
 
 
 

LinearLegions: A Linear Size Cardinality Estimator 

ABSTRACT 

Counting the number of unique items in a data set is of interest in many applications. For 

example, the owner of a web property, e.g., a video sharing website, a social media website, a 

search engine, etc., benefits from knowing the number of unique visitors to their site, the number 

of unique people that a certain advertisement was shown to, etc. This disclosure describes a 

practical cardinality estimator that uses  space and has a conjectured(m )O +  log log N  

 relative error, where m is an accuracy parameter and N is the maximum cardinality that(1/ )O √m  

is to be reported. The cardinality estimator improves upon the best-known space bounds of prior 

cardinality estimators and matches on relative error.  
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BACKGROUND 

Counting the number of unique items in a data set is of interest in many applications. For 

example, the owner of a web property, e.g., a video sharing website, a social media website, a 

search engine, etc., benefits from knowing the number of unique visitors to their site, the number 

of unique people that a certain advertisement was shown to, etc. Estimating the number of items 

in a set is known as cardinality estimation, and is of fundamental importance in big data 

applications. It is widely used in network routers as well. 
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In 1985, Flajolet and Martin gave a method for estimating the number of unique items in 

a data set. This method was suitable for use in applications where the size of the data is too large 

to fit into the memory of a single machine. Flajolet and Martin proposed a sketch data structure 

that summarized the items that had been encountered so far in a data stream. The sketch could 

then be used to answer the query, “How many unique items were in the set?” As a byproduct, the 

sketch also supported a union operation, allowing the cardinality of the union of two sets to be 

computed from the sketches of the constituent sets.  

The size of the data structure was O(m log N), where m is the number of registers 

allocated to the sketch, and N is the maximum cardinality that is to be reported. The 

Flajolet-Martin sketch traded off size for accuracy. The accuracy of a sketch algorithm is 

described by the relative error of the estimates that it provides. If n is the true size of the set and 

 is the estimate given, then the relative error is defined to be the standard deviation of . Then̂ /n  n̂  

Flajolet-Martin sketch had a relative error of .(1/ )  O √m  

While the Flajolet-Martin sketch represented a great advance, it also created an open 

question. For a given level of accuracy, what is the smallest sketch that will provide estimates for 

that level of accuracy? Durand and Flajolet (2003) introduced the LogLog sketch, which reduced 

the size of the data structure to while maintaining an accuracy of  This(m )  O log log N (1/ ).  O √m  

algorithm was subsequently further refined with the HyperLogLog (Flajolet et. al. 2007). On the 

other hand, Indyk and Woodruff (2003) gave a lower bound, showing that any sketch providing 

accuracy  must use at least  space in a certain computational model. Kane et. al.(1/ )  O √m (m)  O  

(2010) then gave an algorithm requiring  space and giving accuracy.(m )  O + log N (1/ )  O √m  



 
 
 

However, this algorithm is not believed to be practical, and the current state of the art is the 

HyperLogLog++ of Heule et. al. (2013). 

DESCRIPTION 

This disclosure describes a practical cardinality estimator that uses (m )O +  log log N  

space and has a conjectured  relative error. The described cardinality estimator(1/ )O √m  

improves upon the best-known space bounds of previous cardinality estimators and matches on 

relative error. Empirical evidence is provided showing that the performance of the algorithm 

compares favorably with the current state of the art. 

This described cardinality estimator can be implemented as a software library or as a 

software system. As mentioned earlier, the described cardinality estimator is more space efficient 

than previous solutions. This has two immediate impacts. First, in applications where it is useful 

to store data structures for estimating the cardinalities of data sets, the estimator can enable 

reduction in the overall amount of space that is used. Second, in applications where it is 

necessary to transmit such data structures over networks, it can enable reduction in the amount of 

network bandwidth consumed. 

The algorithm presented here extends the ideas behind the Liquid Legions estimator 

presented in Wright et. al. (2020). This algorithm, as with Liquid Legions, makes use of an 

exponentially decreasing schedule of probabilities of register activations. That is to say, if  ispi  

the probability that a value will hash to the  register, then there is a positive constant  suchith α  

that  The number of registers maintained by the algorithm is proven to be/p  e .  pi+1 i =  −α  

proportional to  with high probability, and empirical evidence is given that the relative error/α1  

is proportional to . Thus, taking  this gives an algorithm with  registers and√α /α,m = 1 (m)O  



 
 
 

 standard error. In addition, a new estimation method is given that improves over the(1/  O √m)  

method used in Liquid Legions. As with HyperLogLog and Liquid Legions, the sketch 

representing the union of two sets is easily computed from their respective sketches. 

Overview 

The input consists of a sequence  of identifiers, of which an unknown number, , ..,  x1 x2 . xs  

 are unique. Also, as input, a small positive real number  is given that indirectly determines n α  

both the space used by the algorithm and the accuracy of the results produced. As output, the 

algorithm produces an estimate  of  n̂ .  n  

The probability mass function  is defined as  and(i), i , , , ..  f  = 0 1 2 . (i) (1 e ) e ,f =  −  −α −αi  

 is the cumulative mass function associated to  so (i)F ,f (i) .  F = 1 − e−α(i+1)  

Imagine that the algorithm maintains an infinite bit array  which is[0], B[1], B[2], ...,  B     

initialized to 0. For each input value  an index into this bit array is determined and the,xj  

corresponding bit is set to 1. It is assumed that a hash function  is available that hashes each h xi  

uniformly at random to values in the unit interval. The location  assigned to  is computed(x )L j xj  

as: 

 

Consequently, the probability that  is assigned to location  is given by xj i (i).  f  

After inserting  items, the bitmap will have a characteristic structure, depicted below n B  

in Figure 1. The head of the bitmap will consist of a sequence of 1's. Then, there will be a zero, 

possibly followed by a sequence of 0's and 1's. The portion from the first 0 to the final 1 is called 



 
 
 

the fringe. In the diagram, these are the positions from  to  This will be followed by the tail,i .  j  

which consists of an infinite sequence of 0's.  

The central thesis of this disclosure is that for sufficiently large  the size of the fringe,  n  

depends only on  and not on  In fact, with high probability, the size of the fringe is α .  n (1/α).  O  

Thus, a data structure that stores only the fringe will achieve the objectives. 

Analysis 

In the following,  will be considered to be fixed but unknown. Let be the highest n  Kmax  

index in  that is one, and similarly, let  be the lowest index in  that is zero. Thus, theB Kmin B  

size of the fringe is . Our goal is to bound this quantity. In particular, we willKmax − Kmin + 1  

show that for any  there is a value  such that ,ε > 0 (α, )K ε r(K (α, )) ε.  P max − Kmin > K ε <   

Our proof strategy is as follows. Let be the largest positive integer that is less than or mn  

equal to  In some sense,  can be thought of as the midpoint of the fringe. We willlog ) / α.  ( n mn  

show that  is bounded with high probability, and we will also show that  isKmax − mn mn − Kmin  

bounded with high probability. Consequently,  will beK ) m )Kmax − Kmin = ( max − mn − ( n − Kmin  

bounded with high probability. We state a number of theorems below, proofs for which are 

provided in the appendix. 

 

Fig. 1: Bitmap after n insertions have been made. 



 
 
 

● Theorem 1. For all  there is a value  such that ,ε > 0 (α, )U ε r(K (α, )) .  P max − mn > U ε < ε  

● Theorem 2. For all  there is a value  such that ,ε > 0 (α, )L ε r(m (α, )) .  P n − Kmin > L ε < ε  

● Theorem 3. If  then ,0 < α < 1 (α, ) (α, ) (− (ε)/α).  U ε + L ε = O log  

● Theorem 4. If  then with probability at least   This,0 < α < 1 ,1 − ε (log(n/ε)/α).  Kmax = O  

follows from 1 and 3. 

Theorems 1 and 2 together prove that the size of the fringe is bounded with high probability. 

Theorem 3 establishes that the size of the fringe is  Theorem 4 is used in the runtime(1/α).  O  

analysis. A more precise bound than the one stated above is  

(α, ) (α, ) − .U ε + L ε ≤ α
2 log ε + α

3 log 2 + 1  

Algorithm 

Python code for the cardinality estimator is given below in Figure 2. The data structure 

maintains three values: the fringe , at a cost of  the index  of the first element ofF (1/α),O f start  

the fringe, at a cost of  and  at a cost of (log ),  O log n ,α (1).  O  

If  is the state of the hypothetical bitmap after  items have been inserted and  isBk k F k  

the state of the fringe, then the algorithm maintains the invariant that [i] [i ].  F k = Bk + f start  

Insertions 

The insertion algorithm is as follows. When a new item  is to be inserted, if  is lessx (x)L  

than  it is discarded. Otherwise,  is set to 1. If  is now 1, then the first,f start [L(x) ]F − f start [0]F  

element of  is deleted and  is incremented. This is repeated until either the fringe is emptyF f start  

or .[0]F = 0  



 
 
 

The insert function contains two operations that are not , the append operation at(1)O  

line 21 and the loop in lines 23-25. In view of Theorem 4, with high probability, the append 

operation will not be performed more than  times (treating  and  as constants for this(log )  O n ε α  

analysis). Consequently, the amortized cost of the code in line 21 is  The code in lines(1).  O  

23-25 deletes items that were previously inserted into in line 21. Consequently, the total costF  

of these operations cannot be more than  which on an amortized basis, is again (log n),O 2 (1).  O  

Cardinality Estimation 

To compute the estimated cardinality of the data structure, a maximum likelihood method 

is used. The probability that  after  insertions is  while the probability that[i]B = 0  n 1 (i)) ,( − f n  

 is  Consequently, the likelihood of  given  is given by the formula:[i]B = 1 1 1 (i)) ).  ( − ( − f n  n B  

 

The maximum of this function can easily be found via a univariate optimization method 

such as Brent's algorithm. The estimates produced by this method appear to be highly accurate. 

Maximum likelihood estimators have a couple useful properties. They are consistent, e.g., 

they converge in probability to the quantity being estimated. And they are efficient, meaning that 

no other unbiased estimator can asymptotically achieve a lower mean squared error. 

  



 
 
 

 

 

Fig. 2: LinearLegions cardinality sketch 

  

1 import numpy as np 
2 from scipy.optimize import minimize_scalar 
3  
4 class LinearLegionsSketch: 
5  def __init__(self, alpha): 
6    self.f_start = 1  # Starting index of fringe. 
7    self.fringe = np.array([]) 
8    self.alpha = alpha 
9  
10  def pmf(self, i): 
11    """Probability that B[i] will be chosen for an insertion.""" 
12    return (1 - np.exp(-self.alpha)) * np.exp(-self.alpha*i) 
13  
14  def insert(self, x): 
15    """Inserts x, where 0 < x < 1.""" 
16    i = int(-np.log(1-x)/self.alpha + 0.00001) - self.f_start 
17    if i < 0: 
18      return 
19    m = i - len(self.fringe) + 1 
20    if m > 0: 
21      self.fringe = np.append(self.fringe, [0] * m) 
22    self.fringe[i] = 1 
23    while len(self.fringe) > 0 and self.fringe[0] == 1: 
24      self.fringe = self.fringe[1:] 
25      self.f_start += 1 
26  
27  def _negative_log_likelihood(self, n): 
28   if n < 2: 
29       return 1.0e99 
30    B = np.concatenate([np.ones(self.f_start), self.fringe]) 
31    q = (1.0 - self.pmf(np.arange(len(B))))**n 
32    p = 1-q 
33    return -np.sum(np.log(p*B + q * (1.0-B))) 
34  
35  def cardinality(self): 
36    """Estimates cardinality of sketch.""" 
37    return minimize_scalar(lambda x: self._negative_log_likelihood(x), 
38      method='brent')['x'] 



 
 
 

Empirical Results 

Three central theorems have been stated in this disclosure: (1) the size of the fringe is a 

constant that depends on  but not on  (2) the size of the fringe is proportional to  and (3)α ,  n /α,1  

the relative error is proportional to  Empirical evidence will now be given to support these.  √α  

theorems. In addition, we give empirical data on the bias and relative error in comparison to the 

Liquid Legions estimator. 

Size of Fringe in Relation to n 

Figure 3 shows the size of the fringe in relation to  for various values of  Five n .  α  

different values of  were considered, from  to  Along the x axis, tenα .005  α = 0 .1.  α = 0  

different values of  are plotted, from  to  For each value of  100 n 0, 00  n = 1 0 00, 00.  n = 1 0 ,  n  

runs were performed, and the average size of the maximum fringe for each cardinality estimator 

was plotted. 95% error bars are also shown. As can be seen, for each value of  the sizes of the,α  

fringe appear to be constant. 

 

Fig. 3: Size of Maximum Fringe in Relation to n 



 
 
 

Size of Fringe in Relation to 1/alpha 

In the next experiment, the size of the fringe was plotted in relation to  Twenty/α.  1  

values of  were chosen, ranging from 0.001 to 0.02. For each  a cardinality estimator wasα ,α  

constructed and 10,000 random values were inserted into it. The maximum size of the fringe was 

then recorded. This was repeated 4,000 times. The values were then plotted. The plot is given 

below in Figure 4. 

If  is the maximum fringe size, then a linear regression of  on  gives the followingf max f max /α1  

fit: 

.77 / α .65  f max = 9 + 1  

The  value of this fit exceeds 0.999.R2  

 

Fig. 4: Size of Maximum Fringe in Relation to /α.  1  



 
 
 

Relative Error  

The following graph shows the relative error in relation to  The data used to generate.  √α  

this graph is the same as for the previous graph. 

In  is the standard error of  then a linear regression generated the following fit: n̂se /n,  n̂  

83  .0038  n̂se = . √α − 0  

The  value in this case was slightly worse, coming in at 0.99.R2  

The following table summarizes the estimated sizes of the data structure and the relative error for 

a few values of α :  

 

Fig. 5: Relative error in relation to .  √α  

α  Size of Sketch (in bits) Relative Error 

0.00082 11,884 0.02 

0.00028 35,344 0.01 

0.00011 86,915 0.005 



 
 
 

 
As a point of comparison, to obtain a relative error of 0.005, the HyperLogLog would require a 

precision parameter of bits, thus requiring  registers, storing  bits per5 p = 1 2, 68215 = 3 7 6  

register, for a total storage cost of 196,608 bits. Thus, this represents a potential improvement of 

a factor of over 50% relative to the HyperLogLog. 

Relative Bias 

In this section and the next section, comparisons are given to the estimator used by the 

Liquid Legions sketch of Wright et. al. (2020). Liquid Legions also uses an exponentially 

decreasing schedule of register activation probabilities. Once the sketch has been computed, 

though, a different estimator is used to compute the cardinality of the set. Let be the totalS   

number of bits set in a bitmap  of size  Then, the expected value of  is given byB .  M S  

 

Given an observed value of  a univariate optimization algorithm can be used to,S  

determine the value of  that most closely matches  This value of  is then output as the n .  S  n  

cardinality estimate. This estimator will be called the Liquid Legions estimator. 

The relative bias of an estimator  is defined to be the  Measurements wereX [n/n] .  EX ˆ − 1  

made of the bias of the Linear Legions estimator and Liquid Legions estimator. The value of M  

was taken to be  The dataset used was the same as for the previous two experiments..  Kmax  



 
 
 

 
Fig. 6 

As can be seen, both methods exhibit bias that decreases as  although the bias exhibited,α → 0  

by Linear Legions is lower. 

Relative Error Compared to Liquid Legions 

The final plot compares the relative error of Linear Legions to that of Liquid Legions. As 

can be seen, Linear Legions shows a consistent improvement of about 10% relative to Liquid 

Legions. 

 
Fig. 7 



 
 
 

CONCLUSION 

This disclosure describes a new technique for cardinality estimation, named Linear 

Legions. It has better space than previously published estimators, while matching earlier 

techniques in standard error. Given Linear Legions sketches for two sets A and B, the sketch of 

the union is easily computed. Another issue is how to compute cardinalities by frequency. If 

pre-processing is allowed, then one approach would be to compute one sketch for each 

frequency. If  frequencies are measured, then the space requirement of this approach would bef  

 For example, if the maximum frequency is 10, then the space would be approximately(fm).  O  

 Alternatively, it is possible to maintain fingerprints and counts of items that are inserted in0m.  1  

the sketch. If a 64-bit fingerprint and count is maintained, then the space requirement becomes 

 which is significantly larger. Another downside of the fingerprint-based approach is that4m,6  

elements with  will be overrepresented in the sketch. Consequently, the standard error forf = 1  

larger frequencies will be higher. Thus, the preprocessing approach is to be recommended. 

  



 
 
 

NOTE 

A mathematical proof that the standard error is has not been provided herein.( )O √α  

While the empirical evidence is compelling, having a mathematical proof that the relative error is 

 would tie up an important loose end.( )O √α  
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APPENDIX: Proofs of theorems 

Theorem 1. For all  there is a value  such that ,ε > 0 (α, )U ε r(K (α, )) .  P max − mn > U ε < ε  

Proof. In fact, we can take  Let   As a preliminary, we(α, ) log )/α.  U ε = 1 − ( ε (α, ).  r = mn + U ε  

note that   This can be seen as follows:/n.  e−αr ≤ ε  

 

Recall that the cumulative mass function for assigning elements to  is   ThisB (i) .  F = 1 − e−α(i+1)  

represents the probability that a randomly chosen identifier will be assigned to an index at 

location  or lower. Let  be the probability that all  identifiers are assigned to locationsi (i)F max  n  

 or lower. Then,   Thus,i (i) (i) .  F max = F n  

 

The first inequality is justified by the fact that  if   QED.1 ) x  ( − x n ≥ 1 − n .  0 < x < 1  

Corollary. Let  the largest index  for which . For all  the probability thatBmax i [i]B = 1 ,ε > 0  

 is greater than log(n/ε) )/α  Bmax < ( + 1 .  1 − ε   



 
 
 

Proof:  log(n/ε) 1)/α log  1 ε)/α m (α, ).  ( +  = ( n +  − log  =  n + U ε  

The upshot of this corollary is that the maximum index  with arbitrarily high(log(n)/α)  Bmax = O  

probability. 

The second theorem is a bit harder to prove, and so we proceed through a series of lemmas. 

Lemma 1. Let . Then,  mk <  n (B[m ] 0) (e ) .Pr n − k =  ≤  (1−e )−α k  

Proof: 

 

The inequality at step (1) is justified because   The inequality at step (2) is justified.  1 − x < e−x  

because  The inequality at line (3) is justified because if  and/α.  mn ≤ log n − e− eαk < k α k ≥ 1  

  QED..  α ≥ 0  

Lemma 2.  where (K ) ,Pr min ≤ mn − k ≤ uk

1−u .  u = e1−eα
 

Proof: 



 
 
 

 

The inequality at line (4) is justified by Lemma 1, and the inequality at line (5) is justified 

because and therefore   QED. 1 u <  .  1 − um −k+1n < 1  

Lemma 3. If  then , where ,0 < α < 1 1
1−u < α

2 .  u = e1−eα
 

Proof: We start by noting that 

 

The inequality at line (6) is justified because   The inequality at line (7) is obtained by.  1 + x < ex  

truncating the Taylor series for   The inequality at line (8) is obtained by observing that if.  ex  

 then  so we may replace  by   We now note that1,α <   α,α2 <  /2α2 /2.  α  



 
 
 

 

QED. 

Lemma 4.  where /e,u1/α < 1 .  u = e1−eα
 

Proof: As noted in the previous lemma,   Therefore,  (− ).  u ≤  exp α (− ) .u1/α ≤ exp α 1/α = e−1  

QED. 

Lemma 5. If  and  then  where , 00 < α < 1  < ε < 1  ,k >  α
−log /2ε ,uk

1−u ≤ ε .  u = e1−eα
 

Proof: Here  

 

The inequality at line (9) is justified because  and . The inequality at line0 < u < 1 k > α
log /2ε  

(10) comes from applying Lemma 4. The inequality at line (11) comes from applying Lemma 3. 

QED. 

Theorem 2. If  there is a value  such that ,0 < α < 1 (α, )L ε r(m (α, )) .  P n − Kmin > L ε < ε  

Proof: We take  where   We then have(α, ) (ε/2)/α,L ε =  − log .  u = e1−eα
 



 
 
 

 

Line (12) is justified by Lemma 2, and line (13) is justified by Lemma 5. QED. 

Theorem 3. (α, ) (α, ) (− log )/α).  U ε + L ε = O ( ε  

Proof: Recall that  and  where   Both(α, ε) log )/αU  = 1 − ( ε (α, ) log /2)/α,L ε =  − ( ε .  u = e1−eα
 

of these are    QED.(− /α).  O log ε  


