitrary spin. They can be directly applied to

the lightcone bootstrap to study the low twist spectra in general dimensions, and are par-

ticularly useful in d 6= 2, 4, 6 dimensions. Our results extend the analytic formulae for

the lightcone limits to all the subleading terms, and should be useful for the systematic

study of crossing equations at subleading orders of the lightcone expansion, which encode

additional constraints and the information of higher twist operators.

Using the lightcone expansions of conformal blocks, (3.3) and (3.11), one can compute

the Lorentzian inversion in the lightcone expansion by changing the integration variables to

(u, v) or making the substitutions (1.4).17 As an infinite sum of the t-channel blocks over

the spectrum can lead to divergences related to enhanced singularities, one may need to

regularize the results properly. When the forms of enhanced singularities are known,18 we

can add and subtract the corresponding infinite sums to obtain convergent results [78, 82].

More details on the regularization of the divergent sums are presented in appendix B.

A different approach is to sum over the t-channel blocks before performing the lightcone

expansion. For example, in the recent work [93], a nontrivial double infinite summation

of the t-channel blocks in general dimensions was partly carried out to extract some exact

expressions in the lightcone limit. In [93], the t-channel conformal blocks were computed

order by order in v using the Casimir equation. Our formula (3.11) provides general closed-

form expressions to arbitrarily high order,19 so should be helpful for similar summations

in the analytic conformal bootstrap.

Since spinning conformal blocks can be generated from the scalar blocks using dif-

ferential operators, it would be interesting to revisit the spinning crossing constraints in

the lightcone expansion, especially those associated with conserved currents and stress

tensors [100, 101].
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A Alternative s-channel lightcone expansion

Although the coefficients Ak,n are quite simple at low orders, they have poles at τ+2` = m

with m = 1, 2, . . . , which are spurious and can be traced back to the basis functions fk,n
with n > k. One can consider another set of basis functions to avoid these spurious poles.

For example, we can expand the conformal blocks as

G
(d,a,b)
τ,` (u, v) =

Γ(τ/2 + `)2

Γ(τ + 2`)

∞∑
k=0

uτ/2+k
2k∑
n=0

Āk,n (1− v)`−n

× 2F1

[
τ/2 + `+ k − n− a, τ/2 + `+ k − n+ b

τ + 2 `+ 2k − n
; 1− v

]
, (A.1)

where the parameter τ + 2 `+ 2k− n in the basis functions is always greater than or equal

to τ + 2`. We can derive Āk,n from (3.7). It is easier to solve Āk,n than Ak,n using the

small v expansion, as the exponents of the leading terms grow with n. We can solve the

linear equations one by one, instead of (2k+ 1) equations at the same time. The low order

coefficients are

Ā0,0 = 1 , Ā1,2 =
`(`− 1)

2− d/2− `
, (A.2)

Ā1,1 = `

[
2(a− b+ d/2− 1)− (τ + `− 1)

τ + 2`
+

2(3− d− `)(γ/2− a)(γ/2 + b)

γ(2− d/2− `)(τ + 2`)

]
, (A.3)

Ā1,0 =
(τ/2 + `− a)(τ/2 + `+ b)

(τ + 2`)(τ + `+ 1)

[
a− b+ d/2− 1 +

(γ/2− a)(γ/2 + b)

τ/2 + γ/2 + `

+
`(3− d− `)(γ/2− a)(γ/2 + b)

γ(2− d/2− `)(τ/2 + γ/2 + `)

]
. (A.4)

In general, Āk,n is proportional to (−`)n, so the n-summation also terminates for physical

spin `. One can notice that the pole decomposition is similar to that of Bk,n in (3.5). After

a linear transformation, a basis function in (A.1) is

v(a−b)+n (1− v)`−n2F1

[
τ/2 + `+ k + a, τ/2 + `+ k − b

1 + a− b+ n
; v

]
, (A.5)

which is dual to (3.9), together with a part where a, b are properly interchanged. The k

dependence for small n or (2k − n) is not hard to guess, but we do not find a relatively

simple expression for Āk,n. In the Bk,n case, the poles from 1/(1 + a− b)m are particularly

helpful, but they are absent in the small u expansion. Nevertheless, Āk,n can be expressed

as sums of Ak,n or Bk,n.
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B Sums of t-channel conformal blocks

In this appendix, we will discuss the potential divergences of the sums of t-channel con-

formal blocks near the lightcone. To simplify the discussion, we will assume the external

scaling dimensions are identical, i.e. a = b = 0. The t-channel conformal blocks become

G
(d,0,0)
τ,` (v, u) = −

(
log u+ 2H τ

2
+`−1 + ∂a

) ∞∑
k=0

uk
∑̀
n=0

Bk,n gk,n(v)
∣∣∣
a→0

, (B.1)

where we have set b = −a and the t-channel blocks are defined by the s-channel blocks

with u, v interchanged.

Let us first consider the correlator of generalized free fields:

G(u, v) =
u∆ϕ

v∆ϕ
G(v, u) =

u∆ϕ

v∆ϕ

(
1 +

v∆ϕ

u∆ϕ
+ v∆ϕ

)
. (B.2)

In the double lightcone limit v � u � 1, the dominant contribution comes from the

t-channel identity, i.e. u∆ϕ/v∆ϕ . In general, we also need to take into account the contri-

butions from other t-channel operators. For generalized free fields, they are the t-channel

conformal blocks of On,` = ϕ2n∂`ϕ with ∆n,` = 2∆ϕ + ` + 2n. However, their sum, i.e.

1 +u∆ϕ , does not contribute to double discontinuities, which are associated with enhanced

singularities in v. The Lorentzian inversion of the identity part gives the exact OPE data

if we further restrict the spin ` to even integers.

Nevertheless, let us consider these corrections to illustrate the potential divergences in

the summations of t-channel blocks near the lightcone. The dominant term is G(v, u) = 1+

. . . from the identity operator. The leading corrections in v are associated with the leading

twist operators O0,` with τ = 2∆ϕ. Their conformal blocks take the form v∆ϕ(log u +

2Hτ/2+`−1 + ∂a)(1 + . . . ), where (. . . ) are non-negative integer powers of u, v. Assuming

∆ϕ is positive, one finds that the sum over spin ` is not convergent. In addition, the u

dependence of each block is uk or uk log u, but the final result contains u−∆ϕ , which is more

singular than log u in the lightcone limit u → 0. In fact, the divergent sum of t-channel

blocks over spin is closely related to the enhanced singularity in u.20 Their relation is the

crossing dual of that between the s-channel sum over spin and the enhanced singularity in

v, captured by the double discontinuity from the t-channel identity.

Now we consider the 3d Ising model, which is different from the generalized free theory.

The t-channel corrections have non-zero double discontinuities. Let us focus on the correla-

tor of the lowest Z2-odd operator 〈σσσσ〉 and the contributions of the leading twist family,

i.e. O` ∼ σ∂`σ. Based on the spectrum of the Wilson-Fisher fixed points, we identify the

lowest Z2-even scalar ε as the spin-0 operator and the stress tensor T as the spin-2 opera-

tor. The numerical values of the OPE data of (ε, T ) were determined rather precisely [78].

Using their data as the t-channel input, one can approximate the OPE data of the higher

20To be more general, enhanced singularities are defined as terms that can be arbitrarily singular by

acting the Casimir operator on them, so they are also called Casimir-singular terms. A convergent sum

of uk or uk log u can also generate enhanced singularities in u, which becomes a divergent sum only after

applying the Casimir.
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spin operators in the leading twist family, and the computation can be carried out using

the Lorentzian inversion formula.

For the complete t-channel contributions from the leading twist family, one should also

take into account the higher spin operators. As explained in the generalized free case, the

sum over spin is not convergent, but we know that they are related to enhanced singularity

in u. Let us first consider the double lightcone limit∑
`=4,6,8,...

Pσ∂`σ Gσ∂`σ(v, u)
∣∣∣
u,v→0

=
v∆ϕ

u∆ϕ

(
1−

∑
O=ε,T

PO

(
log v + 2HτO/2+`O−1

)
uτO/2

)
+ . . . , (B.3)

where (. . . ) indicates the terms that are not enhanced singularities in u. Note that they are

in one-to-one correspondence to the t-channel input for the Lorentzian inversion mentioned

above.21 The small v expansion of the enhanced singularities can be computed order by

order using (3.11), but a more efficient approach is to use twist conformal blocks [76], which

are sums of conformal blocks with identical twist. They satisfy a fourth order differential

equation [76], and the small v limit plays the role of a boundary condition. The complete

v series at leading order in u reads

vτ/2

up
→
(

1− v
u

)p( v

1− v

)τ/2
2F1

[
γ/2, γ/2

γ
; − v

1− v

]
, (B.4)

where γ = τ − d + 2 and the natural variables are u/(1 − v), v/(1 − v). One can also

derive the subleading enhanced singularities by solving the differential equation order by

order in u. As in the generalized free case, these enhanced singularities in u do not con-

tribute to the double discontinuities, because they are multiplied by u∆ϕ/v∆ϕ and the

v-dependence is given by vk, vk log v. It is the remaining part that contributes to nonzero

double discontinuities in v.

To compute the remaining part, we can use an identity for SL(2,R) blocks [78]∑
`=0,1,2,...

(2h− 1) Γ(h+ p− 1)

Γ(p)2 Γ(h− p+ 1)

Γ(h)2

Γ(2h)
(1− u)h 2F1

(
h, h, 2h; 1− u

)
=

(
1− u
u

)p
+

Γ(τ/2 + p− 1)

Γ(p)2 Γ(τ/2− p)

×
∞∑
k=0

∂k

(
Γ(τ/2 + k)

(p+ k) (k!)2 Γ(τ/2− k − 1)

(
u

1− u

)k)
, (B.5)

where h = τ/2 + `. We can take the small u limit and use this identity to regularize the

sum of t-channel blocks in the double lightcone limit. In the second line of (B.5), the

first term corresponds to an enhanced singularity in u, while the second term gives the

exact difference between the divergent sum over spin and the enhanced singularity. For

21According to the numerical values of (∆ϕ,∆ε,∆T ), the O = ε part and the higher order terms in u are

not power law divergences in u. It is straightforward to include more operators and higher order terms.
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the complete enhanced singularities, we can multiply (B.5) by some v-dependent functions,

such as that in (B.4). By adding and subtracting a linear combination of these identities,

we obtain a convergent sum over spin. Therefore, we can use (3.3) to directly compute

the sums of t-channel conformal blocks order by order in u, which is more efficient than

resumming the full u-dependent functions and then expanding the results in u.
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