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Abstract: Osteosarcoma (OSA) is the most common malignant bone tumor in children and adolescents.
The overall five-year survival rate for all bone cancers is below 70%; however, when the cancer
has spread beyond the bone, it is about 15–30%. Herein, we evaluated the effects of carbon-ion
beam irradiation alone or in combination with zoledronic acid (ZOL) on OSA cells. Carbon-ion
beam irradiation in combination with ZOL significantly inhibited OSA cell proliferation by arresting
cell cycle progression and initiating KHOS and U2OS cell apoptosis, compared to treatments with
carbon-ion beam irradiation, X-ray irradiation, and ZOL alone. Moreover, we observed that this
combination greatly inhibited OSA cell motility and invasion, accompanied by the suppression of
the Pi3K/Akt and MAPK signaling pathways, which are related to cell proliferation and survival,
compared to individual treatments with carbon-ion beam or X-ray irradiation, or ZOL. Furthermore,
ZOL treatment upregulated microRNA (miR)-29b expression; the combination with a miR-29b mimic
further decreased OSA cell viability via activation of the caspase 3 pathway. Thus, ZOL-mediated
enhancement of carbon-ion beam radiosensitivity may occur via miR-29b upregulation; co-treatment
with the miR-29b mimic further decreased OSA cell survival. These findings suggest that the
carbon-ion beam irradiation in combination with ZOL has high potential to increase OSA cell death.

Keywords: zoledronic acid; osteosarcoma cells; bone cancer; carbon-ion; miR-29b

1. Introduction

Osteosarcoma (OSA) is the most frequent primary malignant bone tumor in children and
adolescents [1,2]. Despite significant improvements in both diagnosis and treatment, overall survival is
still unsatisfactory for advanced-stage OSA patients [3,4]. OSA is characterized by typical radioresistant
tumors, and conventional radiation therapy is not effective for its treatment [5–8]. However, an
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increasing amount of evidence has demonstrated that high linear energy transfer (LET) carbon-ion
radiation therapy is suitable for targeting many kinds of radioresistant tumors such as those associated
with bone and soft tissue malignancies including OSA [9–14] because it primarily does not elicit cell
cycle- and oxygen-dependent cell-killing effects; it also has a high potential to kill radiochemo-resistant
cancer stem cells (CSCs) compared to low LET radiation [15–19]. However, although carbon ion beam
radiotherapy treatment has yielded promising results, the prognosis of OSA still remains unsatisfactory;
developing novel combinational therapeutic strategies to further improve overall survival is required.

Bisphosphonates comprise the most important class of osteoclast-mediated bone resorption
inhibitors and are used extensively for treating skeletal diseases such as postmenopausal osteoporosis
and tumor-induced osteolysis [20,21]. Zoledronic acid (ZOL), a third-generation nitrogen-containing
bisphosphonate, is an inhibitor of osteoclast-mediated bone resorption that has demonstrated efficacy
in treating bone metastases in cancer patients with breast, prostate, lung, and other solid tumors [22–24].
ZOL significantly enhances radiation-induced apoptosis and decreases cell viability, suggesting that
it may exhibit radiosensitizing effects [25–33]. We have previously reported that ZOL enhanced
γ-ray radiation-induced DNA damage and suppressed OSA cell migration and invasion [34,35].
Recently, we also found that it significantly induced autophagy via modulation of microRNA (miRNA)
expression [36]. In addition, increasing evidence showed that some miRNAs are involved in regulating
tumor progression and relapse [37]. miR-29b, a member of the miR-29 family, has been reported to be
positively correlated with radiation-induced PTEN expression in lung cancer [38], and also promotes
radiosensitivity via enhancing oxidative stress and inhibiting DNA damage repair in radioresistant
cervical cancer [39]. Based on this finding, and in connection with above findings that miR-29b
increases radiosensitivity [38,39], we hypothesize that a combination treatment strategy that includes
ZOL and an miR-29b mimic may dramatically enhance carbon-ion beam radiosensitivity to achieve
increased OSA cell death.

2. Results

2.1. Expression of MiR-29b and Its Role in OSA Cell Proliferation and Apoptosis

To determine whether miR-29b is involved in regulating the radiosensitization effects of ZOL,
we examined miR-29b expression levels in several OSA cell lines (KHOS, U2OS, HOS, MG63) and
also in 10 pairs of OSA tissues and matched adjacent histologically normal tissues by qRT-PCR.
We found that miR-29b levels were significantly lower in the OSA cell lines and tumor tissues than
in non-malignant tissues (Figure 1a,b). To determine whether miR-29b is involved in regulating
ZOL-mediated OSA-cell radiosensitivity, we treated OSA cells with ZOL and the result indicates that
ZOL treatment upregulated miR-29b expression (Figure 1b). Then, we transfected a miR-29b mimic
into KHOS and U2OS cells and confirmed that this process significantly increased its expression level
(Figure 1c). Subsequent assays revealed that the miR-29b mimic significantly inhibited cell growth
and increased apoptosis in OSA cells (Figure 1d,e), and overexpression of miR-29 and ZOL treatment
resulted in a significant decrease in proliferation in two OSA cells (Figure 1f).
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treatment with the miR-29b mimic. (d) Morphological changes of two OSA cell types after transfection 

with the miR-29b mimic were determined by 3D culture assay. (e) Increased apoptosis was seen after 

treatment with the miR-29b mimic in OSA cells compared to the control. (f) Proliferation of the two 

OSA cell lines were measured by Trypan blue assay after treatment with the miR-29b mimic, miR-29b 

inhibitor, and ZOL alone or the combination treatment. * p < 0.05, ** p < 0.001. 
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Figure 1. miR-29b expression and its involvement in osteosarcoma (OSA) cell viability after treatment
of OSA cells with or without zoledronic acid (ZOL). (a) miR-29b expression levels were determined
by qRT-PCR in normal and OSA cell lines. (b) miR-29b expression was upregulated in OSA cell lines
by treatment with zoledronic acid (ZOL). (c) Increased miR 29b expression was confirmed 24 h after
treatment with the miR-29b mimic. (d) Morphological changes of two OSA cell types after transfection
with the miR-29b mimic were determined by 3D culture assay. (e) Increased apoptosis was seen after
treatment with the miR-29b mimic in OSA cells compared to the control. (f) Proliferation of the two
OSA cell lines were measured by Trypan blue assay after treatment with the miR-29b mimic, miR-29b
inhibitor, and ZOL alone or the combination treatment. * p < 0.05, ** p < 0.001.

2.2. Apoptosis Induction and Cell Cycle Aberration after Treatment with Carbon-Ion Beam Irradiation Alone or
in Combination with ZOL in OSA Cells

To confirm whether the ZOL combination treatment enhanced carbon-ion beam radiosensitivity,
we examined apoptosis by using DNA fragmentation induction, caspase 3 activity assay, and apoptosis-
related protein induction by western blot assay, following treatment of the cells with carbon-ion
beam irradiation alone or in combination with ZOL (Figure 2a–c). The data showed that carbon-ion
beam irradiation combined with ZOL significantly resulted in a relatively higher extent of DNA
fragmentation, higher level of caspase activity, higher levels of cleaved caspase 3 and cleaved polyADP
ribose polymerase (PARP), and lower B cell lymphoma-2 (Bcl-2) and NF-κB expression, compared to
the individual treatments with carbon-ion beam irradiation or ZOL (p < 0.05). We also confirmed that
the combination of γ-ray irradiation and ZOL increased the level of apoptosis in vivo by performing
the TUNEL assay (Figure 2d). Furthermore, we performed cell cycle analysis and the data revealed
that treatment with carbon-ion beam irradiation combined with ZOL increased the number of cells
in the G2/M phase compared to the case for the treatment with carbon-ion beam irradiation or ZOL
treatment alone, suggesting that combination treatment significantly attenuated cell cycle progression
(Figure 2e).
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Figure 2. Apoptosis and cell cycle analyses after treatment with carbon-ion beam or X-ray or γ-ray
irradiation alone or in combination with ZOL (a) DNA fragmentation assay was performed 48 h after
the treatment of two OSA cell lines with carbon-ion beam (2 Gy) or X-ray (4 Gy) irradiation alone or in
combination with ZOL (20 µM). (b) Western blotting for the quantification of apoptosis-related proteins
after treatment with carbon-ion beam irradiation alone or in combination with ZOL. (c) Caspase
3 activity assay examined after treatment with carbon-ion beam and X-ray irradiation alone or in
combination with ZOL. (d) TUNEL assays were performed using xenograft tumor tissues. Values
represent the means of three experiments ± SD; * p < 0.05, ** p < 0.001. (e) Cell cycle analysis was
performed after treatment with carbon-ion beam irradiation alone or in combination with ZOL by
flow cytometry.

2.3. Involvement of PI3K–Akt and MAPK Signaling Pathways in OSA Cell Death after Carbon-Ion Beam
Irradiation Alone or in Combination with ZOL

To investigate the molecular mechanisms of ZOL carbon-ion beam radiosensitization,
we investigated PI3K-Akt- and MAPK-signaling response after treatment with carbon-ion beam
irradiation alone or in combination with ZOL in OSA cell lines. We found that carbon-ion beam
irradiation combined with ZOL significantly decreased p- MAPK kinase (MEK)1/2, p- extracellular
signal-related kinase (ERK)1/2, and p-Akt levels compared to treatment with carbon-ion beam
irradiation alone (Figure 3a). In addition, γ-ray irradiation combined with ZOL significantly inhibited
the expression of p-ERK1/2, and p-Akt in mouse xenografts tumors by immunohistochemical staining
(Figure 3b).
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Figure 3. Phosphorylation of the PI3K-Akt and MAPK pathways after treatment of OSA cells with
carbon-ion beam or γ-ray irradiation alone or in combination with ZOL. (a) Western blotting for the
quantification of MAPK and Akt signaling-related proteins was performed after treatment of the OSA
cells with carbon-ion beam irradiation alone or in combination with ZOL using the indicated antibodies.
(b) p-AKT and p-ERK expression in xenograft tumors were examined by immunohistochemistry.
Representative images are provided, as indicated.

2.4. Inhibition of OSA Cell Motility, Invasion, and Angiogenesis after Treatment with Carbon-Ion Beam
Irradiation Alone or in Combination with ZOL

To determine the effects of treatment with carbon-ion beam irradiation alone or in combination with
ZOL on OSA cell invasiveness and migration, wound-healing, transwell chamber, and matrigel-based
in vitro endothelial tube-formation assays were performed. We found that carbon-ion beam irradiation
combined with ZOL remarkably inhibited OSA cell migration and invasion, whereas treatment
with carbon-ion beam irradiation and ZOL alone only slightly inhibited OSA cell migration and
invasion (Figure 4a,b). Interestingly, western blotting and immunohistochemistry analysis showed
that carbon-ion beam irradiation combined with ZOL upregulated the epithelial marker E-cadherin
but downregulated the expression of the mesenchymal marker, vimentin, compared with controls
(Figure 4c). A Matrigel-based tube formation assay using human tumor endothelial cells (2H11) +

U2OS coculture system for detecting the angiogenesis which is critical for metastasis showed that
TTF suppressed vascular tubule development (Figure 4d). Tube formation in the combined treatment
group was decreased compared to that of the control or single treatment.
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Figure 4. Cell invasion and migration analysis after treatment of OSA cells with carbon-ion beam
irradiation alone or in combination with ZOL. (a) Wound-healing assay was performed by scraping the
OSA cell layers with 200-µL pipette tips after treatment with carbon-ion beam irradiation alone or in
combination with ZOL. The number of cells that migrated across the wound was counted after 24 h.
Each sample was photographed, the distances between the migrating cell edges were quantified, and
the percentage of cell migration was calculated. (b) OSA cell invasion and migration was examined by
the transwell chamber assay 24 h after treatment of the cells with carbon-ion beam irradiation alone or
in combination with ZOL. The number of invading tumor cells that penetrated through the Matrigel
and gelatin were counted in five high-magnification microscopic fields. (c) Western blotting for the
quantification of the epithelial to mesenchymal transition (EMT) markers E-cadherin and Vimentin
performed after treatment of the cells with carbon-ion beam irradiation alone or in combination with
ZOL using the indicated antibodies. (d) in vitro tube-formation assay after treatment of the cells with
carbon-ion beam irradiation alone or in combination with ZOL using endothelial cells. Values represent
the means of three experiments ± SD; *p < 0.05, **p < 0.001.

2.5. Effects of ZOL Alone or in Combination with Carbon-Ion Beam Irradiation on OSA Cell Proliferation

KHOS and U2OS cells and cells from an OSA patient were treated for 48 h with various doses of
ZOL, after which cell viability was analyzed by trypan blue staining assays (Figure 5a,b). We found
that ZOL significantly inhibited the growth of cells treated with ≥ 5 µg/mL ZOL (p < 0.05), indicating a
concentration-dependent sensitivity of the OSA cells to ZOL. Then, we examined the viability and
proliferation of OSA cells after treatment with carbon-ion beam irradiation alone or carbon-ion beam
irradiation in combination with 20 µM ZOL compared to that of X-ray treatment by trypan blue
staining, and BrdU and clonogenic survival assays (Figure 5c–e). We found that the combination of
carbon-ion beam irradiation and ZOL markedly decreased OSA cell viability and survival, compared
to treatment with carbon-ion beam irradiation alone or treatment with X-ray irradiation and ZOL
(Figure 5d,e).
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treatment with the miR-29b mimic significantly reduced cell viability, enhanced caspase-3/7 activity, 

and increased the cleaved caspase-3 and PARP levels; addition of ZOL further accentuated these 
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decreased that of vimentin, and the triple combination treatment (carbon-ion beam + miR-29b mimic 
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Figure 5. OSA cell proliferation, viability, and survival fraction after treatment with ZOL alone or in
combination with carbon-ion beam or γ-ray irradiation: (a) proliferation of KHOS and U2OS cell lines
and (b) an OSA-patient-derived cell line following treatment with different concentrations of ZOL for
72 h was measured by Trypan blue assay; (c,d) viability and proliferation of two OSA cell lines were
measured by Trypan blue staining and BrdU incorporation assays after treatment with carbon-ion beam
irradiation, X-ray, and ZOL alone or combination treatments. (e) Survival fraction of two OSA cell
lines was measured by colony forming assay after treatment with carbon-ion beam irradiation alone or
carbon-ion beam irradiation in combination with ZOL. (f) Morphological changes of KHOS orthotopic
tumors after treatment with ZOL alone or in combination with γ-ray irradiation. KHOS cells were
injected into the proximal tibia of four groups of nude mice (n = 3 each) to generate an orthotopic tumor
model. The dimensions of the leg (including the tumor) were measured every 7 days by X-ray analysis.
Representative radiographs of the limb of a mouse at 0 and 5 weeks after tumor inoculation are shown.
Representative images of animal tumors at 5 weeks and a graph of tumor size against time are shown.
Tumors were excised and processed for hematoxylin and eosin staining. Original magnification, 100×.
For each assay, values represent the means of three experiments ± SD; * p < 0.05, ** p < 0.001.

We also examined the antitumor effect of ZOL in vivo by using an orthotopic mouse model,
and found that ZOL treatment alone decreased tumor size and, in combination with γ-ray irradiation,
it further reduced both tumor size and leg dimensions (Figure 5f).

2.6. Suppression of OSA Cell Proliferation and Induction of Apoptosis After Treatment with Carbon-Ion Beam
Irradiation Alone or in Combination with ZOL and the MiR-29b Mimic

To investigate whether treatment with the miR-29b mimic alone or in combination with ZOL
increases radiosensitivity of OSA cells to carbon-ion beam irradiation, a cell viability assay and
apoptosis analysis were performed. We found that carbon-ion beam irradiation combined with
treatment with the miR-29b mimic significantly reduced cell viability, enhanced caspase-3/7 activity,
and increased the cleaved caspase-3 and PARP levels; addition of ZOL further accentuated these effects
(Figure 6a–d). Western blotting and transwell assays revealed that the miR-29b mimic decreased that of
vimentin, and the triple combination treatment (carbon-ion beam + miR-29b mimic + ZOL) markedly
enhanced these effects (Figure 6e,f). We also found that the triple combination treatment (carbon-ion
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beam + miR-29b mimic + ZOL) remarkably suppressed the MAPK- and PI3K-Akt-signaling pathways
by decreasing the levels of p-ERK1/2 and p-Akt (Ser473) (Figure 6g).
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Figure 6. Effects of carbon-ion beam or X-ray irradiation alone or in combination with ZOL and miR-29b
mimic on OSA cells. (a,b) Cell proliferation and viability of two OSA cell lines were measured by
Trypan blue assay 72 h after treatment with carbon-ion beam irradiation alone or in combination with
the miR-29b mimic and/or ZOL. (c) Caspase 3 activity assay examined after treatment with carbon-ion
beam irradiation alone or in combination with ZOL. (d) Western blotting for the quantification of
apoptosis-related proteins after treatment of the cells with carbon-ion beam irradiation alone or in
combination with miR-29b mimic and/or ZOL. (e) OSA cell invasion and migration were examined by
transwell chamber assay 24 h after treatment with carbon-ion beam irradiation alone or in combination
with miR-29b mimic and/or ZOL. (f) Western blotting for the quantification of the epithelial to
mesenchymal transition (EMT) markers Vimentin after treatment with carbon-ion beam irradiation
alone or in combination with the miR-29b mimic and/or ZOL using the indicated antibodies. (g) Western
blotting for the quantification of MAPK and Akt signaling-related proteins performed after treatment
with carbon-ion beam irradiation alone or in combination with the miR-29b mimic and/or ZOL using
the indicated antibodies.

3. Discussion

In the present study, we found that treatment with the combination of carbon-ion beam irradiation
and ZOL, a third-generation bisphosphonate, notably decreased OSA cell viability and survival, with a
greater extent of DNA fragmentation, higher caspase 3 activity, higher cleaved caspase 3 and cleaved
PARP levels, and lower Bcl-2 and nuclear factor (NF)-κB expression levels than that caused by treatment
with carbon-ion beam irradiation alone or X-ray irradiation combined with ZOL. In addition, treatment
with carbon-ion beam irradiation combined with ZOL increased the number of cells in the G2/M phase,
compared to the case for treatment with carbon-ion beam irradiation and ZOL alone, suggesting that
the combination treatment significantly attenuated cell cycle progression. These findings are partially
consistent with previous reports stating that ZOL augments the X-ray or γ-ray radiosensitivity of
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fibrosarcoma and nasopharyngeal carcinoma cells [22–26], indicating that ZOL not only enhances low
LET photon beam radiosensitivity, but also high LET carbon-ion beam radiosensitivity in OSA cells.

The PI3K/Akt and MAPK signaling pathways play an important role in cell survival and
proliferation [40]. To clarify the molecular mechanisms of how ZOL enhances carbon-ion beam
radiosensitivity, we investigated the involvement of the PI3K/Akt- and MAPK-signaling pathways;
our data demonstrated that carbon-ion beam irradiation combined with ZOL significantly decreased
the p-MEK1/2, p-ERK1/2, and p-Akt levels, compared to treatment with carbon-ion beam irradiation
alone. These data suggest that ZOL acts as an inhibitor of both the PI3K/Akt- and MAPK-signaling
pathways, thereby enhancing the effects of carbon-ion beam irradiation on OSA cells. These results
support the findings of recent studies that the combination treatment with ZOL increased cytotoxic
effects via suppression of the Pi3K/Akt and MAPK signaling pathways [24,26,41,42].

The prognosis of OSA patients with metastasis is very poor, with the overall 5-year survival rate
being only 10–30% [1–3]. Thus, it is very important to control tumor invasion and metastasis. In this
study, the effects of treatment with carbon-ion beam irradiation alone or in combination with ZOL on
OSA cell invasiveness and migration were investigated. We found that carbon-ion beam irradiation
combined with ZOL remarkably inhibited OSA cell migration and invasion, whereas individual
treatments with carbon-ion beam irradiation and ZOL only slightly inhibited OSA cell migration and
invasion. Interestingly, western blotting and immunohistochemistry analysis showed that carbon-ion
beam irradiation combined with ZOL upregulated the expression of EMT markers such as E-cadherin
but downregulated vimentin. Our findings are consistent with those of previous reports, which stated
that ZOL exhibits antitumor and antimetastatic activities [25,32,43,44].

Interestingly, in this study, we found that treatment with ZOL effectively inhibited the Pi3K/Akt
and MAPK signaling pathways, and significantly increased miR-29b expression in OSA cells. This is
partially consistent with previous studies that ZOL suppresses Erk1/2 and PI3K/Akt pathway in
cervical cancer [45] and upregulates PTEN via the downregulation of Akt in breast cancer [46].
Since PTEN is positively correlated with the upregulation of miR-29b in lung cancer and tongue
squamous cancer [38,40], we speculate that ZOL-enhanced PTEN levels might subsequently result
in the upregulation of miR-29b. Based on the recent reports that miR-29b exerts anticancer effects
and augments radiosensitivity in glioblastoma and cervical cancer cells [47,48], we hypothesized that
modulation of miR-29b expression may further increase ZOL-mediated radiosensitization; hence,
we investigated whether treatment with the miR-29b mimic combined with ZOL further increased
carbon-ion beam radiosensitivity of OSA cells. As we expected, carbon-ion beam irradiation combined
with miR-29b mimic treatment significantly inhibited cell viability, enhanced caspase-3/7 activity, and
increased the levels of cleaved caspase-3 and PARP; the addition of ZOL further enhanced these
effects. Western blot and transwell assays revealed that the miR-29b mimic increased the expression of
E-cadherin but decreased that of vimentin, and the triple combination treatment (carbon-ion beam +

miR-29b mimic + ZOL) predominantly enhanced these effects. We also found that the triple combination
treatment (carbon-ion beam + miR-29b mimic + ZOL) remarkably suppressed the mitogen-activated
protein kinase (MAPK)- and PI3K/Akt-signaling pathways by decreasing the levels of p-ERK1/2 and
p-Akt (Ser473).

In summary, the third-generation bisphosphonate ZOL effectively enhanced the radiosensitivity
of OSA cells to carbon-ion beam irradiation; additional treatment with an miR-29b mimic further
increased the OSA cell-killing effects, implicating that a combination treatment not only with traditional
anticancer agents but also with molecular targeting agents such as the tumor suppressor miR-29b has a
high potential to enhance the cancer cell-killing effects of carbon-ion beam radiotherapy.



Cancers 2020, 12, 698 10 of 15

4. Materials and Methods

4.1. Cell Culture and Tissue Samples

Two OSA cell lines were selected for this study. U2OS and KHOS/NP OSA cells were obtained from
the American Type Culture Collection (Rockville, MD, USA) and maintained in α minimum essential
medium (Gibco; Life Technologies, Carlsbad, CA, USA) containing 10% (v/v) fetal bovine serum
(Gibco; Life Technologies) and 1% (v/v) penicillin-streptomycin (Gibco; Life Technologies). OSA tissue
was obtained with informed consent from a patient who underwent surgery at the Korea Institute of
Radiological and Medical Sciences (Institutional Review Board approval number: K-1603-001-001),
and a primary cell culture was established from this tissue. Briefly, the tissue was minced into a slurry
with blades, washed with phosphate-buffered saline (PBS), and centrifuged for 3 min at 1000 rpm.
The supernatant was then discarded, and the pellet was resuspended in serum-free Dulbecco’s modified
Eagle medium (WelGene, Daegu, Korea) containing from 0.05% to 0.1% (w/v) type-I collagenase (Gibco;
Life Technologies) in order to disaggregate the cells. After 2 h, the cells were washed thoroughly with
PBS and maintained in Dulbecco’s modified Eagle medium containing 20% (v/v) fetal bovine serum.

4.2. Reagents

Anti-NF-κB, anti- Bcl-2, anti-phospho-Raf-1, anti-Akt, anti-vimentin, and anti-β-actin antibodies
were purchased from Santa Cruz Biotechnology (Dallas, TX, USA). Anti- cleaved PARP, anti-caspase-3,
anti-Ras, anti-MEK1/2, anti-p-MEK1/2, anti-ERK1/2, anti-p-ERK1/2, anti-p-Akt(Ser473), and anti-E-
cadherin antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA), and
anti-γ-H2A histone family member X antibodies were obtained from Millipore (Billerica, MA, USA).
ZOL was purchased from Sigma–Aldrich (St. Louis, MO, USA). For in vitro experiments, ZOL was
dissolved in PBS to prepare a 2 mM stock solution and stored at −20 ◦C.

4.3. Irradiation

Cells were plated in 60-mm plastic dishes and incubated at 37 ◦C under a humidified 5% CO2

atmosphere. For in vitro experiments, cells at 70–80% confluence were irradiated with X-rays (Titan-320,
GE Co., USA) at a dose rate of 2.45 Gy/min. Cells were irradiated with 290 MeV/n, 6 cm-Spread
Out Bragg Peak (SOBP) carbon-ion beams with a dose-averaged LET of 50 keV/µm at a dose rate of
2.0–5.0 Gy/min at the Heavy Ion Medical Accelerator in Chiba, Japan (HIMAC). For in vivo experiments,
mice were irradiated using a 60Co γ-ray source (Theratron 780, Atomic Energy of Canada, Chalk River,
Ontario, Canada) with a 0.5 cm diameter bolus of tissue equivalent material to allow for dose buildup.
A lead barrier was used to shield normal tissues where possible.

4.4. Cell-Viability Assay

Cells were seeded at a density of 5000 cells/well in a 96-well plate and incubated for 24 h according
to the indicated experimental conditions. For the quantification of cell viability, an equal volume of
culture medium containing EZ-Cytox reagent (EZ3000; Daeillab Service, Seoul, Korea) was added to
the cells, and the mixture was incubated for 4 h. The cell viability was then assessed by measuring the
absorbance of the samples using a Multiskan EX instrument (Thermo Fisher Scientific, Waltham, MA,
USA) at 450 nm.

4.5. 5-Bromo-2′-Deoxyuridine (BrdU)-Labeling Assay

BrdU-labeling assays were performed in 96-well plates using the BrdU cell proliferation assay kit
(Cell Signaling Technology, Danvers, MA, USA). After ZOL treatment, 10 µM BrdU was added to each
well, and the cells were incubated for 12 h at 37 ◦C. BrdU signaling was determined using a Multiscan
FC ELISA reader (Thermo Fisher Scientific, Danvers, MA, USA) at 450 nm.
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4.6. Colony Formation Assay

Cells were treated with ZOL for 48 h and then incubated for 7 to 9 days, and the resulting colonies
were stained with 0.4% crystal violet (Sigma–Aldrich) and counted. The plating efficiency represents
the percentage of seeded cells that grew into colonies under the specific culture conditions for a given
cell line. The survival fraction was calculated as follows: survival fraction = colonies counted/(cells
seeded × plating efficiency/100).

4.7. Orthotopic Animal Model and Histological Analysis

Twelve 4-week-old female Balb/c nude mice (average weight: 12.1 g; range: 11.3–13.1 g) were
obtained from ORIENT Bio (Seoul, Korea) and quarantined for 1 week prior to experimentation.
KHOS/NP orthotopic tumors were established as previously described [37]. Briefly, mice were
anesthetized by intraperitoneal injection of a mixture of zoletil (Virbac, Carros, France) and roumpun
(Bayer Korea, Seoul, Korea). The left tibia was wiped with 70% (v/v) ethanol, and an 18-gauge
needle was inserted through the tibial plateau with the knee flexed, followed by the injection of
1 × 105 KHOS/NP cells resuspended in 10 µL of PBS into the marrow space of the proximal tibia using
a 26-gauge needle coupled to a Hamilton syringe. Two weeks after the tumor cell inoculation, mice
were randomly assigned into four groups (n = 3 each): control (untreated), ZOL treatment alone,
ionizing radiation (IR) treatment alone, and combined ZOL and IR treatment (ZOL+IR). ZOL was
administered intraperitoneally twice weekly at a dose of 0.1 mg/kg in 100 µL of PBS 2 weeks after
inoculation and before and after irradiation, and IR was administered as a single dose of 8 Gy (γ-ray
using a Co-60 source; 1.99 min/Gy) 2 weeks after inoculation. The animals were euthanized 6 weeks
after tumor cell inoculation by CO2 asphyxiation. Tumor volumes were determined according to the
formula (L × l2)/2 by measuring the tumor length (L) and width (l) with a pair of Vernier calipers
after euthanasia. All experimental protocols were approved by the Institutional Animal Care and
Use Committee of the Korea Institute of Radiological and Medical Sciences. Histological analysis was
performed using hematoxylin and eosin-stained paraffin sections.

4.8. Caspase Activity Assay

Caspase activities were measured using caspase 3 activity assay kits (ab39401, Abcam, Cambridge,
MA, USA) according to the manufacturer’s recommendations. Data were collected using a Multiskan
EX at 405 nm.

4.9. Detection of Apoptotic Cells by Annexin V Staining

ZOL was added to the cells, which were then incubated for a further 48 h. The cells were washed
with ice-cold PBS, trypsinized, and resuspended in 1× binding buffer [10 mM HEPES/NaOH (pH
7.4), 140 mM NaCl, and 2.5 mM CaCl2] at a density of 1 × 106 cells/mL. Aliquots (100 µL) of the cell
suspension were mixed with 5 µL of annexin V fluorescein isothiocyanate (BD Pharmingen, San Diego,
CA, USA) and 10 µL of propidium iodide (PI) stock solution (50 µg/mL in PBS) by gentle vortexing,
followed by a 15-min incubation at room temperature in the dark. Buffer (400 µL; 1×) was added to
each sample, and the samples were analyzed on a FACScan flow cytometer (Becton Dickinson, Franklin
Lakes, NJ, USA). A minimum of 10,000 cells were counted for each sample, and data analysis was
performed using CellQuest software (BD Biosciences, San Jose, CA, USA).

4.10. Western Blotting Analysis

ZOL was added to the OSA cells, which were then incubated for 24 h or 48 h. The cells were
then lysed with radioimmunoprecipitation assay buffer, and proteins were separated by sodium
dodecyl sulfate–polyacrylamide gel electrophoresis and transferred onto nitrocellulose membranes.
The membranes were blocked with 1% (v/v) nonfat dried milk in Tris-buffered saline with 0.05%
Tween20 and incubated with the required antibodies. Primary antibodies were used at a 1:1000
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dilution, and secondary antibodies were used at a 1:5000 dilution. Immunoreactive protein bands were
visualized by enhanced chemiluminescence (Amersham Biosciences, Little Chalfont, UK) and scanned.

4.11. Flow Cytometry

Cells were cultured, harvested at the indicated times, stained with PI (1 µg/mL; Sigma–Aldrich)
according to manufacturer protocol, and analyzed using a FACScan flow cytometer (Becton Dickinson).
A minimum of 10000 cells were counted for each sample, and data analysis was performed using
CellQuest software (BD Biosciences).

4.12. TUNEL Assays

Tumors were collected and fixed with 10% neutral-buffered formalin. Deparaffinized sections
were incubated with 20 µg/mL protease K for 15 min at room temperature, washed with PBS and
incubated with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)
reaction mixture (Millipore, Burlington, MA, USA) for 1 h at 37 ◦C in a humidified chamber.

4.13. Wound-Healing (Scratch) Assay

Human OSA cells were seeded onto 6-well plates (Corning, Corning, NY, USA) at a density of
2.5 × 104 cells/well with 3 mL of medium. After pre-incubation with ZOL for 24 h, cells were irradiated,
and on day 2, the monolayers were mechanically disrupted with a sterile 200-µL pipette tip. The assay
was performed in duplicate, and wells were photographed every 48 h prior to staining with 0.2% (w/v)
crystal violet. Cell migration was monitored using an Eclipse Ti microscope with a DS-Fi1 camera
(Nikon, Tokyo, Japan), and migrated cells were counted using the ImageJ software (National Institutes
of Health, Bethesda, MD, USA).

4.14. Transwell Chamber Assay

The invasive ability of OSA cells was measured using transwell chambers (Millipore) according
to the manufacturer’s protocol. Briefly, cells were seeded onto the membrane of the upper chamber
of the transwell at a concentration of 4 × 105 cells/mL in 150 µL of the medium and left untreated
or treated with the indicated doses of ZOL, IR, or ZOL+IR for 24 h. The medium in the upper
chamber was serum free, whereas that in the lower chamber contained 10% (v/v) fetal bovine serum
as a chemoattractant. Cells that passed through the Matrigel/gelatin-coated membrane were stained
with cell stain solution containing crystal violet supplied in the transwell chamber assay (Chemicon;
Millipore) and photographed after 24 h of incubation.

4.15. Matrigel-Based in Vitro Endothelial Tube-Formation Assay

Endothelial-cell tube formation was assessed using Matrigel-coated chamber slides, as previously
described [38]. The results of each assay were photographed (Eclipse Ti microscope with a DS-Fi1
camera; Nikon) at 40×magnification.

4.16. miRNA and Transient Transfection

The miR-29b mimics, control mimics, miR-29b inhibitors, and control inhibitors were all purchased
from Bioneer (Daejeon, Korea). Cells were transiently transfected with 60 nM control or miR-29b
mimics, or with 120 nM control or miR-29b inhibitors, using X-treme GENE siRNA Transfection
Reagent (Roche, Indianapolis, IN, USA).

4.17. Statistical Analysis

Statistical significance was determined using Student’s t test, and differences were considered
significant at p < 0.05 or p < 0.001.
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