
Dakota State University Dakota State University 

Beadle Scholar Beadle Scholar 

Faculty Research & Publications College of Business and Information Systems 

2016 

On Understanding Preference for Agile Methods Among Software On Understanding Preference for Agile Methods Among Software 

Developers Developers 

David Bishop 
Dakota State University 

Amit V. Deokar 
University of Massachusetts at Lowell 

Surendra Sarnikar 
California State University, East Bay 

Follow this and additional works at: https://scholar.dsu.edu/bispapers 

Recommended Citation Recommended Citation 
Bishop, D., Deokar, A. V., & Sarnikar, S. (2016). On Understanding Preference for Agile Methods among 
Software Developers. Information Resources Management Journal (IRMJ), 29(3), 12-36. 

This Article is brought to you for free and open access by the College of Business and Information Systems at 
Beadle Scholar. It has been accepted for inclusion in Faculty Research & Publications by an authorized 
administrator of Beadle Scholar. For more information, please contact repository@dsu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Beadle Scholar at Dakota State University

https://core.ac.uk/display/352610428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.dsu.edu/
https://scholar.dsu.edu/bispapers
https://scholar.dsu.edu/biscollege
https://scholar.dsu.edu/bispapers?utm_source=scholar.dsu.edu%2Fbispapers%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu


DOI: 10.4018/IRMJ.2016070102

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

On Understanding Preference for Agile 
Methods among Software Developers
David Bishop, Dakota State University, Madison, SD, USA

Amit V. Deokar, The Roberts J. Manning School of Business, University of Massachusetts Lowell, Lowell, MA, USA

Surendra Sarnikar, California State University East Bay, CA, USA

ABSTRACT

Agile methods are gaining widespread use in industry. Although management is keen on adopting 
agile, not all developers exhibit preference for agile methods. The literature is sparse in regard to 
why developers may show preference for agile. Understanding the factors informing the preference 
for agile can lead to more effective formation of teams, better training approaches, and optimizing 
software development efforts by focusing on key desirable components of agile. This study, using a 
grounded theory methodology, finds a variety of categories of factors that influence software developer 
preference for agile methods including self-efficacy, affective response, interpersonal response, 
external contingencies, and personality contingencies. Each of these categories contains multiple 
dimensions. Preference rationalization for agile methods is the core category that emerges from the 
data. It informs that while the very essence of agile methods overwhelmingly and positively resonates 
with software developers, the preference is contingent on external and personality factors as well.

KeywORDS
Agile, Grounded Theory, Preference, Software Developer, Software Development Methodology

1. INTRODUCTION

Today there are two decidedly different approaches to Information Systems Development (ISD). The 
traditional approach is characterized by terms like waterfall, sequential, or even spiral development. 
These approaches are often called “plan-based” or “plan-driven” in the literature (Boehm & Turner, 
2004). They emphasize planning, sequential execution, documentation, specific roles and predictability 
(Balijepally, Mahapatra, & Nerur, 2006). Philosophically, traditional approaches have sought to impose 
order and control on the software development effort (Bonner, 2010).

In contrast to the plan-driven approach are agile methodologies. Rather than control and prediction, 
agile methods seek to react and adapt (Cockburn & Highsmith, 2001). Agile methods have their roots 
in the 1990s culminating in a manifesto developed in 2001, which stated the essential concepts at the 
heart of agile methods. The manifesto lists a set of twelve guiding principles developed by the Agile 
Alliance (Beck et al., 2001). Among the emphases in the twelve principles are that working software 
code, early and frequent delivery of working software code, daily collaboration between users and 
developers, trust in front line workers (business and technical), and face-to-face communication is 
better than written documentation. In addition, progress is measured by working software, consistent 
pacing rather than periodic heroic efforts, emergent rather than prescriptive design/architecture, and 
reflective team adjustments. The enduring value and importance of the principles found in the Agile 
Manifesto is confirmed by a recent study performed by Williams (2012). Balijepally et al. (2006) 
provide a good summary comparison of agile with traditional waterfall methods. Table 1 illustrates 
these ideas.

12



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

13

Agile methods are a rapidly growing means of developing software. As of 2011, in the U.S. about 
40% of companies use agile (Glaiel, Moulton, & Madnick, 2013). In a 2009 Forrester Research report 
cited by West, Grant, Gerush and D’Silva (2010) found that about 30% of software developers in a 
sample of over 1,000 are using some form of agile methods.

Since industry and management are interested in using agile approaches, it seems appropriate to 
identify factors that influence developer preference. Not every developer likes agile. Agile attitude 
measurement instruments would be valuable as management assesses individual developer preference 
for agile. To effectively assign developers to appropriate projects and integrate them into agile projects 
it is important to know if training will be effective and if so what factors increase agile preference. 
Since there are no definitive empirical research or theory that informs us on the factors that influence 
preference for agile methods among software developers, we embarked on our study to address this gap.

In this article, we present a qualitative study of factors influencing preference for agile software 
development methods from a developers’ perspective. We begin with a review of recent research 
on the adoption and developer preferences for systems development methodologies and identify the 
need in-depth research on agile methods adoption from a developer perspective. We then present an 
overview of Grounded Theory research approach used to address the research goal. Next we present 
a detailed overview of our findings and a conceptual model that describes developer preferences 
for agile methods. Discussion of the findings with implications for research and practice are then 
discussed before concluding remarks.

2. LITeRATURe ReVIew

There have been continuing theoretical development to extend agile development principles to a number 
of different contexts such as large and dynamic software development projects (Batra, VanderMeer, & 
Dutta, 2011) distributed software development projects (Bergadano, Bosio, & Spagnolo, 2014) data 
warehousing and business intelligence projects (Rahman, Rutz, & Akhter, 2011), and game design 
and development projects (Cano, González, Collazos, Muñoz-Arteaga, & Zapata, 2015). However, 
understanding developer attitudes towards development methodologies such as agile methods is an 
important research question to study as organizations explore approaches to drive improvements in 
software quality (Hendersen, Sheetz, & Bélanger, 2012).

Previous studies indicate that perceptions of methodology output, and perceptions about the 
obstacles encountered while applying a methodology, influence perceptions about usefulness and ease 
of use about the methodology (Kacmar, McManus, Duggan, Hale, & Hale, 2009). Changes in software 

Table 1. Waterfall and agile methodology comparison



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

14

development methodologies may also require changes in developer mindset (Armstrong, Nelson, 
Nelson, & Narayanan, 2008). Systems development methodologies can also impact organizations 
from a human relations (HR) perspective such as in terms of staff turnover and developer satisfaction 
(Koch & Turk, 2011).

The above studies provide a good overview of the impact of system development methodologies 
in general or in comparison between agile and waterfall methodologies, however there is a need for 
in-depth research on factors that influence agile method adoption from a developer perspective. While 
there are some studies and theoretical models for agile adoption such as the technological frames 
model for agile adoption (Abdelnour-Nocera & Sharp, 2012), there is limited empirically grounded 
literature with focus on developer preferences and attitudes towards adoption of agile methodologies.

Studying agile software development project methodologies can also yield significant benefits 
from an organizational productivity and agility perspective. Given the significant investments and 
resources that organizations allocate for IT project management, several recent studies have explored 
issues methodology and IT project related issues such as continuation intention for IT project 
management (Korzaan & Brooks, 2015), and the impact of methodology fit on project performance 
(Xu & Yao, 2014). An emerging concept in this area is that of information systems agility. In order 
for organizations to adapt to ever changing business environment, the underlying information systems 
that form the core of an organization information resource also need to be agile (Chaudhary, Hyde, & 
Rodger, 2015). Recent research in this area explores mechanism for improving IS and organizational 
agility through the development of IT governance (Teoh & Cai, 2015; Teoh & Chen, 2013) mechanisms 
and new mechanism for executing change (Chaudhary et al., 2015). Understanding the factors that 
influence the adoption of agile methods, may also provide some insight into the factors that influence 
IS agility specifically and overall organizational agility in general.

From an industry and management perspective, agile development methods are attractive because 
of the belief that they will deliver software faster. Agile methods are aimed at reducing bureaucracy 
and focusing on the essentials of delivering value to stakeholders (Boehm & Turner, 2004). Given 
theoretical and industry interest in agile methods, our study explores factors that influence software 
developers’ preference for agile methods. It is our belief that, as more organizations adopt agile 
methods on increasing numbers of projects, it is important for management to understand practitioner 
preferences and take these into consideration to ensure smooth and effective adoption and diffusion 
strategies.

3. ReSeARCH MeTHODOLOGy

The Grounded Theory (GT) method aims to generate theory from data about a substantive area through 
a rigorous and consistent process (Glaser, 1992). Grounded Theory was chosen for several reasons. 
First, software development in organizations is inherently a team endeavor. GT, as a qualitative 
research method, allows study of social interactions and behavior of software developers engaged 
in practicing various software development strategies (Parry, 1998). Second, GT supports theory 
generation instead of testing or extending theories (Glaser & Strauss, 1967). Third, GT is particularly 
suited for researching subject areas, which are relatively new in terms of research maturity levels 
such as software developers’ preferences for software development methods. Finally, GT has received 
considerable attention and popularity in the fields of information systems in general, and software 
engineering in particular, over recent years, which illuminates the potential of GT as a research 
method for tackling research problems in the broader discipline (see Adolph, Hall, and Kruchten 
(2011; 2012), Birks, Fernandez, Levina, and Nasirin (2013), Hoda, Noble, and Marshall (2013), and 
van Waardenburg and van Vliet (2013)).

Figure 1 shows the key steps in the Grounded Theory approach employed in this study. We 
briefly describe each of the steps below.



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

15

We began by broadly defining the area of interest as studying software professionals and their 
perspectives on various software development methodologies. Consistent with Glaser (1978), we 
refrained from formulating a research problem or question in a precise manner at the outset. This 
step was purposeful to avoid corrupting the study with preconceived research problems and extant 
literature in the area. Another goal was to uncover perspectives and problems of the participants in 
an emergent manner rather than superimposing the problem definition. Both strategies used GT to 
to generate theory inductively.

We did not conduct an extensive literature review in the early stages of the study. The rationale 
was similar to that of avoiding pinning down a research question and clouding our minds with 
preconceived ideas and notions, as discussed above. Another reason for not conducting a formal 
literature review at the beginning of the study was our background as researchers. One of us had 
professional experience as a software developer and software development manager for over a decade. 
In those roles, most projects dealt with using traditional waterfall methods with some exposure and 
interest in agile methods in recent years. The other researchers did not have extensive background 
as software professionals yet our education and training prepared us with general information about 
various software development methodologies including the terminology and key steps in various 
methodologies. Based on shared experiences and prior knowledge, we were generally cognizant that a 
particularly good theory about how software developers perceive software development methodologies 
did not exist. Given this background, we made a conscious effort not to engage in further literature 
review related to software development methods and their use, until much later stages in the study. 
Most of the reading during the study was focused on applications of GT in areas different than the 
substantive area of research we were focusing on (O’Reilly, Paper, & Marx, 2012). Despite these 
recognized biases, we, as researchers, used our curiosity and interest to help drive interview questions, 
but tried to remain objective when it came to analysis and interpretation of the data.

Figure 1. Overview of Grounded Theory process steps adopted



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

16

During data collection, we sought participants with significant experience as software developers. 
Participants were from a wide variety of environments including large multi-national corporations 
to sole proprietorship consultants. All participants were working in the United States. They worked 
in California, Washington, Utah, South Dakota, Kansas and Missouri. We selected participants 
from a diversity of industries. Participants range from government employees to employees of large 
retail companies, some with start-up experience, and others with long standing defense industry 
backgrounds. Participants were also diverse in age from early 20s to 50s. But all participants have 
significant experience as practitioners in software development. Table 2 shows participant summary 
information. Also, given that the study aim was to uncover perspectives of software engineers’ toward 
using software development methodologies, we specifically excluded management and customer 
participant roles. Both management and customer perspectives are of interest and may be pursued in 
subsequent research, but do not relate to the current substantive area of research.

As part of the semi-structured interview questions we probed what the developer considered as a 
definition of agile. The answers ranged from a hodgepodge of industry buzzwords to very informed 
views. Through the interview the semi-structured questions provided clarity and direction to the 
developers to ensure that the data gathered focused on current themes of agile definitions from the 
literature.

In terms of data gathering medium, one interview was conducted face-to-face; all other interviews 
were conducted over the phone. All interviews except one were recorded and then transcribed into 
written format. The one exception was due to recording equipment failure. In that particular case the 
researcher made written notes within an hour of the interview. The transcribed documents formed the 
data repository for the research. Overall, data was collected through sixteen different interviews. The 
initial set of interviewees was chosen from one of the author’s social network. At the conclusion of 
each interview, part of the protocol was to ask if the person knew of any additional subjects that might 
fit the study criteria, which led to additional participants. Each interview was recorded digitally and 
then transcribed via a transcription service. Transcriptions were reviewed against the recordings and 
corrections were made based on the comparisons. To maintain confidentiality, identifying information 
was removed and replaced with generic placeholders. The result of data collection was 397 minutes 
of recorded conversations, which translated to 165 pages of transcribed text.

Data collection was accomplished through use of semi-structured interviews. While interviews 
were largely conversation-based, a few typical questions asked were:

• Can you tell me about your software development experiences to date?
• How do you build software now? What processes do you follow?
• How long have you done it this way? Has that changed over time?

Table 2. Participant summary information



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

17

• Do you associate the way you build software with any particular method? Why or why not?
• Did anything or anyone have a particular influence on your level of preference?

These questions formed the basis for the interviews, but as discussions progressed a wide range 
of topics were covered and additional follow-up questions were used to delve deeper into areas of 
interest. We employed the four stages of constant comparison (Glaser and Strauss, 1967), namely: (a) 
comparing incidents relevant to each category, (b) integrating categories and their characteristics or 
properties, (c) delimiting the theory, and (d) writing the theory to guide data analysis efforts. Through 
simultaneously gathering, coding and analyzing data, we aimed to uncover new conceptual problems 
or ideas that were either related or unrelated to the study’s initial conceptual notion. After the first 
few interviews, and subsequent category refinement, it became evident that there was a consistent 
preference for agile methods among developers. At the onset of data collection, based on our prior 
experience and background, it was generally expected that there would be distinct camps of software 
engineers who would prefer one methodology to another. However, emergence of the preference of 
agile methods theme informed our initial conceptualizations and shifted our investigation from why 
developers prefer certain software methodologies to why developer preference toward agile methods 
of software development is increasing. In subsequent interviews, questions such as the following 
were also typically included:

• Have you heard of agile software methods? How would you describe them?
• How do agile methods compare with your preferred method of developing software?
• Were there any specific experiences that made you lean one way or the other in regard to agile 

methods?
• What drives your level of preference for agile software methods?

As noted earlier, data analysis was conducted in tandem with data gathering through constant 
comparison and theoretical sampling. Data analysis resulted in two types of code, namely substantive 
codes and theoretical codes. Substantive codes are the categories of theory that surface from the 
data (Glaser, 2005). Theoretical codes organize, abstract and relate substantive codes (Glaser, 2005). 
Substantive codes result from open coding and selective coding, whereas theoretical codes result 
from theoretical coding.

Initially we engaged in open coding, evaluating relevant pieces of information in the written text, 
analyzing and tagging the text with descriptive codes. These codes represent the meaning and can 
often use a particularly vivid word from the dialog itself. These types of codes are often referred to 
as in vivo codes. We used ATLAS.ti to serve as a database for the transcribed content with codes and 
diagrams establishing a chain of evidence. The ATLAS.ti tool was used to manage the association 
of codes with sections of text from the interviews. This tool allowed for systematic organization and 
the ability to visually represent the relationship of open codes to later abstractions like selective and 
theoretical codes, and memos using network diagrams.

During the open coding phase, we remained open to emergent concepts staying close to the data 
while constructing short codes with an emphasis on preserving actions constantly comparing and 
moving quickly through the data. This process provided direction for the research performed in this 
study. For example, after each interview and infusion of new data, analysis was performed through 
each coding level. Our coding levels included open and selective coding resulting in substantive 
codes and categories. It also included theoretical coding resulting in concepts and generating new 
theoretical insights.

The end of open coding was marked by the emergence of the core category (Glaser, 1992). As 
Glaser (1978) states, the core category explains the majority of variation within the data. Several 
criteria were used in selecting the core category, which included: (a) it is central and related to several 
other categories and their characteristics, (b) recurrent theme in the data, (c) theoretically saturates 



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

18

after other categories, and (d) relates conceptually and meaningfully with other categories. In this 
study, as described in the findings, we found “preference rationalization for agile methods” as the 
core category.

Upon establishing the core category, data collection and analysis continued with selective coding 
as the focus. As stated by Glaser and Holton (2004), the objective is to focus on codes that are relevant 
to the core category resulting in a parsimonious theory. The core category helped guide further data 
collection, analysis and theoretical sampling. The goal was to sufficiently elaborate the core category, 
its properties and theoretical connections to other categories. This process continued until we could find 
no additional data that would further enhance the properties of the category (theoretical saturation).

Throughout the process of data analysis, memoing was an integral component. It allowed us 
to elaborate on ideas about the codes and their relationships as they emerged from the data. Memo 
writing focused on free-flowing description and theoretical analysis of the codes. Once theoretical 
saturation was reached, we began sorting memos and writing content. During the process, we used 
theoretical coding as a mechanism to abstract the general notion captured in the core variable and its 
relationship to the other concepts. In this case, we found that “rationalization” was the key theoretical 
code, implying a weighing and balancing act that software developers engage while shaping their 
preference for agile methods.

4. FINDINGS

This section describes the key results of our study and the emergent model for preference rationalization 
in choosing between agile methods and traditional methods of software development. The findings 
resulted from an iterative process of collecting, coding and analyzing participant data to uncover 
theoretical underpinnings of the phenomenon. Figure 2 presents a visual summary of the findings. 
As can be seen, preference rationalization for agile methods emerged as the core category with 
self-efficacy, affective response, interpersonal response, personality contingencies, and external 
contingencies as underlying categories, each relying on several concepts emergent from the raw data.

4.1. Self-efficacy
Self-efficacy as a category emerged through constant comparison and theoretical sampling. Upon 
reaching theoretical saturation, self-efficacy as a category captured the idea that participants feel 
more empowered and effective when they used agile methods. They described being productive and 
efficient, producing higher quality software, and that agile fit the way software is really developed. The 
data suggests that software developers broadly perceive that agile methods enhance their self-efficacy. 
Various dimensions of self-efficacy in relation to agile methods were evident from the analysis, and 
were consistent across participants. These include – (a) effectiveness, (b) efficiency, (c) quality, and 
(d) fitness with reality. Each of these dimensions is elaborated below.

4.1.1. Effectiveness
Effectiveness emerged as a consistently strongly grounded concept. Software developers perceive agile 
methods to be more effective in comparison to traditional methods. This notion became clear after 
few early interviews, which was then explored further iteratively through additional data collection, 
coding, and analysis. Numerous participants mentioned that “waterfall never worked.” Developers 
expressed that agile helped them get the project done and provided a focus on steps that demonstrated 
value to the customer throughout the project lifecycle starting very early compared to other methods. 
Developers that appreciated agile felt that the traditional software development methods were less 
effective and believed that agile was more effective. A typical comment related the effectiveness of 
agile methods was “I just found that things like agile development seemed to produce better results” 
(P4) or “traditional waterfall … never worked (P4). Many developers noted that agile implemented 



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

19

Figure 2. Emergence of preference rationalization core category



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

20

industry best practices and that it was the best way to develop software, as can be seen in one of the 
comments:

I tried experiment[ing] with different things and said, you know, what works, what doesn’t, what makes 
me more effective, I just found that things like agile development seemed to produce better results. (P3)

One of the appealing factors of agile is that projects are perceived to be more effective as reflected 
by higher success rates. A participant mentioned “I have seen comparatively with Waterfall and agile, 
the success rate is really high in agile” (P9) Other participants mentioned that agile is more productive 
due to agile methods’ focus on the actual software over documents and the related notion of enhanced 
inter-personal communication from face-to-face conversations rather than communication mediated 
through documentation. Another self-efficacy contributor was the perception that agile allowed the 
project to be broken into small manageable chunks of work. This allowed the developer to focus on 
a specific task contributing to their effectiveness. One participant said that after experimenting with 
a number of approaches he felt that agile made him the most effective.

One participant said “I think agile is how software should be developed” (P8). This is an extremely 
strong statement, practically a moral imperative. This developer felt so strongly about the effectiveness 
of agile that he believed it should be the normative approach for all software development. Clearly 
there is a sense among developers that have experience with both Waterfall and agile that agile is the 
more effective method of software development. This sense of self-efficacy raised the preference of 
these developers for agile methods emphatically.

4.1.2. Efficiency
The concept of efficiency resonated with a number of participants. Participants pointed out that in 
traditional/waterfall approaches it was easy for developers to become disengaged and waste time, 
especially during documentation phases where there was a specific time allotted and then customers 
had to review, which lead to developers being unproductive. In contrast, their experience in agile 
methods was that the granular task sizes, daily discussions about progress, and focus on producing 
working code made much better use of their time and allowed them to produce more features per 
time period than did the waterfall approach. As one person said succinctly, “Agile is fast” (P16).

A common detractor from waterfall methods and, in turn, a positive factor influencing preference 
for agile methods is the disconnectedness caused by excessive disengaged documentation suggesting 
that documentation as done in waterfall tends to be wasteful. A number of participants noted that 
although they felt like some form of documentation was beneficial, in their experience, documentation 
in the waterfall process was too heavy, detailed and quickly became out of sync with the real code 
in the project. Since the documentation was out of sync with the actual code for the project it lost its 
utility and value. Thus, documentation as practiced in traditional waterfall was perceived as inefficient. 
This comment is telling:

We either have to spend time updating the spec now like over and over and over again or else what 
would be common to me is that the specs then just doesn’t [sic] get updated and now it’s not accurate, 
so it’s not a useful document anymore. Both of those things seem to me to take up a lot of time. (P13)

This same participant also mentioned “I usually feel like our documentation is a lot bigger, wordier 
than it needs to be. I think some of the times when it goes into real specific detail [it] is usually not 
helping” (P13). Capturing a similar sentiment about the inefficiency of waterfall methods but not 
specifically related to documentation, another participant says:



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

21

When I used to be developing as part of waterfall cycle … there were like two days a week where I 
would just work fifteen hours and write the whole code and then forget about it, three days I would 
be just testing it, taking it easy, you know. (P16)

Another aspect of efficiency that surfaced was an increased ability to get up to speed on a 
project and understand both the big picture and the granular details. Evidently, this is a result of 
two components of agile method practices. Daily stand-up meetings are a common feature of agile 
practices. Each day members of the team get together and discuss what they accomplished since the 
previous meeting, what they intend to accomplish before the next meeting, and any impediments they 
are facing (see Schwaber, 2004). New members to a project found these daily stand-up meetings an 
excellent venue to get the big picture and understand the range of activities occurring on the project. 
The sense was that in waterfall approaches you would have to read the entire documentation to grasp 
the scope of the project and read through myriads of status reports to determine the current state of 
affairs. But through agile methods’ stand-up meetings new team members quickly got up to speed on 
the project by listening to each team member during daily meetings. A common practice in eXtreme 
Programming (XP), a popular agile method, is pair programming. This is where two team members 
work at one computer and program together. When a new member joins a project and is paired with a 
more experienced team member it provides a natural context to learn about the details of the current 
application area. A participant noted that through pair programming it was easy to ask questions 
and since the two enjoyed a common context there was no need to provide background information, 
questions and answers fit into their present experience making the learning process both efficient 
and socially straightforward.

An important aspect of efficiency that works in favor of agile methods is the involvement of the 
customer. It bypasses the need to constantly search through requirements documents to get clarification. 
Instead one can go directly to the customer and get the issue resolved. As one participant said:

The ability as you get deep into creating the product, and hit a roadblock you know you don’t have to 
continue revisiting the requirements or revisiting the deliverable that you’re working on and saying, 
“Hey, look what do you think?” And to be one to want to invest three days of work and effort to work 
around these small requirements here or can we just go back and check with the customer and see if 
it’s really worth it? In the past I guess you spent a lot more time with the Waterfall with a very fixed 
signed-off requirement saying it shall do this. (P12)

Agile methods in general encourage periodic team retrospection (Beck et al., 2001). This allows 
teams to fine tune their processes and improve efficiency. This was communicated by a developer in 
her statement, “we’ve analyzed it and these things don’t really help us and we don’t have to do them; 
so that will give us more time to work on the actual functionality” (P13). This self-optimization 
process increases efficiency over time and accelerates the delivery of software products.

Another efficiency related consideration that became evident is that agile methods suggest 
working on the highest value features first. A participant mentioned that in his experience with 
waterfall approaches they might spend too much time on small details or unimportant features, thus 
wasting valuable resources and time. He says:

It was a long time before delivering any kind of value to the customer. It allowed the development 
teams to spend … large amounts of time developing portions of software that weren’t necessarily as 
critical to the customer. Especially sometimes the characteristics of some of the best elements they 
wanted to kind of make them polished them [sic] or pretty, but many times a large portion of that 
product used aren’t needed, they spent their effort on a product that really wasn’t required. (P10)



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

22

4.1.3. Quality
Improvements to the end product were a frequent comment from developers. They attributed much 
of the improvement to quality to the use of unit testing in agile methods. Unit testing helped them 
focus on the task at hand, which as mentioned previously was usually small in scope due to the 
short iteration cycle. They were able to design and write their code in such a way as to be adaptable 
and flexible, resilient to change. In addition to the code itself were the automated unit tests, which 
provided a safety net that gave them confidence to make changes without negatively affecting the 
intended functionality. The automated unit test framework then fostered a willingness to adapt to 
changing requirements and improve the structure of the code. The net result was higher quality code 
that better reflects the user’s needs as illustrated in this quote:

The second thing would be on the issue of quality. [I] mentioned unit testing, test and development, I 
think that those things have huge dividends for me, especially at being able to move very rapidly and 
adapt to changes very quickly, and that’s the whole idea behind unit testing, obviously, is that you 
have a safety net and your design has been designed with change in mind. But actually being forced 
to go through that exercise I think helps get you there and it really does pay for itself when you get 
later on in the project and changes don’t seem as intimidating as they would have otherwise seemed. 
So quality is benefited as a result for sure. (P4)

One negative aspect also emerged from the data in relation to quality and agile methods, although 
it was not consistently supported in subsequent data collection and analysis. A participant thought that 
the emphasis on short cycles and quicker delivery of features sometimes resulted in reduced quality 
since developers may duplicate code rather than research to find where it may have been implemented 
already or find a similar piece of code and generalize it to meet both needs. The following participant 
comment is informative:

Well what you’ve just done is you’ve added to the code base, you’ve probably implemented it in a way 
that’s different than anyone else who’s implemented it, and you really didn’t consult anybody because 
you’re trying to get done very quickly. The way I see it playing out on the actual code base is it just 
mushrooms the amount of code that’s sitting out there and creates inconsistency in the product. (P5)

This isn’t an inherent problem of the agile method since the manifesto explicitly focuses on 
“continuous attention to technical excellence and good design enhances agility” (Beck et al., 2001) 
but could be a perceived issue with agile methods’ emphasis on early delivery of value to customers.

4.1.4. Fitness with Reality
Fitness with reality is a strong concept that emerges from discussions with participants. In their 
experience, the waterfall approach just doesn’t fit with the way things work in the real world of software 
development. More often than not change happens and it happens even when the specification has 
been signed off by the users as complete and accurate. When developers work on features as specified 
they frequently encounter change. The specification was incorrect or the user has altered their desire. 
Regardless, the feature needs to be modified. With the waterfall or traditional approaches, not only does 
the code and tests that have been created need to be updated so does the associated documentation. 
Because this is such a common occurrence it becomes discouraging to those who have followed the 
waterfall method. Here’s how one participant summarized this experience:

My experience was with failures at waterfall and I found that in my early projects there, we’d be 
working with so-called signed-off specs but, you know, the spec had to end up being rewritten at 
least once if not a number of times, both after it was supposedly signed off. So just – it never worked, 



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

23

and getting away from the idea of hey, this is done code against it and just sort of realizing that it’s 
gonna be an ongoing, evolving process I think made it a bit less frustrating. (P4)

Or as another participant put it:

Something that I kind of think about a lot I would say where we spend a lot of time – it’s like usually 
what happens is the PM [Project Manager] comes to look in and now I have [the] spec it’s ready, let’s 
start working on the feature now and then as soon as you start making the feature then we potentially 
kind of go through each little piece of functionality. We kind of go and say, “Oh now that I’ve charged 
work on it I think maybe we should do this other approach, maybe that would work better.” We discuss 
it and we say, “Okay, yeah, we’re actually going to do it different from the spec,” and then we either 
have to spend time updating the spec now like over and over and over again or else what would be 
common to me is that the specs then just doesn’t get updated and now it’s not accurate, so it’s not a 
useful document anymore. Both of those things seem to me to take up a lot of time. (P13)

A number of participants expressed that agile methods just felt right. Many said they had been 
doing it without knowing that is what it is called. It naturally fit their perception of the best way of 
building software, the best way to deal with the reality of quick deliver, quick feedback, changing 
priorities, and changing requirements. As one participant described his feelings when practicing agile, 
“I feel right in my own self” (P7). Another participant said:

So I’ve been using agile without knowing that it was actually agile at a personal level and it just kind 
of you know, carried in towards my educational and later on, … into my professional life and it [sic] 
just kind of like … the way I was doing things. (P16)

Participants mentioned the complexity of software, the difficulty in nailing requirements down, 
the fact that sometimes you don’t know how to solve the problem until you start working on it, which 
naturally leads to a highly iterative approach consistent with agile methods. They felt that agile is 
more consistent with the reality of how software is built. Some felt like agile was how they dealt with 
life, not just software, so it was a natural extension of how they deal with complexity and ambiguity. 
When discussing the agile approach to software development one participant said, “To me, on a 
personal basis, that’s how I look at life” (P16).

4.2. Affective Response
Affective response emerged as an abstraction of the recurrent notion that participants experienced 
a number of emotional benefits while practicing agile software development in comparison to 
traditional waterfall methods. They talked about being more engaged, having a heightened sense of 
accomplishment and a sense of satisfaction. They were more confident and felt they had a better life 
balance because of agile methods. Each of these dimensions is elaborated below.

4.2.1. Engagement
As we have seen in some of the previous quotes, participants frequently felt frustrated with 
Waterfall when change occurs and rework is required, especially when the rework involved updating 
documentation. For example, here is what one developer said, “My eyes glazed over now because 
this is spec time and it’s boring and later on the fun stuff happens” (P4). In contrast, participants 
found agile highly engaging, even fun. One reason for this heightened engagement with agile is that, 
as more than one participant said, it focuses on coding and coding is fun. That is, people become 
software developers to create software. As one participant said, “I think the happiness of the teams are 
higher, because in a classic waterfall thing the only time the teams are really happy is in the middle 
when they’re developing code” (P8). He continues, “Because software engineers love to create real 



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

24

things. Like all the morale events in the world, all the bonuses, all that kind of stuff, like let them 
create real things and that’s going to do the most to improve their morale” (P8).

Not only are the developers more engaged with agile it turns out that management is also more 
engaged. Note what one developer described about management on an agile project:

They’ll be … more involved because they are to meet – they are to schedule a meeting on a day-to-day 
basis to find out what’s going on and all that stuff. So yeah, overall, yeah they have to be involved 
to get good facts about what’s going on at the early stages, I think, unlike waterfall where things get 
lost for months. So yeah I think they’ve been involved. (P14)

Others described the project manager (PM) as being much more involved and collaborative. 
On one team prior to moving to agile, the developer said, the PM had a tendency to hand off the 
specification and then disengage only checking in to get progress reports. This was frustrating because 
sometimes there were problems with the spec but it was totally up to the programmer to figure out 
inconsistencies or to fill in missing information. This all changed when they moved to agile. Now 
there is much more collaboration and therefore the PM is involved with helping solve the problems 
resulting in higher engagement; they are solving problems together and the PM takes an interest in 
each issue.

Another area of increased engagement is with the customer. In a Waterfall approach, customers 
are typically engaged in the early requirements gathering stage and then again in the User Acceptance 
Testing phase. In between, there may be months if not years where the customer is distanced while 
the developers do their thing. Numerous difficulties arise. For instance, it is difficult for the customer 
to visualize the actual software during the requirements phase. As one participant said, “If you’re 
not a good visualizer – as business owner, if you don’t have good visualization, then the project is 
in trouble in waterfall” (P9). The customers are out of the loop during the design, development and 
system testing phases increasing their anxiety over the outcome of the project. He said:

I personally prefer agile because of the visualization perspective in the sense like the customers can 
see what they’re going to get in a shorter period of time rather than just waiting and waiting until 
they get to – until they get to Year 3, they cannot see the screens or the product that they wanted to 
see for so long. (P9)

There are a number of dimensions where engagement is increased with agile; from individual 
programmer to project manager to customer, each is more engaged. Increased engagement is a driver 
for preference of agile methods by developers.

4.2.2. Accomplishment
Developers described a sense of accomplishment when employing agile methods for software 
development. Many participants mentioned that they like that with agile their work is broken down 
into small tasks and the tasks can be implemented fairly quickly making progress visible. This provides 
a sense of accomplishment. Note how one participant described this:

I think part of the fun factor is just, everybody likes a sense of accomplishment and we are an immediate 
gratification type of society if you’re not I’d question whether or not you’re human. I think you get 
that more of an immediate gratification and, I’ve coded something, tested it, I’ve delivered it and I’ve 
gotten some feedback on it. So I’ve gotten some feedback and I’ve got the feedback loop established 
and then I go and I do the next iteration and it’s that same repeated pattern, it’s that same repeated 
instant gratification pattern. And that’s one thing I hear from … a pseudo exit interview if you will 



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

25

and a lot of it is just a sense of accomplishment. They feel as if they’re walking out of this door, they’ve 
written some software that’s actually gonna be used by somebody. (P15)

Another participant shared similar sentiments:

What I like about it is what you’re doing either with Kanban or with the Scrum part is you’re having 
a succinct block of work, like a small block of work that is well defined and it has that end goal. (P5)

Accomplishment is represented by two dimensions. First, it derives from a small task size that 
provides a well-defined unit of work that can be completed and progress noted. Second, short cycles 
regularly deliver working software to customers. The regular delivery of software to customers 
provides a sense of accomplishment.

4.2.3. Confidence
Confidence emerged as a strong benefit of employing agile methods. Many different participants 
highlighted their feeling of confidence resulting from agile. This was due to two different factors. 
The first is the confidence to make changes. Change may come in two forms, technical improvement 
and customer-driven. Confidence to make changes is based on automated unit testing. Without tests, 
participants spoke of fear and made statements like:

When you had to fix a bug or make changes you absolutely did not do anything but fix only the exact 
little spot, small as possible and make that change. So even if you notice that oh, there’s several lines 
of code here that looks like it’s repeated over there, maybe I should put that into a method to clean 
it up. Nope, can’t do that. Because of the fear that you’re gonna break something and that you won’t 
know you broke it. (P7)

Contrast that sense of fear with the confidence to change that grows from knowing that you have 
a comprehensive set of automated unit tests as expressed by this participant:

Unit testing, test and development, I think that those things have huge dividends for me, especially at 
being able to move very rapidly and adapt to changes very quickly, and that’s the whole idea behind 
unit testing, obviously, is that you have a safety net and your design has been designed with change 
in mind. But actually being forced to go through that exercise I think helps get you there and it really 
does pay for itself when you get later on in the project and changes don’t seem as intimidating as 
they would have otherwise seemed. (P4)

The terminology used by participants in this area is illuminating. They talk of “fear” and “safety 
nets” and “confidence.” There is a true sense of the emotional nature of software development and 
how there is emotional satisfaction when using agile methods.

In addition to the confidence that comes from the safety net of unit tests there is also a sense of 
confidence that comes from the reduced risk of short cycles, early delivery and quick user feedback. 
As one participant said:

Because in IT especially you know, I mean look at the problems that people have faced with waterfalls. 
Like you know, you don’t find until the whole thing has really gone too far. Like you’re hitting – if you 
lose, you’re going to lose big time. So the risk is very high. In agile, that’s not there. You’re just like 
you know, doing repeated evaluations of where you are. And to me you know, on a personal basis, 
that’s how I look at life right? (P16)



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

26

Another participant related his confidence to using agile-engaged stakeholders early and allowing 
them to visualize the system, to make the intangible tangible, and to provide feedback and see progress 
thus reducing risk.

So agile methods increase confidence of software developers and embolden them to make the 
necessary technical and feature changes while knowing that overall project risk is being reduced 
by early and frequent delivery giving customers the opportunity to provide quick feedback, which 
facilitates value in each cycle.

4.2.4. Balance
“Waterfall, in my experience, towards the end of the release, it tends to be hell” (P10). So says 
one participant who goes on to say “People’s work-life balance suffers immensely so I think that’s 
another sort of discrepancy. People don’t talk about that a lot but it’s an important distinction between 
Waterfall and Agile” (P10). This sentiment is well known among those that have experienced a difficult 
project using the Waterfall method. The final phase is often known as the “death march.” This leads 
to dissatisfaction and disruption in the personal lives of software developers. Agile recommends an 
indefinitely sustainable pace (Beck et al., 2001). Participants noted the difference between work-life 
balance when using agile methods compared to traditional approaches finding that agile provides a 
better balance.

Another balance issue is the hero mentality. Often, on Waterfall projects, schedules slip and 
toward the end of a milestone there is a need for pent up work to be finished quickly. This develops 
the need for a coding hero that can get all these things done quickly in order to salvage the schedule. 
As one participant put it a project “relies on the individual … on heroes that you know [are] very 
smart people. There are a few smart people that a lot of people depend on and then there’s a lot of 
like helper people” (P7). This leads to pressure and stress on those “heroes” (and to some degree a 
sense of uselessness on the “helper people”).

4.3. Interpersonal Response using Agile Methods
The final category that emerged relates to interpersonal response factors. Communication, feedback 
and social influences arise in relation to interpersonal factors.

4.3.1. Communication
Improved communication was a widely mentioned factor of preference for agile methods. Participants 
felt that collaboration between team members, management and customers increased due to the use 
of agile methods. For instance, in a Waterfall method there may be long periods where there is little 
communication and accountability. As one participant said, “my observation is that in a lot of cases 
a developer won’t think twice about wasting two, three days struggling through an issue that could 
have been resolved in ten minutes of conversation” (P4). But with a daily stand-up meeting developers 
are accountable for daily progress and are more likely to resolve issues rather than waste time. The 
same participant goes on to say:

Whether it’s pride or laziness or just stubbornness, they [developers] don’t get out there and ask the 
people the questions. And having that standup and being called out every day forces that person to 
communicate when they otherwise wouldn’t volunteer that information. I think that’s very helpful in 
overcoming that dependency. (P4)

This is a very similar line of thinking that another developer mentioned, “when we do our daily 
standup we tell – we discuss our issues. It gets you going rather than you get distracted on some 
other path you know” (P14)?



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

27

One participant mentioned the increased collaboration that their team is experiencing because 
of co-location. They have a team-room where the project team sits together and this provides an 
incubator effect for innovative solutions. In his own words:

We actually now have physical surroundings of support and collaboration in the form of [a] team 
room, where everybody is involved both engineering and PMs and management are all in a combined 
team room. We get a lot of cross-pollination there, which is good. (P12)

4.3.2. Feedback
Another dimension of the interpersonal category is feedback. Participants mentioned that they really 
liked the short cycles and quick feedback that agile affords. We heard from one participant earlier 
that the shorter delivery cycles made the project more tangible for customers and this allows them 
to see the software so not only is feedback more frequent and more timely, it is also more concrete 
and relevant. Feedback may not always be positive but it is helpful. Here’s how one participant put it, 
“Even if the customer says that they don’t like what we’re doing, I’d much rather hear that early rather 
than later” (P12). The short cycles providing quick feedback contributes to the instant gratification 
phenomena that were mentioned previously. “I think you get that more of an immediate gratification 
and, I’ve coded something, tested it, I’ve delivered it and I’ve gotten some feedback on it” (P15).

As another developer said:

I think the big downside people too with Waterfall nowadays is having these huge long release cycles 
where you’re doing this huge feature and you don’t really review it or have a customer review until 
it’s already had a ton of hours put into it. Where with Agile people hope to get it reviewed faster even 
if it’s just a prototype that’s being reviewed and then they can adapt and change direction a lot more 
easily early on than if they wait until later. (P13)

One personal benefit was mentioned related to shorter feedback cycles. A participant pointed 
out that as a developer experiencing a shorter time period between creating a defect, identifying it 
and fixing accelerates the learning process. As he said:

I see that the teams are happier and I think the teams have an opportunity to get better faster. I’ll 
explain it like this by contrasting. In the past you know you would a bunch of development and then 
you would have this stabilization phase. And during the stabilization phase we’re just improving the 
quality of the product by fixing bugs, right? … The real key thing is that when you’re looking at the bug 
and you’re fixing it, the point of the discovery and the fixing point is so far away from the point when 
it got injected into the product in the first place, it could be months of difference. So the opportunity 
for you to look at this and say, “How can I learn so that I do not enter these kinds of bugs again,” 
goes way down. So then it comes around to the next development cycle, it’s long forgotten all the 
bugs that they injected, but in an iterative cycle where within two weeks you’re introducing product 
and you’re fixing all the bugs in that little bit of product. Like you have a very short cycle where you 
are tied together the injection point and the discovery point of the bug are very close together and 
you can actually learn and then you do it all over again the next two weeks. (P8)

4.3.3. Social Influence
Another interpersonal factor that emerged as positively influencing people’s preference for agile was 
positive social impacts. These came in the form of colleagues, managers, blogs, books, and training. 
When these forms of social influence favored agile it had a positive impact on the preference of the 
participants. As one developer said:



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

28

The social pressure of well this is what everyone is moving too and it’s kind of becoming a new 
standard, so we’re going to feel like we’re behind if we’re doing an old method, everyone else is in 
the name. (P13)

Another developer, referring to meetings on agile says, “I’d bet some of my opinions have 
been picked up from my peers in those meetings” (P11). And yet another, speaking of a respected 
colleague’s positive influence on his attitude toward agile said:

I have a world of respect for Shaun on a lot of levels, and the fact that he was that strong a proponent 
of it, yeah, that does go into my good formula, absolutely. (P1)

4.4. external Contingencies
The data also revealed two contingent categories, external contingencies being one of them. The 
concepts of management resistance and customer resistance together shaped to form this category.

4.4.1. Management Resistance
A number of participants’ discussed the influence that management has on their desire to use agile 
methods. One particular participant was aware of management resistance. He perceived that his 
management preferred Waterfall because it allowed them to some degree to distance themselves from 
the implementation details allowing them to focus on things like schedules and specifications. He said:

I think the second source of opposition was kind of on the program manager’s side, you know, the 
non-coder side. I think they were just so used to kind of being the ones who – you know, we sit down, 
we figure out a spec, we all go through months of talking about it and we sign off and then you guys 
just go work on it, and it really kinda changed the way that they interacted … They used to really 
distance themselves from the design and implementation problems. (P4)

Another participant said that management liked Waterfall because of the ability to track project 
progress against milestones. When the participant was asked if he preferred agile he initially said yes. 
But when the question was modified to say that management had a slight preference for Waterfall 
he immediately changed his answer and said he would defer to whatever approach management 
preferred. This indicates the impact that management resistance has on some developers’ preference.

Yet another participant was also heavily influenced by management. He had never participated 
in an agile project because management chose to use Waterfall. He had not done any reading on 
agile or discussed it with any colleagues because he had chosen to follow management’s lead away 
from agile. Consequently, management has inhibited his interest and desire to pursue agile software 
development methods.

The data tells us that management resistance is real and has the capability of inhibiting developer 
preference for agile methods.

4.4.2. Customer Resistance
Some developers were particularly sensitive to customer-stated preference in terms of development 
approach. Two of the participants worked in the defense industry and felt that there was a bias from 
their customers toward the waterfall software development approach. This customer bias significantly 
influenced these developers’ preference by inhibiting their desire to use agile. Their perception of 
the customer’s preference influenced their own preference even when they felt that agile might be 
the better development methodology.

In some cases developers said that customers mandated that Waterfall be used which superseded 
the developers’ personal preference of agile:



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

29

Not by my choice, certainly not. It was by mandate. It was because that’s what the customer … well, my 
impression at the time is that’s what the customer expected because the state and local governments, 
they were comfortable with that [Waterfall]. (P1)

Another participant said that the magnitude of the project in terms of features and cost drive 
some customers to prefer Waterfall and that impacts his own decisions about agile versus Waterfall 
preference:

It all depends on the size of the – yeah, key things that were deciding agile versus waterfall is the 
way I see it is the size of the project from the financial perspective and also the duration or time to 
implement the project and also the availability of the business owners … all these are constraints 
for a project manager or for any organization to decide which one [agile or Waterfall] is the better 
way to go. (P9)

4.5. Personality Contingences
The other type of contingent category that was discovered from the data is that personality 
contingencies. Concepts of change adversity and work style together shaped to form this category.

4.5.1. Change Adversity
Change adversity is an inhibitory agent that emerged from discussions with developers. A quote from 
one participant reads like this, “of course I was skeptical because it [agile] is new and different” (P3). 
This particular participant did not prefer agile even though he had worked on a project using agile 
methods. His comment assumes that a person would be skeptical. His tone in the conversation indicated 
that he was change adverse and that he preferred to stick with what he had experience with, which 
was the Waterfall methodology. Other participants mentioned that they observed co-workers who 
were change adverse and therefore did not appreciate agile methods. The developers’ perception was 
that change adverse people did not want to put forth the effort to learn a new methodology because 
they were comfortable with their existing methods.

One participant put it like this:

It’s the idea that in a lot of cases you’re talking about people who have kind of become entrenched in 
their career and they’re not necessarily interested in changing or taking on new things. They’re – not 
to badmouth them, but we’re not talking here about people who are really interested in continuing to 
grow their skills, it’s more like trying to just sort of get by with what you already know. (P4)

In addition, he also said:

I think that frankly on the side of just opposition to the agile approach and kind of sticking with the 
status quo, I think the main opposition just came from reluctance to change ‘cause, you know, we 
don’t really like change. (P4)

Another developer said “I’m probably a creature of habit so I’d probably start with Waterfall 
‘cause it’s what I know” (P6). Other participants said they felt that some developers just preferred 
the status quo because they had a fear of learning or perhaps appearing inadequate or just wanted to 
finish off their career doing what they had always done. One participant put it this way:



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

30

My experience was that, with a few exceptions, a lot of the people who had been in that job or in that 
career field for a while just didn’t share that same desire to keep growing their skills; they had kind 
of adopted a certain level of comfort with, okay, this is how we do it.

Clearly, there is a segment of software developers who are content with traditional methods like 
Waterfall and because of their adversity to change are not as interested in adopting something new 
like agile. Thus, change adversity has a moderating effect in shaping software developers’ preference 
for agile.

4.5.2. Work Style
Another dimension to personality factors that may impede preference for agile methods is work style. 
One participant mentioned that he does not like the increased communication, co-location, and daily 
meetings associated with agile. He preferred to work alone with written requirements. His preferred 
work style just didn’t fit with agile’s emphasis on face-to-face communication.

I’m one of those [people] where tell me what to do and then let me get at it and I know what I’m 
doing so let me do it. (P6)

This participant also didn’t like test driven development, which he considered part of an agile 
process. He did not like starting off with failure and then trying to make the code work. This approach 
was counter to his preferred work style. He states, “I definitely didn’t like that one, where you gotta 
design it to fail. I’m like no, I don’t design things to fail, that is just wrong to me” (P6).

A developer’s preferred work style may conflict with agile principles, which then leads to 
diminished preference for agile.

4.6. Preference Rationalization for Agile Methods
Analysis of the data revealed a recurrent theme emerging from the data that suggests that developers 
rationalize their preference for agile by weighing the various categories discussed to arrive at their 
preference value for agile software development methods.

Analysis of self-efficacy in relation to other categories made it clear that self-efficacy was a key 
factor in shaping preference of developers toward agile methods. Participants clearly felt better able to 
develop software following an agile methodology over a traditional waterfall approach. They described 
being more productive, focusing on work that mattered to customers. They were more efficient, 
performing less rework due to changing requirements and priorities; they focused on smaller tasks 
and better utilized their time. The quality of their work improved due to quick feedback and improved 
communication with customers and quicker assimilation into a new project. Developers also felt that 
agile just fit better with the reality of software development and for that matter the way life is lived.

One participant noted a negative experience in terms of self-efficacy and it is attributable to the 
way that his organization adopted agile. It was only for a single project, and agile was only partially 
and shallowly implemented. The group did regular stand-up meetings and used shorter cycles but their 
requirements were gathered by someone else with no developer-customer interaction. The requirements 
were entered into a system and then retrieved by the developer. The developer implemented the 
requirements and then passed the code on to testers and only dealt with bug reports. It became clear 
during the interview that the approach was a form of Scrum but the actual practice was still waterfall-
based in most respects. Interestingly enough this resulted in a negative perception toward agile for 
this participant. It seems like a surface level or partial adoption impinged upon preference for agile. 
This observation led to further investigating the conditions under which the participants perceive 
self-efficacy using agile methods. It became clearly evident from the data that the systematic use of 
agile methods in a holistic manner as opposed to a partial-use or a splintered view in implementing 



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

31

agile principles is key in developers perceiving increased self-efficacy. Thus the issue of holistic 
adoption of agile methods is to be recognized as a concept that conditions perceived self-efficacy. 
Also, this type of partial adoption experience is interesting in itself as a fruitful avenue for further 
exploration and research in a separate study.

Affective response was also noted as a clear driving force in shaping developers’ preferences 
in favor of agile methods. The way developers talked about software development shows that it is 
an emotional endeavor not just a cognitive effort. Based on the participant comments, it can be said 
that agile methods bring many emotional or affective benefits to software developers. They enjoy 
confidence, balance, accomplishment and engagement. This is a refreshing change from the “hell” 
of a death march and the “fear” of change or the hero mentality that participants associated with 
Waterfall based methods.

Interpersonal response category, when viewed alongside other categories, was also noted to be 
a driver in increasing developers’ preference toward agile methods. In brief, developers believed 
that communication, short feedback cycles and social influence were enhanced by agile methods 
increasing developer preference for agile.

In contrast to the previously mentioned drivers of preference, we noted that developers’ preferences 
are also shaped by contingent factors, although negatively, thus leading to a tension in preferring 
one method to another. The data showed that at least two categories of personality contingencies to 
agile preference emerged – one external and the other personality based. On the external side, both 
management and customers were found to exert influence on developers’ preference We found that 
developers, in most cases, showed deference to management direction and if the management steered 
away from agile so did the developers. Similarly, we found that some developers chose to defer to 
either perceived or explicit customer preference in terms of software development method preference. 
Essentially, if the management or customers make it known that they want Waterfall over agile the 
developers are apt to listen and exhibit diminished preference for agile.

We also found that developer personality also may moderate their preference for agile. Agile 
emphasizes a social environment to guide development, which may be contrary to some developers’ 
desires. There are also specific work habits of developers that may not harmonize with certain agile 
practices. When this is the case, these personality characteristics may temper a developer’s preference 
for agile. In comparison to the preference drivers noted earlier, these external and personality 
contingencies were found to moderate preference for agile methods and thus may be viewed as a 
preference inhibitor.

Essentially, we found that drivers for preference come in the form of self-efficacy, affective 
response and interpersonal response while contingencies are expressed through external factors and 
personality. As one participant put it:

We went through different models. Then when we created different models, that’s when I came to an 
understanding of how this agile works, how it has better helped these projects [be] successful rather 
than waterfall and what [it] is that we are gaining. (P9)

Another developer illustrates the preference rationalization process when he said:

The Waterfall approach just involves ultimately writing and lots of documentation and while that 
appeared to be productive work at the time, but usually the degree of detail that you ended up going 
into wasn’t necessarily needed by the customer … you really kind of miss the bigger picture sometimes. 
The avoiding documentation and just delivering functionality earlier has always been much more 
successful. (P12)



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

32

Developers weigh their experiences (and those they have heard of) using an internal calculus 
based on previously described categories to arrive at a value judgment with regard to agile methods. 
Individuals use varying inputs both internal (personal experience) and external (management and 
customers). These significant voices speak uniquely to each developer but the mix influences their 
preference and results in either a positive disposition or in a few cases a negative stance toward agile 
methods. It is surprising that for many developers it only takes a few vivid experiences to guide them 
into a particular feeling about agile.

Not all developers arrive at the same conclusion as we have seen due to external factors imposed 
by management and customers or by work style or personality issues. The uniqueness of experience 
is mirrored by the uniqueness of responses to common experiences. One of the semi-structured 
interview questions was, “how would you respond if your manager said they are no longer going to 
use agile?” Those heavily influenced by external factors capitulated and said they would follow their 
management’s direction (in this case away from agile). Those developers giving more weight to internal 
factors, when faced with a prohibition by management went so far to say they would find a different 
company to work for. This illustrates the diversity of the individual calculus applied by developers. 
But those of whom positive experiences with self-efficacy, affective response, and interpersonal 
response outweigh the inhibitors, there surfaces an inclination toward agile software methods.

5. DISCUSSION AND IMPLICATIONS

We now discuss the findings from the study in relation to findings from other studies, their application 
to future research as well as the implications for management in practice.

Williams (2012, p. 76) reports results from two survey studies conducted to gauge software 
developer communities’ views on principles of agile methods laid out in the Agile Manifesto. The 
overall finding was that the principles succinctly captured the “essence of the agile trend that has 
transformed the software industry over more than a dozen years.” We find that many of these principles 
resonated among the factors (e.g., efficiency, effectiveness, quality) contributing toward developers’ 
preference towards choosing agile methods. Another study by Yu and Petter (2014) found that agile 
practices are instrumental in developing shared understanding (i.e., mental models) among developers 
and customers in software development teams. This finding also aligns with several factors found 
in our study related to shaping preference for agile methods among developers. Yet another study 
by Hoda, Noble and Marshall (2012) reports that self-organizing agile teams engage in a number of 
balancing acts including (a) cross-functionality and specialization, (b) freedom and responsibility, 
and (c) continuous learning and iteration pressure. Finally, Dybå and Dingsøyr (2008) conducted a 
review of extant studies till 2005 and report four studies that found positive perceptions of developers 
toward using agile methods and their willingness to use in future projects.

One of the exciting findings in our study is that the discovered constructs of preference are 
based on factors that are malleable, that is, they can be modified. This is encouraging since if a 
software developer currently has a low preference for agile, the constructs for preference are such 
that through education and experience their preference can be increased. Since the positive constructs 
that emerged from the data are all modifiable there may be opportunities to develop programs to 
increase preference for agile.

Another implication of this research is for management professionals. Although the unit of 
analysis is at the individual software developer level there are a number of implications that apply to 
the management of teams of software developers and software projects. In the future, we intend to 
look at three areas: team formation, team optimization and team retention.

Agile team formation can be positively influenced by careful selection of those individuals 
who prefer to work in an agile fashion. Managers can engage in learning about the team members’ 
preferences. Team members that do not have prior experience with agile methods may be given 
opportunities to shadow experienced professionals as well as participate on pilot projects. Software 



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

33

developers’ responses in terms of self-efficacy, affective response and interpersonal factors can inform 
about the candidate’s affinity for preferring agile methods to traditional methods. Building on current 
findings, further research is needed in developing and validating an instrument to measure software 
developer preferences that can also guide the aforementioned process. If the candidate does not adhere 
to these concepts and constructs, then they may resist using agile methods.

Team optimization opportunities may exist in organizations or teams transitioning to agile 
methods. Understanding what drives software developers’ preference can be useful in developing 
training tools to educate team members about the benefits that other software developers derive from 
agile. By raising team member awareness of the key factors that other developers appreciate about 
agile there is a better likelihood that members of transitioning teams will develop a preference for 
agile methods.

An active agile team can leverage the findings of the study from a team retention perspective by 
emphasizing the elements that have been identified as key influencers of software development method 
preference among developers. Ensuring that the discovered principles are practiced by a team will 
likely lead to higher satisfaction and engagement among the team members. Also, given that one of 
the key conceptual categories discovered is self-efficacy, these factors may potentially lead to higher 
productivity in addition to increased satisfaction and retention among software development teams 
employing agile methods. Validating these propositions is an avenue for future research.

Another direction for future research being considered by the researchers is to examine preference 
from a customer perspective. How do customers perceive agile, is it better and preferred over other 
approaches? With customers as participants, a study, perhaps also employing grounded research 
approach, can inform the aspects that matter to customers (e.g., like/dislike, care/do not care) about 
agile methods compared to alternative software development methodologies.

6. CONCLUSION

In this study, we adopted a grounded theory approach to shed light on factors that influence software 
developers’ preference for using agile methods. The discovery of these factors is the key contribution 
of this study. Through a method of constant comparison and an iterative process of data collection 
(theoretical sampling) and analysis, we discovered self-efficacy, affective response, interpersonal 
response, external contingencies, and personality contingencies as categories of factors influencing 
developers’ preference for agile methods. A recurrent theme of preference rationalization for agile 
methods emerged as the core category from the data. We observed that the categories that positively 
influence preference for agile methods are malleable and can thus inform management of software 
development teams adopting agile methods in regards to team formation, optimization, and retention. 
Our work adds to the continuing stream of research on adoption of development methodologies 
(Kacmar et al., 2009), developer attitudes and preferences (Hendersen et al., 2012) and complements 
research that explores issues such as methodology fit (Xu & Yao, 2014) and project commitment 
(Korzaan & Brooks, 2015) on organizational productivity.



Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

34

ReFeReNCeS

Abdelnour-Nocera, J., & Sharp, H. (2012). Understanding conflicts in agile adoption through technological 
frames. International Journal of Sociotechnology and Knowledge Development, 4(2), 29–45. doi:10.4018/
jskd.2012040104

Adolph, S., Hall, W., & Kruchten, P. (2011). Using grounded theory to study the experience of software 
development. Empirical Software Engineering, 16(4), 487–513. doi:10.1007/s10664-010-9152-6

Adolph, S., Kruchten, P., & Hall, W. (2012). Reconciling perspectives: A grounded theory of how people 
manage the process of software development. Journal of Systems and Software, 85(6), 1269–1286. doi:10.1016/j.
jss.2012.01.059

Armstrong, D. J., Nelson, H. J., Nelson, K. M., & Narayanan, V. K. (2008). Building the IT workforce of the 
future: The demand for more complex, abstract, and strategic knowledge. Information Resources Management 
Journal, 21(2), 63–79. doi:10.4018/irmj.2008040104

Balijepally, V. G., Mahapatra, R. K., & Nerur, S. P. (2006). Assessing personality profiles of software developers 
in agile development teams. Communications of the Association for Information Systems, 18(1), 4.

Batra, D., VanderMeer, D., & Dutta, K. (2011). Extending agile principles to larger, dynamic software projects: 
A theoretical assessment. Journal of Database Management, 22(4), 73–92. doi:10.4018/jdm.2011100104

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., & Grenning, M.F.J. … Thomas, D. 
(2001). Manifesto for Agile Software Development. Retrieved from http://www.agilealliance.org/the-alliance/
the-agile-manifesto/

Bergadano, F., Bosio, G., & Spagnolo, S. (2014). Supporting collaboration between customers and developers: 
A framework for distributed, agile software development. International Journal of Distributed Systems and 
Technologies, 5(2), 1–16. doi:10.4018/ijdst.2014040101

Birks, D. F., Fernandez, W., Levina, N., & Nasirin, S. (2013). Grounded theory method in information systems 
research: Its nature, diversity and opportunities. European Journal of Information Systems, 22(1), 1–8. 
doi:10.1057/ejis.2012.48

Boehm, B., & Turner, R. (2004). Balancing agility and discipline: Evaluating and integrating agile and plan-
driven methods.Proceedings of the 26th International Conference on Software Engineering (pp. 718–719). 
IEEE. doi:10.1109/ICSE.2004.1317503

Bonner, N. A. (2010). Predicting leadership success in agile environments: An inquiring systems approach. 
Academy of Information and Management Sciences Journal, 13(2).

Cano, S. P., González, C. S., Collazos, C. A., Muñoz-Arteaga, J., & Zapata, S. (2015). Agile software development 
process applied to the serious games development for children from 7 to 10 years old. International Journal of 
Information Technologies and Systems Approach, 8(2), 64–79. doi:10.4018/IJITSA.2015070105

Chaudhary, P., Hyde, M., & Rodger, J. A. (2015). Attributes for executing change in an agile information system. 
International Journal of Technology Diffusion, 6(2), 30–58. doi:10.4018/IJTD.2015040103

Cockburn, A., & Highsmith, J. (2001). Agile software development: The people factor. IEEE Computer, 
November(11), 131–133.

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic review. 
Information and Software Technology, 50(9-10), 833–859. doi:10.1016/j.infsof.2008.01.006

Glaiel, F., Moulton, A., & Madnick, S. (2013). Agile project dynamics: A system dynamics investigation of 
agile software development methods (No. CISL# 2013-05). Cambridge, MA. Retrieved from http://web.mit.
edu/smadnick/www/wp/2013-05.pdf

Glaser, B. (2005). The grounded theory perspective III: Theoretical coding. Mill Valley, CA: Sociology Press.

Glaser, B., & Strauss, A. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research. 
Chicago: Aldine Publishing Company.

http://dx.doi.org/10.4018/jskd.2012040104
http://dx.doi.org/10.4018/jskd.2012040104
http://dx.doi.org/10.1007/s10664-010-9152-6
http://dx.doi.org/10.1016/j.jss.2012.01.059
http://dx.doi.org/10.1016/j.jss.2012.01.059
http://dx.doi.org/10.4018/irmj.2008040104
http://dx.doi.org/10.4018/jdm.2011100104
http://www.agilealliance.org/the-alliance/the-agile-manifesto/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/
http://dx.doi.org/10.4018/ijdst.2014040101
http://dx.doi.org/10.1057/ejis.2012.48
http://dx.doi.org/10.1109/ICSE.2004.1317503
http://dx.doi.org/10.4018/IJITSA.2015070105
http://dx.doi.org/10.4018/IJTD.2015040103
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://web.mit.edu/smadnick/www/wp/2013-05.pdf
http://web.mit.edu/smadnick/www/wp/2013-05.pdf


Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

35

Glaser, B. G. (1978). Theoretical Sensitivity: Advances in the Methodology of Grounded Theory. Mill Valley, 
CA: The Sociology Press.

Glaser, B. G. (1992). Emergence vs. Forcing: Basics of Grounded Theory Analysis. Mill Valley, CA: Sociology 
Press.

Glaser, B. G., & Holton, J. (2004). Remodeling Grounded Theory. Forum: Qualitative Social Research, 5(2). 
doi:10.1016/j.clae.2007.06.001

Hendersen, D., Sheetz, S. D., & Bélanger, F. (2012). Explaining developer attitude toward using formalized 
commercial methodologies: Decomposing perceived usefulness. Information Resources Management Journal, 
25(1), 1–20. doi:10.4018/irmj.2012010101

Hoda, R., Noble, J., & Marshall, S. (2012). Developing a grounded theory to explain the practices of self-
organizing Agile teams. Empirical Software Engineering, 17(6), 609–639. doi:10.1007/s10664-011-9161-0

Hoda, R., Noble, J., & Marshall, S. (2013). Self-organizing roles on agile software development teams. IEEE 
Transactions on Software Engineering, 39(3), 422–444. doi:10.1109/TSE.2012.30

Kacmar, C. J., McManus, D. J., Duggan, E. W., Hale, J. E., & Hale, D. P. (2009). Software development 
methodologies in organizations: Field investigation of use, acceptance, and application. Information Resources 
Management Journal, 22(3), 16–39. doi:10.4018/irmj.2009070102

Koch, S., & Turk, G. (2011). Human resource related problems in agile and traditional software project process 
models. International Journal of Information Technology Project Management, 2(2), 1–13. doi:10.4018/
jitpm.2011040101

Korzaan, M. L., & Brooks, N. G. (2015). The binding and blinding influence of project commitment. Information 
Resources Management Journal, 28(1), 57–74. doi:10.4018/irmj.2015010104

O’Reilly, K., Paper, D., & Marx, S. (2012). Demystifying grounded theory for business research. Organizational 
Research Methods, 15(2), 247–262. doi:10.1177/1094428111434559

Parry, K. W. (1998). Grounded theory and social process: A new direction for leadership research. The Leadership 
Quarterly, 9(1), 85–105. doi:10.1016/S1048-9843(98)90043-1

Rahman, N., Rutz, D., & Akhter, S. (2011). Agile development in data warehousing. International Journal of 
Business Intelligence Research, 2(3), 64–77. doi:10.4018/jbir.2011070105

Schwaber, K. R. (2004). Agile Project Management with Scrum (Vol. 7). Redmond, WA: Microsoft Press.

Teoh, S. Y., & Cai, S. (2015). The process of strategic, agile, innovation development: A healthcare 
systems implementation case study. Journal of Global Information Management, 23(3), 1–22. doi:10.4018/
JGIM.2015070101

Teoh, S. Y., & Chen, X. (2013). Towards a strategic process model of governance for agile it implementation: A 
healthcare information technology study in China. Journal of Global Information Management, 21(4), 17–37. 
doi:10.4018/jgim.2013100102

Van Waardenburg, G., & van Vliet, H. (2013). When agile meets the enterprise. Information and Software 
Technology, 55(12), 2154–2171. doi:10.1016/j.infsof.2013.07.012

West, D., Grant, T., Gerush, M., & D’Silva, D. (2010). Agile development: Mainstream adoption has changed 
agility.

Williams, L. (2012). What agile teams think of agile principles. Communications of the ACM, 55(4), 71–76. 
doi:10.1145/2133806.2133823

Xu, P., & Yao, Y. (2014). Methodology fit in offshoring software development projects. Information Resources 
Management Journal, 27(4), 66–81. doi:10.4018/irmj.2014100104

Yu, X., & Petter, S. (2014). Understanding agile software development practices using shared mental models 
theory. Information and Software Technology, 56(8), 911–921. doi:10.1016/j.infsof.2014.02.010

http://dx.doi.org/10.1016/j.clae.2007.06.001
http://dx.doi.org/10.4018/irmj.2012010101
http://dx.doi.org/10.1007/s10664-011-9161-0
http://dx.doi.org/10.1109/TSE.2012.30
http://dx.doi.org/10.4018/irmj.2009070102
http://dx.doi.org/10.4018/jitpm.2011040101
http://dx.doi.org/10.4018/jitpm.2011040101
http://dx.doi.org/10.4018/irmj.2015010104
http://dx.doi.org/10.1177/1094428111434559
http://dx.doi.org/10.1016/S1048-9843(98)90043-1
http://dx.doi.org/10.4018/jbir.2011070105
http://dx.doi.org/10.4018/JGIM.2015070101
http://dx.doi.org/10.4018/JGIM.2015070101
http://dx.doi.org/10.4018/jgim.2013100102
http://dx.doi.org/10.1016/j.infsof.2013.07.012
http://dx.doi.org/10.1145/2133806.2133823
http://dx.doi.org/10.4018/irmj.2014100104
http://dx.doi.org/10.1016/j.infsof.2014.02.010


Information Resources Management Journal
Volume 29 • Issue 3 • July-September 2016

36

David B. Bishop is an Associate Professor in Information Systems at the College of Business and Information 
Systems, Dakota State University, Madison, South Dakota. His research interests are in agile software development 
and software engineering. In addition, Dr. Bishop has over 20 years of experience in software development and 
holds a BS in Mathematics/Computer Science from Western Washington University, a MS in Information Systems 
from Dakota State University and a DSc in Information Systems from Dakota State University.

Amit V. Deokar is an Assistant Professor of Management Information Systems in the Robert J. Manning School 
of Business at the University of Massachusetts Lowell. Dr. Deokar received his PhD in Management Information 
Systems from the University of Arizona. He also earned a MS in Industrial Engineering from the University of Arizona 
and a BE in Mechanical Engineering from VJTI, University of Mumbai. His research interests include predictive 
analytics, business intelligence, process management, and collaboration processes and technologies. His work 
has been published in journals such as Journal of Management Information Systems, Decision Support Systems 
(DSS), The DATA BASE for Advances in Information Systems, Information Systems Frontiers, Business Process 
Management Journal (BPMJ) and IEEE Transactions. He is currently a member of the editorial board of DSS and 
BPMJ journals. He has been serving as the Business Analytics, Big Data and Knowledge Management Track 
Chair at the international AMCIS 2014-16 conferences, and Program Chair of the AIS Special Interest Group on 
Decision Support and Analytics (SIGDSA). He was recognized with the 2014 IBM Faculty Award for his research 
and teaching in the areas of analytics and big data.

Surendra Sarnikar is an Associate Professor in Information Systems at the College of Business and Economics, 
California State University East Bay. He holds a PhD in Management Information Systems from the University of 
Arizona. He has taught healthcare informatics, design research and knowledge management at the Dakota State 
University. He has published several conference and Journal publications in the area of healthcare information 
systems, knowledge management systems, and information retrieval. He has won best paper awards for his work 
in healthcare information systems at the Hawaii International Conference on system Sciences and the International 
Conference in Information Systems.


	On Understanding Preference for Agile Methods Among Software Developers
	Recommended Citation

	tmp.1602796248.pdf.ibo4y

