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Abstract—In this work, we consider the problem of predicting 

criminal behavior, and propose a method for discovering 
predictive patterns in criminal histories. Quantitative criminal 
career analysis typically involves clustering individuals according 
to frequency of a particular event type over time, using cluster 
membership as a basis for comparison. We demonstrate the 
effectiveness of hazard pattern mining for the discovery of 
relationships between different types of events that may occur in 
criminal careers. Hazard pattern mining is an extension of event 
sequence mining, with the additional restriction that each event 
in the pattern is the first subsequent event of the specified type. 
This restriction facilitates application of established time based 
measures such as those used in survival analysis. We evaluate 
hazard patterns using a relative risk model and an accelerated 
failure time model. The results show that hazard patterns can 
reliably capture unexpected relationships between events of 
different types.  
 

Index Terms— Predictive analytics, Event sequence mining, 
Criminal behavior prediction  
 

I. INTRODUCTION 
HEN EVALUATING alternatives for sentencing policy 
and rehabilitation programs, there is a recurring 

question of whether or not existing approaches are effective 
over the long term. One popular approach for quantitative 
analysis of criminal careers is to cluster offenders according to 
their offending patterns over time. This approach, called group 
trajectory modeling, usually results in an offender typology 
grouping consisting of two to four categories, to which 
descriptive labels are attached (e.g., short term juvenile, long 
term chronic offender). Comparisons between these groupings 
are then made, with attention to correcting for selection bias 
and exposure time. The concern of selection bias arises when 
the treatment of interest, such as arrest and incarceration, 
cannot be randomly assigned. Thus, treatment outcomes may 
be reflective of factors that influenced assignment to 
treatment, such as an individual propensity to commit a crime. 
Corrections for exposure time, or street time, are intended to 
address the changes in opportunity that may be expected when 
an individual is incarcerated. This forms the basis for state of 
the art quantitative studies designed to measure the long-term  
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effectiveness of a particular program of treatment, such as 
arrest and incarceration. However, approaches based on 
clustering individuals according to rate of certain events have 
not yet addressed how an arbitrary number of different types 
of events throughout the criminal career may affect the 
possibility of future offenses. Key events in a criminal career 
include arrest, conviction, sentencing, parole, and discharge. 
Each of these may be further broken down into sub-types. 
Since existing quantitative analyses do not facilitate ad-hoc 
discovery of relationships between events of many different 
types, unexpected relationships between various different 
event types remain undiscovered. 

Event sequence mining can be used to discover patterns 
consisting of many different types of events. However, a 
number of challenges arise with the use of existing measures 
of interest when used to describe predictive relationships. The 
most fundamental measure of interest for event sequence 
patterns is support. This measure indicates the number of 
pattern occurrences, and is borrowed from association rule 
mining. For each identified support counting method, at least 
one of the following limitations applies: (A) length of patterns 
influences support counting (B) an occurrence may or may not 
be counted depending on the characteristics of other 
occurrences of the same pattern (non-independence), and (C) 
unrelated sub-pattern occurrences unduly inflate support 
counts of some patterns. These problems do not arise in 
association rule mining, where there is no dimension of time. 
A related challenge arises during the analysis of a partial event 
stream or an event stream with censored observations 
(observations that are unknown because data is missing or 
because the observation period ended before the event may 
have occurred). The challenges raised above need to be 
addressed in a manner that specifically takes into account the 
nuances that come with the introduction of the dimension of 
time. 

Insofar as there is an interest in discovering relationships 
between events of multiple different types, there is a need for 
a method for the ad-hoc discovery of such relationships. 
Measures based on occurrences of these patterns should not be 
unduly affected by pattern length, other occurrences of the 
same pattern, or unrelated occurrences of sub-patterns. This 
article includes the following the key contributions from the 
domain and methodology standpoints. For the criminology 
domain, we demonstrate that hazard patterns based on 
occurrences of distinct events can be used to make a statement 
about expected changes in the probability of certain future 
events as well as expected changes in time to event. For the 
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event sequence mining methodology, we address limitations 

that apply to existing pattern support counting methods, and 
demonstrate how event hazard patterns address these 
limitations. We evaluate the usefulness of the event hazard 
patterns from real data using two time-based models. 

The remainder of the paper is organized as follows. In 
Section II, we introduce the literature in the problem context 
and highlight unaddressed challenges involved in criminal 
career analysis and event sequence mining. The gaps 
identified in this section form the motivation for our design. In 
Section III, we define the objectives of a solution. These 
objectives form the guidelines for our evaluation. Section IV 
includes the design and development of the core algorithms 
and data structures. In section V, we demonstrate and evaluate 
the proposed solution, and finally in section VI we conclude 
with some implications and directions for future research. 

II. PROBLEM IDENTIFICATION AND MOTIVATION 
In this section, we discuss the problem context and the 

motivation for this work. We provide a review of relevant 
criminology literature with attention to predictive patterns in 
criminal careers. We then provide an overview of literature 
related to event sequence mining and note the needed 
developments for effective prediction of events in criminal 
careers.  

A. Domain: Criminal Career Analysis 
There are a few notable studies that have addressed the 

challenge of making long-term predictions about criminal 
history event patterns using a combination of group trajectory 
modeling and predictive indicators. The group trajectory 
modeling technique was introduced in [1]. This technique 
involves clustering offenders into trajectory groups according 
to offense rate over a period of time.  The following three 
recent studies involve the use of this method.  

Group trajectory modeling was used in [4] to cluster 
individuals trajectory groups, with the goal of  predicting 
membership in chronic (life-long offender) or high rate 
(frequent offender) groups. Demographic variables as well as 
the number of early juvenile offenses were considered as 
candidate predictors of membership in these groups. The 
sample consisted of all prisoners convicted in the Netherlands 
in 1977. However, there were no risk factors that were found 
to be good predictors of trajectory group membership. 

The same method was also used to cluster the members of a 
cohort of adolescent boys in Montreal into groups, in a study 

examining the effects of adolescent first-time gang joining at 
the age of 14 [3]. In this case, propensity score matching was 
used to balance the treatment (joiners) and control (non-
joiners). Propensity scores are calculated based on known 
predictors of group membership, and comparisons between the 
two groups are made only between individuals with matching 
propensity scores. The effect of first-time adolescent gang 
membership at age 14 was associated with a short-term 
increase in violence, but no other effect was observed. 

In [2], group trajectory modeling formed part of a strategy 
to predict increasing or decreasing offense rate following 
incarceration, in a cohort of American prisoners released from 
state prisons in 1994. The researchers included a variable to 
represent the heterogeneity of the individual offense history in 
relation to the rest of the trajectory group. Individual offense 
rate micro-trajectories were estimated for each released 
prisoner. After a 3 year follow-up period, 40% of the prisoners 
had an offense rate that was significantly lower than 
estimated, and 4% of the prisoners had an offense rate that 
was significantly higher than estimated. However, the analysis 
did not address arrest hazard beyond the first post-release 
arrest, or the different types of subsequent events that may 
occur. 

In addition to group trajectory based approaches, where 
behavior is modeled according to group characteristics, a 
number of researchers have focused on the predicting the 
location of the crime. One example of such work is the Blue 
CRUSH system used by Memphis police [5]. This system is 
designed to direct enforcement efforts to geographical areas 
where there is a high likelihood of a crime. Another case is the 
prediction of hotspots using data from monthly crime reports 
[6]. Hotspot prediction is based on aggregate figures where the 
unit of observation is geographical, such as a district. 
Although the history of a particular area provides useful 
information for predictive analytics, this approach does not 
take the histories of individuals into account. 

Individual criminal histories are comprised of discrete event 
occurrences of various types along a timeline, often separated 
by long periods for which no events of interest occur. 
Behavior patterns from similar data have been successfully 
captured using event sequence mining approaches. In [7], 
event sequence mining was used to effectively capture 
patterns involving the type and order of activities in a door 
event log. Event sequence patterns are patterns of events that 
frequently occur in the same order. These patterns were used 
to identify five cluster groups within a building, three of which 
exhibited a strong group membership. However, as far as we 
know, there is no work applying event sequence mining to the 
problem of predicting the behavior of individuals. 

 

B. Methodology: Event Sequence Mining 

s: <(p, 1), (b, 2), (b, 3), (b, 4), (c, 5), (c, 6), (p, 7)> 
 

b: burglary, c: conviction, p: parole 
 
Fig. 1.  Illustrative event sequence database. 
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The use of event sequences for predictive modeling poses 
some unique challenges. Since event sequence mining is an 
extension of association rule mining, measures of interest 
commonly used in association rule mining are natural 
candidates for use in event sequence mining. Two common 
examples of such measures from association rule mining are 
support and confidence [8]. However, the use of such 
measures in event sequence mining is complicated by some 
fundamental differences between association rule mining and 
event sequence mining brought about by the dimension of 
time. 

Support is a measure of pattern occurrence frequency, 
usually expressed as a count. Confidence is a measure of 
association between occurrences of an antecedent pattern and 
occurrences of a consequent pattern and is calculated as 
support of consequent / support of antecedent. Confidence that 
approaches 1.0 shows that when the antecedent is present, the 
consequent is expected to also be present. Thus, the presence 
of the antecedent might be used to determine the probability 
that the consequent is also present. 

In the event sequence database in Fig. 1, one individual 
event sequence is represented. Each event occurrence is 
associated with the number of months since some point in the 
past. For our discussion of support counting, we will not 
consider censored events or relationships between events in 
one sequence and events in another sequence. 

There are two main approaches to event sequence mining: 
sequence mining, and frequent episode mining. With sequence 
mining, pattern support is based on the number of input 
sequences that contain at least one occurrence of a given 
pattern. With frequent episode mining, it is the prevalence of 
the pattern without respect to different input sequences that 
determines support. Since we are looking for predictive 
relationships within pattern occurrences, we focus on the 
frequent episode mining approach. 

We can apply frequent episode mining to the event database 
in Fig. 1. Discussion of frequent episode mining with window 
based support counting can be found in [9]. Using this 
technique, the event database is subdivided into all possible 
windows of some specified size ω. Support count is based on 
the number of fixed size windows that contain at least one 
pattern occurrence. Using a window size of five months, we 
see that there are four windows that contain at least one 
occurrence of b and there are two windows that contain b 
followed by p. A simple calculation of confidence gives us a 
50% confidence that b leads to p within five months. In this 
case, the discovered relationship is as follows: 50% of 
windows of opportunity that contain a burglary event also 
contain a subsequent parole event. Note that this does not 
mean that 50% of burglaries are followed by parole. The 
relationship is with respect to the windows of opportunity. 

A number of alternative methods of support counting have 
been explored in addition to window-based counting. 
Examples of support counting also include: minimal 
occurrence based, non-interleaved, non-overlapping, head 
frequency, total frequency, and distinct occurrence based. 
Some of these are also commonly combined with an expiry 

time constraint. For a comprehensive discussion of these 
variations in support counting, including window-based 
counting see [10]. 

However, the use of these support counting methods for 
event sequences is hampered by counting that is unduly 
influenced by pattern length, non-independence of pattern 
occurrences, and the inclusion of unrelated occurrences. These 
limitations are detailed in Section IV-B. 

Event hazard patterns do not have the above mentioned 
limitations. These patterns are a specialization of event 
sequence patterns and are comprised of frequently occurring 
event sequences, wherein each event in the event sequence is 
the first subsequent occurrence of that event type [11]. 

Table II contains event hazard patterns based on the 
contrived event sequence in Fig. 1. The first burglary charge 
following parole release leads to a higher proportion of 
subsequent burglary charges when compared to the remaining 
cases. Note that there are three opportunities for a burglary 
charge to be repeated. However, after accounting for the one 
burglary charge that immediately follows a parole release, 
only two remain. Thus we have a 100% confidence that parole 
followed by burglary will lead to more burglary, but we only 
have 50% confidence that subsequent burglaries will do the 
same (1/1 instead of 1/2 for the remaining burglary charges). 
Naturally, this does not give us an indicator of generalizability 
nor does it account for censored observations. We will address 
each of these in Section IV. 

Since hazard patterns incorporate information about the 
interval that precedes the first occurrence of each subsequent 
event, we expect them to be well suited for time-based 
analysis. Time-based models are well suited for addressing 
ordering of events, and include methods to deal with censored 
events. 

Two complementary time-based options are relative risk 
ratio (RR) and accelerated failure time (AFT) models. RR is 
an indicator of treatment impact that relates the number of 
failures in the treatment group to the number of failures in the 
control group [12], [13]. In contrast, AFT models the 
relationship between the expected time before failure in the 
treatment group, relative to the same in the control group [14]. 

There is a substantial body of literature in the field of 
developmental criminology involving criminal career 
trajectory analysis, but there is still a need for a method to 
discover interesting relationships between the many different 
types of events in a criminal history. Existing approaches to 

TABLE I 
SUMMARY OF DOMAIN RELATED GAPS 

Approach Gaps 

Group Trajectory Modeling 
[1-4] 

Models expected 
behavior of individuals over time but 
does not use multiple event types. 

Hotspot based analysis 
[5, 6] 

Relates aggregate counts per 
geographic region, but does not address 
individual histories 

Event Sequence Mining 
[7] 

Clustering shown to be useful but no 
examples of event prediction found. 
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quantitative criminal career analysis focus primarily on 
offense rate predictions. 

Due to the limitations outlined above, measures adapted 
from association rule mining, such as support and confidence 
may not adequately capture predictive relationships between 
time-ordered events. Since event hazard patterns do not have 
these limitations, we expect them to be well suited for 
integration with time-based models such as RR and AFT. 

III. OBJECTIVES OF THE PROPOSED PATTERN DISCOVERY 
SYSTEM 

Existing quantitative approaches to criminal career analysis 
are not well suited to the ad hoc discovery of relationships 
between different event types. Event sequence mining is a 
potential method for the discovery of such relationships. 

Event hazard patterns have not yet been used with time 
based measures of interest. In this work we empirically 
evaluate the predictive ability of event hazard patterns selected 
using time based models. 

We propose a software instantiation to address the 
challenge of ad-hoc discovery of predictive event sequences in 
criminal careers. The main objectives of the proposed pattern 
discovery system are: 
1) Discovery of frequent event sequences in a database of 

criminal career events 
2) Selection of accurate predictive patterns 

 
In this work, we make two key contributions: 
3) A domain contribution: facilitating the ad-hoc discovery 

of relationships between various different event types in a 
criminal history 

4) A methodology contribution: introduce the use of time-
based models with event hazard patterns 

IV. DESIGN AND DEVELOPMENT 
The proposed pattern discovery system builds on an event 

hazard pattern discovery algorithm. A crime analytics system 
that will utilize this pattern discovery system is currently 
under development. In this work we adapt the pattern 
discovery system for use with time-based measures of interest. 

The pattern discovery algorithm is designed to facilitate 
discovery of event patterns in an event history database 
expected to contain frequent event sequence patterns separated 
by both short and long time intervals during which each 
subsequent event does not yet occur. Such patterns are a 
specialization of event sequence patterns and are referred to 
here as event hazard patterns. Given that we expect time based 
event occurrences that are independent from each other to 
occur at intervals that follow an exponential distribution, we 
apply hazard constraints to approximate intervals of 
exponentially increasing size. This strategy is described as 
heterogeneous constraints in [11]. 

A. Definitions 
Except where specifically noted, the following are 

definitions of terms commonly used in event sequence mining. 
For further details on these terms see [9] and [10]. 

Event Type: An event-type refers to a class of discretely 
identifiable events with common characteristics.  

For example, when an individual is arrested charged with a 
burglary offense, an event type of burglary arrest charge 
occurs. Additionally, it can be said that a more general event 
type of arrest charge, or property crime related arrest charge 
occurs at the same time. An event type is alternatively referred 
to as an event. 

Event Occurrence: The occurrence of an event is denoted 
(e, t), where e represents the event type and t represents the 
time of the event occurrence. The unit of discretization for t, 
such as second, minute, hour, day, etc. is an important 
consideration when selecting constraints that must be satisfied 
by t. For example, (c, 5) is the occurrence of event (or event 
type) c at time 5. 

Event Sequence: An event sequence of length n is denoted 
<(e1, t1),(e2, t2),...(en, tn)> where ei represents the type of the ith 
event, ti represents the time of the ith event, and ti-1 < ti. An 
event sequence is a time oriented arrangement of event 
occurrences. For example, <(b,4),(c,5)> is an event sequence. 
In this work we address only serial event sequences. 

Event Sequence Pattern: A frequently occurring event 
sequence, as defined by a minimum support threshold. An 
event sequence pattern can be denoted as 
<(e1, T1), (e2, T2),... (en, Tn)>, where ei represents the type of 
the ith event occurrence, and Ti represents the collection of all 
occurrences of the ith event type. Each occurrence represented 
in Ti with i>1 corresponds to an antecedent occurrence 
represented in Ti-1. Alternatively, an event sequence pattern 
can be summarized in a more compact and intuitive form, as a 
sequence of events: b → c → p. 

In the context of sequential pattern or sequence mining, an 
event sequence is frequent when it occurs in many input 
sequences. In the context of frequent episode mining, an event 
sequence pattern is frequent when there are many occurrences 
of the pattern. In this work, we consider event sequence 
mining in the context of frequent episodes. 

Gap Constraint: The requirement that except for the initial 
event occurrence, for any event occurrence (ei, ti) in an event 
sequence, there exists at least one event occurrence (ei-1,ti-1) 
where mingap ≤ (ti-ti-1) ≤maxgap. For example, two events in 
an event sequence satisfy a minimum gap constraint if they are 
separated by at least mingap and they satisfy a maximum gap 
constraint if they are separated by at most maxgap. 

The selection of appropriate mingap and maxgap are 
domain specific. Gaps are chosen by a human operator to 
reduce the number of irrelevant patterns that are discovered. 

Hazard Constraint: The requirement that except for the 
initial event occurrence, for any event occurrence (ei,ti) in an 

TABLE II 
EVENT HAZARD PATTERNS 

Pattern Opportunities Support 

b - - 

b → b  3 2 

p → b → b 1 1 
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event sequence there exists no event occurrence (er, tr) where 
er = ei and ti-1 < tr < ti. Furthermore, each antecedent 
occurrence (ei-1, ti-1) is a unique occurrence. In other words, 
each successive event occurrence in an event sequence is the 
first successive occurrence of the specified type, relative to 
occurrences of the specified antecedent event type in the same 
event sequence. Hazard constraint is a new term first 
introduced in [11]. 

As with mingap and maxgap, a hazard constraint can be 
expressed as a minhaz and maxhaz for similar effect. A hazard 
constraint h((min,max]) specifies an interval during which the 
subsequent event may first occur, such that for all event 
occurrences of a given event hazard pattern,  minhaz < (ti - ti-

1) ≤ maxhaz. In other words, the first occurrence of each 
subsequent event type, relative to the antecedent occurrence, 
takes place after minhaz and may occur as late as maxhaz. 

Hazard Pattern / Event Hazard Pattern: An event 
sequence pattern wherein each subsequent event occurrences 
the first subsequent occurrence of that particular event type. A 
specific hazard constraint of minhaz and/or maxhaz may also 
be specified, to select only those cases where the subsequent 
event first occurs after minhaz but no later than maxhaz. A 
given event hazard pattern a → b can be expressed with a 
hazard constraint as a (minhaz, maxhaz] b. Hazard Patterns 
were recently introduced in [11] 

Relative Support: The number of unique antecedent event 
occurrences that are followed by a subsequent event type in an 
event hazard pattern. For example, in Fig. 2, c → p occurs 
twice, but c → c occurs only once. Relative support was 
proposed for event hazard patterns in [11].  

Relative Risk: The ratio of the risk within a treatment 
group over the risk of the control group. It is used to measure 
the cumulative treatment effect at the end of a period of time. 
For a discussion of practical application of relative risk ratios, 
see [13]. 

B. Justification for Relative Support 
There are ten methods of counting support described in 

[10]. However when using these support counts to describe 
sequential relationships, a number of challenges arise. 
Relationships between events in an event sequence are not 
representative when support count is affected by (a) length of 
patterns, (b) non-independence between pattern occurrences, 

and (c) side effects of unrelated pattern occurrences on support 
count. Further, in the case of incomplete or censored 
observations, we need to draw on time based analysis 
methods. We discuss each of these challenges in detail below.  

Length of patterns: When the number of pattern 
occurrences is directly dependent on the length of the pattern, 
it is difficult to use differences in support count to construct 
sequential relationships between shorter and longer extensions 
of those patterns. We generally expect longer patterns to occur 
less frequently, but window-based counting methods further 
penalize the support count of longer sequences. One example 
of this phenomenon is with event sequences that are 
constrained by a window of opportunity or expiry time. For 
instance, the event sequence <(b,3),(c,4)> in Fig. 2 appears in 
four windows of opportunity of size five whereas the event 
sequence <(b,3),(c,4),(c,5)> occurs in only three windows of 
opportunity. 

Independence: An alternative to window based counting is 
occurrence-based counting. Examples of these are minimal 
occurrence based, non-interleaved patterns, non-overlapping 
patterns, and distinct occurrence based counting. Each of these 
suffers from a lack of independence between pattern 
occurrences. This is because in each of these cases, some 
pattern occurrences are not counted based on the position and 
ordering of events in other occurrences of the same pattern. 
Examples of such missed counts are detailed in [15]. Violation 
of the independence assumption makes it more difficult to 
describe relationships between patterns using statistical 
methods. 

Unrelated Occurrences: A solution to the problem of non-
independent occurrences is to use head or total frequency. 
With head frequency, the number of pattern occurrences is 
based on the number of windows of a specified size that start 
with the head (first event) of the pattern [16]. However, the 
same challenges described for other window-based counting 
methods still apply to head frequency. In addition, head 
frequency has the undesirable side effect of over-representing 
the number of occurrences of patterns with a frequent head. 

For example, in Fig. 2 the pattern b → c → c has a head 
support of three (windows ii, iii, and iv). However, the support 
count is unduly inflated by the relationship represented in the 
initial b → c sub-pattern. Total frequency is a partial remedy 
to this problem whereby the support is equal to the lowest 
head frequency of any sub-pattern [17].  

However, this measure can still be unduly inflated by 
unrelated occurrences of sub-patterns. For instance, in Fig. 2 c 
and p both have a head frequency of two, so the total support 
of c → p is two even though the support count is affected by 
an occurrence of p that is unrelated. Thus, we cannot use this 
measure to describe relationships between antecedent patterns 
and their subsequent extensions. 

Censoring: In Fig. 2 windows v, vi and vii are all censored. 
If the patterns are not sufficiently short relative to the event 
database, this missing data may adversely affect the 
interpretation of support counts. Missing or incomplete event 
data, if not accounted for, can be misleading. In the real 
database of criminal histories used in our analysis, the 

 
Fig. 2.  Windowing and unrelated occurrences. 
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database is considered to be complete, such that events past 
the end of each criminal history are believed to be negligible. 
However, the matter of censoring in event sequence patterns is 
problematic for cases where pattern length is not negligible 
relative to the length of input sequences. Event hazard patterns 
do not specifically address event censoring, but these can be 
addressed with time-based models. For a related discussion of 
censored events in event sequence mining with variable 
window sizes, see [18]. 

Some additional limitations of existing support count 
methods are also discussed in [15] along with a complex 
proposed support metric. The proposed support metric relies 
on non-redundant occurrences (occurrences with no events in 
common). This non-redundancy requirement introduces 
dependencies between different occurrences of the same 
pattern. 

With consideration to the limitations outlined above, 
Hazard patterns are counted by relative support. Given a 
number of distinct opportunities, support is the number of 
those distinct opportunities or distinct antecedent events that 
are followed by the subsequent event. The number of 
opportunities is less than or equal to the support of the 
antecedent pattern. Note also that, unlike the event sequence 
mining approaches described above, each subsequent event in 
an event hazard pattern is the first such subsequent event, and 
that it is not necessarily distinct (it may participate in more 
than one pattern occurrence).  

For instance, in Fig. 2 there are three occurrences of b. All 
three of them are followed by c, so support for b → c is three. 
However, since these three antecedents all converge on the 
same c occurrence at position four, there is only a single 
distinct opportunity to extend b → c to the subsequent c or p 
events. The support of b → c is three (out of three distinct 
opportunities), and the support of b → c → p is one (out of 
one distinct opportunity). Using this approach, confidence is 
the proportion of successes given a number of distinct 
opportunities, meaning the confidence of b → c is 1.0 and the 
confidence of b → c → p is also 1.0. 

In this way, hazard patterns address all of the challenges 
discussed above except censoring. Length of patterns does not 
unduly affect support count, pattern occurrence counting treats 

each pattern occurrence independently, and events that are 
unrelated to the relationship do not affect relative support 
counts. However, although the confidence measure provides 
an indicator of the proportion of success, it does not provide 
information about the generalizability of the pattern. To this 
end, and to account for censored observations, we draw on 
time-based models in our analysis. 

C. Algorithm Design 
It is expected that some frequent event sequences will 

include events that occur close together and others that occur 
far apart. One way to capture such patterns is to use a 
windowing strategy, first described in [19], to create item sets, 
alternatively presented as a partial order or as parallel episodes 
[20]. However, this approach may discard potentially valuable 
information, and relies on the analyst to specify optimal 
windowing and gap constraints.  

Windowing and gap constraints capture all events that fall 
within the constraint boundaries, but do not differentiate 
between them and do not capture the non-occurrence of an 
event. Instead, hazard constraints specify a period during 
which an event does not occur, followed by a period during 
which the first occurrence an event does take place. 

The proposed algorithm iteratively applies hazard 
constraints of exponentially increasing sizes, similar to the use 
of multiple periodic constraints in [21]. The proposed 
implementation uses progressively larger intervals to represent 
the number of months before the first occurrence of the 
subsequent event, such as re-arrest following discharge or 
parole release. 

The GROW function shown in Fig. 3 uses pairs of event and 
ordinal values to represent a database of known event 
occurrences. Ordinals are translated to offsets at O(1) cost as 
needed for constraint calculations. Input ordinals are supplied 
in a matrix indexed by event,constraint where each 
Mevent,constraint represents the antecedent ordinals for the current 
pattern growth step. In Line 4, those antecedents with 
cardinality that is high enough to meet a specified support 
threshold are added to the frequent pattern database in line 4, 
and are passed to the NEXT function, where a new matrix of 
candidate event occurrences is created, and passed to the 
subsequent recursive GROW attempt on line 8. 

Fig. 4 contains the NEXT function, which takes as input a 

 
Fig. 3.  Pattern discovery. 
  

 
Fig. 4.  Get next ordinals by event, constraint. 
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collection of antecedent ordinals, grouped by event, and 
produces the Ordinal matrix NextOrds needed in line 7 of 
Fig. 3. This function uses two indexes: Revent,ordinal and 
Ievent,ordinal. See Fig.  5(c) and 5(d) for the R and I indexes 
corresponding to event sequence τ shown in Fig. 5(a). 
Ordinals in I have corresponding offsets in Fig. 5b and 
constraint identifiers in R have corresponding constraint 
intervals in Fig. 5(e). R and I are matrices of dimension (m × 
n) where m is the alphabet of all possible events, and n is the 
number of distinct offsets. Multiple events may occur at the 
same offset. I contains the ordinal of the subsequent 
occurrence of a given event type. The value stored at the 
intersection specified by an ordinal and an event type 
corresponds to the ordinal of the first subsequent occurrence 
of that event type. R contains the constraint that is satisfied at 
a given event offset (represented as an ordinal), relative to its 
immediate antecedent event. 

On line 5 of the NEXT function pseudo-code in Fig. 4, for 
each antecedent event occurrence, the constraint Revent,ordinal 
that is satisfied for each potential subsequent event is 
retrieved. Given the half-open interval topology used to 
describe the different constraints, each subsequent event can 
satisfy one constraint. In line 6 the subsequent ordinals are 
retrieved from I and then grouped according to their matching 
constraints in line 7. The creation of R and I are not described 
here, but are straightforward. Their purpose is to pre-compute 
comparisons and look-ups that are frequently repeated during 
candidate generation. Simply put, the index serves to reduce 
the number of calculations required during candidate 
generation at the cost of increasing memory usage up front. 
Optimization strategies to take advantage of redundancies in R 
and I are currently being evaluated. 

V. EVALUATION 
The goals in this undertaking involve both a domain and a 

methodology contribution. For the problem domain, this work 
provides a method for discovering predictive sequences of 
events. The methodology contribution is the use of a time-
based measure of interest to demonstrate the generalizability 
of discovered relationships. 

A. Data Preparation 
The pattern discovery system was used to discover patterns 

in a data set of complete criminal histories. The histories were 
collected from part of a non-random sample of offenders who 
entered the California Youth Authority's Deuel Vocational 
Institute in 1964 and 1965. The event database contains of 
54,175 arrest records and associated dispositions, parole, and 
discharge events for 3,652 individuals from the time of first 
arrest through 1983. Dates were discretized to the nearest 15th 
day of the month [22]. 

For this analysis, the individual histories in the dataset were 
randomly assigned to either the training set or the testing set. 
Each arrest event was associated with up to five arrest charges. 
Additionally, the nature of the disposition and judgment date 
was also recorded for each arrest event, as were parole and 
discharge events. Arrest charges were encoded both as the 

specific arrest charge as well as a general arrest event. 
Disposition events were similarly encoded, with the additional 
adaptation that arrest dates were used for disposition events. 
Note that due to the discretization of the data, the relationship 
between an arrest and a conviction for that same arrest is not 
represented. All dispositions (including convictions) were 
recoded to the arrest charge date. Any patterns showing both 
arrests and convictions have nothing to do with conviction 
rates. 

Hazard pattern mining was performed on the training data 
with multiple different hazard constraints per pattern at 
increments of 0, 3, 6, 9, 12, 24, 48, 96, 192, and 384 months to 
generate hazard constraints of (0,3], (3,6], (6,12], and so forth 
(see heterogeneous constraints described in [11]). Only 
patterns with a support count of at least 500 were mined. This 
process yielded 44 frequent events and 1085 hazard patterns 
(single events are not considered hazard patterns). For each 
hazard pattern the number of opportunities, the support count 
(number of opportunities that were successful) and the number 
of unique subsequent events were recorded. The same patterns 
were also mined from the test set. 

Of the 1085 hazard patterns, 305 patterns involved an event 
sequence of three or more events. Each of these was compared 
against the equivalent patterns from the test set and against the 
baseline or control pattern with the first antecedent and 
constraint removed. For example: a → p → a from the 
training set would be compared with the same pattern in the 
test set, as well as against a minimally differentiated baseline 
of p → a from the training set. There should be no statistically 
significant difference between the training set and the test set. 
Further, there should be agreement between the test set and the 
training set about the expectations implied by the discovered 
patterns. 

 
Fig. 5.  Ordinal, constraint, and offset indexes 

TABLE III 
OCCURRENCE FREQUENCIES  

FOR PATTERN P AND BASELINE B 
 Occurrences Non-occurrences Total 

P (a) 775 (b) 914 1689 
B (c) 1146 (d) 2648 3794 

Total 1921 3562 (n) 5483 
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B. Relative Risk 
One measure considered for this evaluation was Relative 

Risk Ratio (RR) [12], [13]. Since the RR measure is applied 
only at the end of a follow-up period, the measure is 
inherently sensitive to the choice of follow-up. Further, since 
relative risk does not account for left truncated data, we use 
this measure when there is no minimum hazard constraint. For 
this reason we evaluate only those patterns that end with a 
hazard constraint of greater than zero and up to three months, 
expressed as (0,3]. 

 
Relative Risk (RR) is defined as follows: 
 

    
                                   

                                     
 

 
For our analysis, we consider the set difference between the 

baseline pattern and the pattern of interest to be the unexposed 
group. Consider the following two patterns: 

 
P: “Arrest” (0,3] “Continue probation”(0,3] “Arrest” 
S: “Continue probation” (0,3] “Arrest“ 

 
To construct a baseline, we calculate the measures for B = 

(S-P). Since S includes all pattern occurrences that participate 
in P, we subtract P from S to create a baseline B to compare 
against. In other words, B contains all occurrences in S that do 
not also occur in P (see Table III). Thus, we can measure the 
relative risk of “Arrest” within three months associated with a 
disposition of “Continue probation” occurring within three 
months of an arrest compared to those cases where it did not 
occur within three months of a preceding arrest. 

Referring to Table III, we can calculate 
 

   
       ⁄  

        ⁄
 

       ⁄

        ⁄
      

 
We see that the risk of re-arrest within three months in the 

final stage of pattern P (0.46) is 1.52 times the risk of re-arrest 
within three months in pattern B (0.30) for an absolute risk 
difference of 0.16%. 

It is important to note at this stage that the pattern does not 
provide enough information to state that the initial “Arrest” 
and delay before the “Continue probation” disposition event 
were the key predictors. Although this may seem to be a 
perfectly intuitive conclusion, it would overlook the unrelated 
occurrence problem described in Section IV-A. To put it 
another way, even though all occurrences of P contain an 
occurrence of B, some occurrences of B may have occurred 
without a coinciding occurrence of P. There may be such a 
relationship, but it is not represented by these counts. 

Instead, what is represented is the relationship between the 
entire antecedent pattern and the last constraint plus event 
combination. We can compare the effect represented by P to 
the effect in the shorter pattern B to determine whether the 
additional information provided by the longer pattern may be 

of use. To this end, we estimate the confidence interval for the 
RR calculated above. The standard error is symmetrical about 
the logarithm of RR as follows: 
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A 95% confidence interval is then estimated by taking the 

antilog: 
 

                      
 
Similarly, a Z score can be estimated as follows: 
 

   
    

         
 

 
This makes it possible to perform a test to see if the 

difference in relative risk ratios is due to chance. See [13] for 
an example. For patterns P and B, the resulting z-score is 
11.56, supporting a rejection of the null hypothesis that the 
difference between P and B is due to chance.  

Further, we can show the robustness of the pattern by 
comparing the risk ratio of P in the training set with the risk 
ratio of P in the test set. The risk ratio for P in the test set was 
748 / 1693. Using the same process outlined above, we 
estimate a relative risk ratio of 1.02, showing that the two risk 
ratios are almost the same (RR=1.00 would indicate no 
difference at all). We then calculate a z-score of 0.48 showing 
that we are unable to reject the null hypothesis that the 
differences between P from the training set and P from the test 
set are due to chance. 

For this portion of the analysis, we concern ourselves only 
with the patterns ending with a constraint of (0,3] due to the 
limitations of the relative risk measure discussed above. Of the 
305 patterns that could be paired with a baseline, 66 patterns 
have an ending constraint of (0,3]. In other words, for this 
evaluation, we consider only patterns with at least three 
events, and with the constraint between the last two events 
being greater than zero and up to three months. 

Based on a 95% confidence interval, 47 of the 66 selected 
patterns were shown to represent a statistically significant 
difference in risk between discovered patterns and their 
corresponding baselines. Further, 2 of the 66 selected patterns 
were found to have statistically significant differences 
between the risk ratios discovered in the training set when 
compared to the risk ratios discovered in the test set and there 
were no instances where patterns in the training set indicated a 
significant increase while the corresponding patterns in the 
training set indicated a significant decrease and vice versa. In 
other words, the training and test set did not contradict each 
other. 

The risk difference between the selected 66 patterns and 
their corresponding baselines ranged from -0.07 to 0.16. The 
range of values for risk (support/opportunities) for the 
discovered patterns was 0.08 to 0.50. 
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C. Accelerated Failure Time 
Whereas RR is a measure indicating the difference in the 

number of people affected by treatment when compared to a 
control group, accelerated failure time (AFT) models show the 
difference in expected time to event for the two groups. 

AFT models are described in detail in [14]. For this analysis 
we used the Survival package for the R statistical software 
platform [23]. However, since the data being analyzed is 
discretized to the nearest month, and AFT expects continuous 
values, the events were analyzed as interval censored. In other 
words, the event occurred within a one month interval, but the 
exact time is unknown. It may be fair to state that all 
measurements are discretized to some degree, but in this case, 
a conservative approach was taken. An AFT model was 
constructed without regard to age, and the results were 
evaluated in the same manner as with RR above. Although we 
can expect improved results by taking into account time-
varying coefficients such as age, and non-varying predictors 
such as demographics, our focus for this work is on the 
efficacy of the discovered patterns themselves. 

The same 66 patterns described above were each 
individually used to fit an AFT model, using a logistic 
distribution. Other distributions that were tested were Weibull, 
lognormal, exponential, and Gaussian. In all cases, patterns in 
the training set were not contradicted by patterns in the test 
set. The logistic distribution was selected because it produced 
the most consistent results across training and test sets. Of the 
66 patterns, based on a 95% confidence interval, 39 patterns 
showed a significant decrease in time to next event, and three 
patterns showed a significant increase. In 24 cases, there was 
no significant difference between pattern and baseline. AFT 
models were also fitted to compare the patterns found in the 
training data with the patterns found in the test data. Only one 
of the 66 patterns was found to have differences that cannot be 
attributed to chance. Furthermore, as we found with RR, there 
were no cases where the models fitted to the training and the 
testing data presented directly contradictory results.  

VI. CONCLUSION 
In this work we explored the use of time based measures for 

rule selection to address the problem of predicting criminal 
behavior. Although there has been some limited use of time 
based measures in event sequence mining, some 
characteristics of existing methods of event sequence counting 
make it difficult to accurately discover predictive 
relationships. These characteristics are (A) support count 
methods that unduly penalize longer patterns, (B) support 
count methods that involve dependencies between occurrences 
of the same pattern (an occurrence may or may not be counted 
depending on characteristics of other occurrences of the same 
pattern), and (C) support count methods that include unrelated 
event occurrences (sub-pattern or event occurrences that do 
not participate in a relationship with the super-pattern). Hazard 
patterns do not suffer from these limitations. We demonstrate 
the utility of hazard patterns for discovering sequential 
relationships between diverse event types. Patterns were 

selected and evaluated using two time-based methods: relative 
risk ratio, and accelerated failure time models. 

We note a number of important limitations. First, the 
relative risk ratio is not suitable for multiple follow-up 
periods. Patterns with follow-up periods other than (0,3] were 
excluded from the relative risk analysis. Further, since the 
event data is discretized to the nearest 15th day of the month, 
some short term patterns, such as an arrest event leading to a 
disposition event in less than one month were excluded during 
data preparation. Additionally, relative risk is sensitive to 
choice of follow-up period. For instance, the outcomes may 
have been different if we had selected (0,6] or (0,12] as the 
follow-up period. 

Further, although care was taken to ensure that opportunity 
and pattern occurrence counts did not violate the 
independence assumption, some questions affecting 
generalizability remain. For instance, since the individuals 
were not randomly assigned to patterns and their respective 
baselines, a concern over selection bias is justified. The 
pattern occurrences were not matched or balanced to correct 
for selection bias. However, given the stability of the patterns 
between the training and the test set, we did not find evidence 
of a significant selection bias effect. However, in this work we 
evaluate only the directionality of effect. We may encounter 
evidence of bias upon examination of predicted effect size. 

A number of directions for further work have been noted. 
We plan to explore the use of hazard ratio and survival curves 
to describe the effect over time that is represented by a 
particular pattern. Other available covariates, particularly age, 
may improve the accuracy of event hazard patterns. Further, 
the existing pattern database was mined at a relatively high 
support threshold. It remains to be seen how robust these 
patterns are, and particularly how useful time based measures 
of interest will be when the minimum support threshold is 
lowered. Another natural extension of this work is the use of 
sensitivity analysis to address concerns of selection bias. 
Finally, the use of the techniques described in this work can 
reasonably be extended to other domains where there are 
many different types of antecedent events, and where time 
before the first subsequent event is important. 
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