

LinearLegions: A Linear Size Cardinality Estimator

ABSTRACT

Counting the number of unique items in a data set is of interest in many applications. For

example, the owner of a web property, e.g., a video sharing website, a social media website, a

search engine, etc., benefits from knowing the number of unique visitors to their site, the number

of unique people that a certain advertisement was shown to, etc. This disclosure describes a

practical cardinality estimator that uses space and has a conjectured(m)O + log log N

 relative error, where ​m​ is an accuracy parameter and ​N​ is the maximum cardinality that(1/)O √m

is to be reported. The cardinality estimator improves upon the best-known space bounds of prior

cardinality estimators and matches on relative error.

KEYWORDS

● Cardinality estimation

● Liquid legions

● Hyperloglog

● Maximum likelihood estimation

BACKGROUND

Counting the number of unique items in a data set is of interest in many applications. For

example, the owner of a web property, e.g., a video sharing website, a social media website, a

search engine, etc., benefits from knowing the number of unique visitors to their site, the number

of unique people that a certain advertisement was shown to, etc. Estimating the number of items

in a set is known as cardinality estimation, and is of fundamental importance in big data

applications. It is widely used in network routers as well.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/352604827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In 1985, Flajolet and Martin gave a method for estimating the number of unique items in

a data set. This method was suitable for use in applications where the size of the data is too large

to fit into the memory of a single machine. Flajolet and Martin proposed a sketch data structure

that summarized the items that had been encountered so far in a data stream. The sketch could

then be used to answer the query, “How many unique items were in the set?” As a byproduct, the

sketch also supported a union operation, allowing the cardinality of the union of two sets to be

computed from the sketches of the constituent sets.

The size of the data structure was ​O(m ​log ​N)​, where ​m​ is the number of registers

allocated to the sketch, and ​N​ is the maximum cardinality that is to be reported. The

Flajolet-Martin sketch traded off size for accuracy. The accuracy of a sketch algorithm is

described by the relative error of the estimates that it provides. If ​n​ is the true size of the set and

 is the estimate given, then the relative error is defined to be the standard deviation of . Then̂ /n n̂

Flajolet-Martin sketch had a relative error of .(1/) O √m

While the Flajolet-Martin sketch represented a great advance, it also created an open

question. For a given level of accuracy, what is the smallest sketch that will provide estimates for

that level of accuracy? Durand and Flajolet (2003) introduced the LogLog sketch, which reduced

the size of the data structure to while maintaining an accuracy of This(m) O log log N (1/). O √m

algorithm was subsequently further refined with the HyperLogLog (Flajolet et. al. 2007). On the

other hand, Indyk and Woodruff (2003) gave a lower bound, showing that any sketch providing

accuracy must use at least space in a certain computational model. Kane et. al.(1/) O √m (m) O

(2010) then gave an algorithm requiring space and giving accuracy.(m) O + log N (1/) O √m

However, this algorithm is not believed to be practical, and the current state of the art is the

HyperLogLog++ of Heule et. al. (2013).

DESCRIPTION

This disclosure describes a practical cardinality estimator that uses (m)O + log log N

space and has a conjectured relative error. The described cardinality estimator(1/)O √m

improves upon the best-known space bounds of previous cardinality estimators and matches on

relative error. Empirical evidence is provided showing that the performance of the algorithm

compares favorably with the current state of the art.

This described cardinality estimator can be implemented as a software library or as a

software system. As mentioned earlier, the described cardinality estimator is more space efficient

than previous solutions. This has two immediate impacts. First, in applications where it is useful

to store data structures for estimating the cardinalities of data sets, the estimator can enable

reduction in the overall amount of space that is used. Second, in applications where it is

necessary to transmit such data structures over networks, it can enable reduction in the amount of

network bandwidth consumed.

The algorithm presented here extends the ideas behind the Liquid Legions estimator

presented in Wright et. al. (2020). This algorithm, as with Liquid Legions, makes use of an

exponentially decreasing schedule of probabilities of register activations. That is to say, if ispi

the probability that a value will hash to the register, then there is a positive constant suchith α

that The number of registers maintained by the algorithm is proven to be/p e . pi+1 i = −α

proportional to with high probability, and empirical evidence is given that the relative error/α1

is proportional to . Thus, taking this gives an algorithm with registers and√α /α,m = 1 (m)O

 standard error. In addition, a new estimation method is given that improves over the(1/ O √m)

method used in Liquid Legions. As with HyperLogLog and Liquid Legions, the sketch

representing the union of two sets is easily computed from their respective sketches.

Overview

The input consists of a sequence of identifiers, of which an unknown number, , .., x1 x2 . xs

 are unique. Also, as input, a small positive real number is given that indirectly determines n α

both the space used by the algorithm and the accuracy of the results produced. As output, the

algorithm produces an estimate of n̂ . n

The probability mass function is defined as and(i), i , , , .. f = 0 1 2 . (i) (1 e) e ,f = − −α −αi

 is the cumulative mass function associated to so (i)F ,f (i) . F = 1 − e−α(i+1)

Imagine that the algorithm maintains an infinite bit array which is[0], B[1], B[2], ..., B

initialized to 0. For each input value an index into this bit array is determined and the,xj

corresponding bit is set to 1. It is assumed that a hash function is available that hashes each h xi

uniformly at random to values in the unit interval. The location assigned to is computed(x)L j xj

as:

Consequently, the probability that is assigned to location is given by xj i (i). f

After inserting items, the bitmap will have a characteristic structure, depicted below n B

in Figure 1. The head of the bitmap will consist of a sequence of 1's. Then, there will be a zero,

possibly followed by a sequence of 0's and 1's. The portion from the first 0 to the final 1 is called

the fringe. In the diagram, these are the positions from to This will be followed by the tail,i . j

which consists of an infinite sequence of 0's.

The central thesis of this disclosure is that for sufficiently large the size of the fringe, n

depends only on and not on In fact, with high probability, the size of the fringe is α . n (1/α). O

Thus, a data structure that stores only the fringe will achieve the objectives.

Analysis

In the following, will be considered to be fixed but unknown. Let be the highest n Kmax

index in that is one, and similarly, let be the lowest index in that is zero. Thus, theB Kmin B

size of the fringe is . Our goal is to bound this quantity. In particular, we willKmax − Kmin + 1

show that for any there is a value such that ,ε > 0 (α,)K ε r(K (α,)) ε. P max − Kmin > K ε <

Our proof strategy is as follows. Let be the largest positive integer that is less than or mn

equal to In some sense, can be thought of as the midpoint of the fringe. We willlog) / α. (n mn

show that is bounded with high probability, and we will also show that isKmax − mn mn − Kmin

bounded with high probability. Consequently, will beK) m)Kmax − Kmin = (max − mn − (n − Kmin

bounded with high probability. We state a number of theorems below, proofs for which are

provided in the appendix.

Fig. 1: Bitmap after ​n ​insertions have been made.

● Theorem 1​. For all there is a value such that ,ε > 0 (α,)U ε r(K (α,)) . P max − mn > U ε < ε

● Theorem 2​. For all there is a value such that ,ε > 0 (α,)L ε r(m (α,)) . P n − Kmin > L ε < ε

● Theorem 3.​ If then ,0 < α < 1 (α,) (α,) (− (ε)/α). U ε + L ε = O log

● Theorem 4. ​If then with probability at least This,0 < α < 1 ,1 − ε (log(n/ε)/α). Kmax = O

follows from 1 and 3.

Theorems 1 and 2 together prove that the size of the fringe is bounded with high probability.

Theorem 3 establishes that the size of the fringe is Theorem 4 is used in the runtime(1/α). O

analysis. A more precise bound than the one stated above is

(α,) (α,) − .U ε + L ε ≤ α
2 log ε + α

3 log 2 + 1

Algorithm

Python code for the cardinality estimator is given below in Figure 2. The data structure

maintains three values: the fringe , at a cost of the index of the first element ofF (1/α),O f start

the fringe, at a cost of and at a cost of (log), O log n ,α (1). O

If is the state of the hypothetical bitmap after items have been inserted and isBk k F k

the state of the fringe, then the algorithm maintains the invariant that [i] [i]. F k = Bk + f start

Insertions

The insertion algorithm is as follows. When a new item is to be inserted, if is lessx (x)L

than it is discarded. Otherwise, is set to 1. If is now 1, then the first,f start [L(x)]F − f start [0]F

element of is deleted and is incremented. This is repeated until either the fringe is emptyF f start

or .[0]F = 0

The insert function contains two operations that are not , the append operation at(1)O

line 21 and the loop in lines 23-25. In view of Theorem 4, with high probability, the append

operation will not be performed more than times (treating and as constants for this(log) O n ε α

analysis). Consequently, the amortized cost of the code in line 21 is The code in lines(1). O

23-25 deletes items that were previously inserted into in line 21. Consequently, the total costF

of these operations cannot be more than which on an amortized basis, is again (log n),O 2 (1). O

Cardinality Estimation

To compute the estimated cardinality of the data structure, a maximum likelihood method

is used. The probability that after insertions is while the probability that[i]B = 0 n 1 (i)) ,(− f n

 is Consequently, the likelihood of given is given by the formula:[i]B = 1 1 1 (i))). (− (− f n n B

The maximum of this function can easily be found via a univariate optimization method

such as Brent's algorithm. The estimates produced by this method appear to be highly accurate.

Maximum likelihood estimators have a couple useful properties. They are consistent, e.g.,

they converge in probability to the quantity being estimated. And they are efficient, meaning that

no other unbiased estimator can asymptotically achieve a lower mean squared error.

Fig. 2: LinearLegions cardinality sketch

1 import numpy as np
2 from scipy.optimize import minimize_scalar
3
4 class LinearLegionsSketch:
5 def __init__(self, alpha):
6 self.f_start = 1 # Starting index of fringe.
7 self.fringe = np.array([])
8 self.alpha = alpha
9
10 def pmf(self, i):
11 """Probability that B[i] will be chosen for an insertion."""
12 return (1 - np.exp(-self.alpha)) * np.exp(-self.alpha*i)
13
14 def insert(self, x):
15 """Inserts x, where 0 < x < 1."""
16 i = int(-np.log(1-x)/self.alpha + 0.00001) - self.f_start
17 if i < 0:
18 return
19 m = i - len(self.fringe) + 1
20 if m > 0:
21 self.fringe = np.append(self.fringe, [0] * m)
22 self.fringe[i] = 1
23 while len(self.fringe) > 0 and self.fringe[0] == 1:
24 self.fringe = self.fringe[1:]
25 self.f_start += 1
26
27 def _negative_log_likelihood(self, n):
28 if n < 2:
29 return 1.0e99
30 B = np.concatenate([np.ones(self.f_start), self.fringe])
31 q = (1.0 - self.pmf(np.arange(len(B))))**n
32 p = 1-q
33 return -np.sum(np.log(p*B + q * (1.0-B)))
34
35 def cardinality(self):
36 """Estimates cardinality of sketch."""
37 return minimize_scalar(lambda x: self._negative_log_likelihood(x),
38 method='brent')['x']

Empirical Results

Three central theorems have been stated in this disclosure: (1) the size of the fringe is a

constant that depends on but not on (2) the size of the fringe is proportional to and (3)α , n /α,1

the relative error is proportional to Empirical evidence will now be given to support these. √α

theorems. In addition, we give empirical data on the bias and relative error in comparison to the

Liquid Legions estimator.

Size of Fringe in Relation to n

Figure 3 shows the size of the fringe in relation to for various values of Five n . α

different values of were considered, from to Along the x axis, tenα .005 α = 0 .1. α = 0

different values of are plotted, from to For each value of 100 n 0, 00 n = 1 0 00, 00. n = 1 0 , n

runs were performed, and the average size of the maximum fringe for each cardinality estimator

was plotted. 95% error bars are also shown. As can be seen, for each value of the sizes of the,α

fringe appear to be constant.

Fig. 3: Size of Maximum Fringe in Relation to n

Size of Fringe in Relation to 1/alpha

In the next experiment, the size of the fringe was plotted in relation to Twenty/α. 1

values of were chosen, ranging from 0.001 to 0.02. For each a cardinality estimator wasα ,α

constructed and 10,000 random values were inserted into it. The maximum size of the fringe was

then recorded. This was repeated 4,000 times. The values were then plotted. The plot is given

below in Figure 4.

If is the maximum fringe size, then a linear regression of on gives the followingf max f max /α1

fit:

.77 / α .65 f max = 9 + 1

The value of this fit exceeds 0.999.R2

Fig. 4: Size of Maximum Fringe in Relation to /α. 1

Relative Error

The following graph shows the relative error in relation to The data used to generate. √α

this graph is the same as for the previous graph.

In is the standard error of then a linear regression generated the following fit: n̂se /n, n̂

83 .0038 n̂se = . √α − 0

The value in this case was slightly worse, coming in at 0.99.R2

The following table summarizes the estimated sizes of the data structure and the relative error for

a few values of α :

Fig. 5: Relative error in relation to . √α

α Size of Sketch (in bits) Relative Error

0.00082 11,884 0.02

0.00028 35,344 0.01

0.00011 86,915 0.005

As a point of comparison, to obtain a relative error of 0.005, the HyperLogLog would require a

precision parameter of bits, thus requiring registers, storing bits per5 p = 1 2, 68215 = 3 7 6

register, for a total storage cost of 196,608 bits. Thus, this represents a potential improvement of

a factor of over 50% relative to the HyperLogLog.

Relative Bias

In this section and the next section, comparisons are given to the estimator used by the

Liquid Legions sketch of Wright et. al. (2020). Liquid Legions also uses an exponentially

decreasing schedule of register activation probabilities. Once the sketch has been computed,

though, a different estimator is used to compute the cardinality of the set. Let be the totalS

number of bits set in a bitmap of size Then, the expected value of is given byB . M S

Given an observed value of a univariate optimization algorithm can be used to,S

determine the value of that most closely matches This value of is then output as the n . S n

cardinality estimate. This estimator will be called the Liquid Legions estimator.

The relative bias of an estimator is defined to be the Measurements wereX [n/n] . EX ˆ − 1

made of the bias of the Linear Legions estimator and Liquid Legions estimator. The value of M

was taken to be The dataset used was the same as for the previous two experiments.. Kmax

Fig. 6

As can be seen, both methods exhibit bias that decreases as although the bias exhibited,α → 0

by Linear Legions is lower.

Relative Error Compared to Liquid Legions

The final plot compares the relative error of Linear Legions to that of Liquid Legions. As

can be seen, Linear Legions shows a consistent improvement of about 10% relative to Liquid

Legions.

Fig. 7

CONCLUSION

This disclosure describes a new technique for cardinality estimation, named Linear

Legions. It has better space than previously published estimators, while matching earlier

techniques in standard error. Given Linear Legions sketches for two sets A and B, the sketch of

the union is easily computed. Another issue is how to compute cardinalities by frequency. If

pre-processing is allowed, then one approach would be to compute one sketch for each

frequency. If frequencies are measured, then the space requirement of this approach would bef

 For example, if the maximum frequency is 10, then the space would be approximately(fm). O

 Alternatively, it is possible to maintain fingerprints and counts of items that are inserted in0m. 1

the sketch. If a 64-bit fingerprint and count is maintained, then the space requirement becomes

 which is significantly larger. Another downside of the fingerprint-based approach is that4m,6

elements with will be overrepresented in the sketch. Consequently, the standard error forf = 1

larger frequencies will be higher. Thus, the preprocessing approach is to be recommended.

NOTE

A mathematical proof that the standard error is has not been provided herein.()O √α

While the empirical evidence is compelling, having a mathematical proof that the relative error is

 would tie up an important loose end.()O √α

REFERENCES

[1] Durand, Marianne, and Philippe Flajolet. "​Loglog counting of large cardinalities​." ​European

Symposium on Algorithms​. Springer, Berlin, Heidelberg, 2003.

[2] Flajolet, Philippe, and G. Nigel Martin. "​Probabilistic counting algorithms for data base

applications.​" ​Journal of computer and system sciences​ 31.2 (1985): 182-209.

[3] Flajolet, Philippe, et al. "​Hyperloglog: the analysis of a near-optimal cardinality estimation

algorithm.​" 2007.

[4] Heule, Stefan, Marc Nunkesser, and Alexander Hall. "​HyperLogLog in practice: algorithmic

engineering of a state of the art cardinality estimation algorithm.​" ​Proceedings of the 16th

International Conference on Extending Database Technology​. 2013.

[5] Indyk, Piotr, and David Woodruff. "​Tight lower bounds for the distinct elements problem.​"

44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings.​. IEEE,

2003.

[6] Kane, Daniel M., Jelani Nelson, and David P. Woodruff. "​An optimal algorithm for the

distinct elements problem​." ​Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems​. 2010.

[7] ​Kreuter, Benjamin, Craig William Wright, Evgeny Sergeevich Skvortsov, Raimundo

Mirisola, and Yao Wang. "​Privacy-Preserving Secure Cardinality and Frequency Estimation​."

(2020).

http://redisgate.jp/download/DuFl03-LNCS.pdf
https://www.sciencedirect.com/science/article/pii/0022000085900418/pdf?md5=4e045817344b56cd28fb30b1f234e056&pid=1-s2.0-0022000085900418-main.pdf&_valck=1
https://www.sciencedirect.com/science/article/pii/0022000085900418/pdf?md5=4e045817344b56cd28fb30b1f234e056&pid=1-s2.0-0022000085900418-main.pdf&_valck=1
https://hal.archives-ouvertes.fr/docs/00/40/61/66/PDF/FlFuGaMe07.pdf
https://hal.archives-ouvertes.fr/docs/00/40/61/66/PDF/FlFuGaMe07.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/40671.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/40671.pdf
http://web.mit.edu/dpwood/www/distinct.pdf
https://dash.harvard.edu/bitstream/handle/1/13820438/f0.pdf;sequence=1
https://dash.harvard.edu/bitstream/handle/1/13820438/f0.pdf;sequence=1
https://research.google/pubs/pub49177/

APPENDIX:​ Proofs of theorems

Theorem 1​. For all there is a value such that ,ε > 0 (α,)U ε r(K (α,)) . P max − mn > U ε < ε

Proof​. In fact, we can take Let As a preliminary, we(α,) log)/α. U ε = 1 − (ε (α,). r = mn + U ε

note that This can be seen as follows:/n. e−αr ≤ ε

Recall that the cumulative mass function for assigning elements to is ThisB (i) . F = 1 − e−α(i+1)

represents the probability that a randomly chosen identifier will be assigned to an index at

location or lower. Let be the probability that all identifiers are assigned to locationsi (i)F max n

 or lower. Then, Thus,i (i) (i) . F max = F n

The first inequality is justified by the fact that if QED.1) x (− x n ≥ 1 − n . 0 < x < 1

Corollary​. Let the largest index for which . For all the probability thatBmax i [i]B = 1 ,ε > 0

 is greater than log(n/ε))/α Bmax < (+ 1 . 1 − ε

Proof​: log(n/ε) 1)/α log 1 ε)/α m (α,). (+ = (n + − log = n + U ε

The upshot of this corollary is that the maximum index with arbitrarily high(log(n)/α) Bmax = O

probability.

The second theorem is a bit harder to prove, and so we proceed through a series of lemmas.

Lemma 1. ​Let . Then, mk < n (B[m] 0) (e) .Pr n − k = ≤ (1−e)−α k

Proof​:

The inequality at step (1) is justified because The inequality at step (2) is justified. 1 − x < e−x

because The inequality at line (3) is justified because if and/α. mn ≤ log n − e− eαk < k α k ≥ 1

 QED.. α ≥ 0

Lemma 2. ​where (K) ,Pr min ≤ mn − k ≤ uk

1−u . u = e1−eα

Proof:

The inequality at line (4) is justified by Lemma 1, and the inequality at line (5) is justified

because and therefore QED. 1 u < . 1 − um −k+1n < 1

Lemma 3.​ If then , where ,0 < α < 1 1
1−u < α

2 . u = e1−eα

Proof:​ We start by noting that

The inequality at line (6) is justified because The inequality at line (7) is obtained by. 1 + x < ex

truncating the Taylor series for The inequality at line (8) is obtained by observing that if. ex

 then so we may replace by We now note that1,α < α,α2 < /2α2 /2. α

QED.

Lemma 4. ​where /e,u1/α < 1 . u = e1−eα

Proof: ​As noted in the previous lemma, Therefore, (−). u ≤ exp α (−) .u1/α ≤ exp α 1/α = e−1

QED.

Lemma 5. ​If and then where , 00 < α < 1 < ε < 1 ,k > α
−log /2ε ,uk

1−u ≤ ε . u = e1−eα

Proof​: Here

The inequality at line (9) is justified because and . The inequality at line0 < u < 1 k > α
log /2ε

(10) comes from applying Lemma 4. The inequality at line (11) comes from applying Lemma 3.

QED.

Theorem 2​. If there is a value such that ,0 < α < 1 (α,)L ε r(m (α,)) . P n − Kmin > L ε < ε

Proof​: We take where We then have(α,) (ε/2)/α,L ε = − log . u = e1−eα

Line (12) is justified by Lemma 2, and line (13) is justified by Lemma 5. QED.

Theorem 3. (α,) (α,) (− log)/α). U ε + L ε = O (ε

Proof: ​Recall that and where Both(α, ε) log)/αU = 1 − (ε (α,) log /2)/α,L ε = − (ε . u = e1−eα

of these are QED.(− /α). O log ε

