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ABSTRACT 

Techniques herein provide a capability to predict failures of hardware by using 

onboard sensors and provide for the ability to move from detection to prediction for 

hardware failures.  In turn, such techniques can help to reduce downtime due to marginal 

hardware and improves network availability.  The techniques can also help to reduce 

unnecessary maintenance and changes related to replacing hardware that has not failed, 

which can lead to business efficiencies for both customers and vendors and may become 

even more important in a Network-As-A-Service (NAAS) context in which both sides are 

paid by the vendor. 

 

DETAILED DESCRIPTION 

Every company operating a large fleet of electronic devices has to deal with 

hardware failures, repairs, and replacement. While such issues may be an expected part of 

doing business, some aspects of electronic device lifecycle can be very impactful to both 

vendor and customers businesses such as, for example: 

 Some failures of marginal hardware are non-obvious. Devices may 'appear to 

work' such that even diagnostics are at times passing, but some device functions 

may be impaired. Such failures, at times, can lead to serious outages and, thus, 

every improvement in detecting and eliminating such failures is important. 

 In some cases due to manufacturing processes, variations for a significant batch 

of devices may receive a component that does not have its corresponding 

designed life span. At the time of manufacturing, such devices and components 

may pass all tests but weeks/months afterward may fail in the field due to the 
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premature/rapid aging of the marginal component. On the technical side, this 

often leads to failures as described above. On the business side, this can lead to 

massive recall / replacement / rework campaigns when more parts have to be 

recalled from the field than necessary (due to an inability to find devices that 

have marginal components). 

 For customer-managed hardware replacement, hardware that is not failing may 

be replaced, which means that the expense and operational risks of uninstalling, 

shipping, and inspecting hardware are unnecessary.  The impacts of such 

replacements are shared by both customer and vendor. 

 In a Network-As-A-Service (NAAS) context, all impacts from the 

aforementioned issues are transferred entirely on a vendor, thereby placing even 

more emphasis on balancing/preventing outages caused by hardware failures 

while replacing only the devices with failing hardware. 

At a technical level, many failures of the type explained above are caused by 

semiconductor aging. There are 4 mechanisms related to semiconductor reliability, 

degradation, and failures, including Electromigration (EM), Time-Dependent Dielectric 

Breakdown (TDDB), Hot Carrier Injection (HCI), and Negative Bias Temperature 

Instability (NBTI). Modern semiconductors are designed taking into account the 

understanding of these mechanisms. 

Correctly manufactured components typically have a life expectation spanning over 

a decade.  Should, however, some undetected process variations occur during component 

manufacturing, such a component may still be functional and pass functional tests, but have 

much shorter lifespan (e.g., often weeks/months instead of decades). Because high-level 

functional tests are passed, it is difficult to detect the presence of such marginal components 

before they fail. 

Presented herein are techniques to address such issues by providing a system to 

predict semiconductor (transistor-level) failures by using data from embedded sensors. 

This system is focusing on intrinsic sensors. Examples of such sensors may include 

frequency and voltage sensors. Through continuous monitoring, it is possible to detect the 

onset of rapid aging when device is still functional, but is moving fast towards a failure.  
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The predictive nature of such detection allows proactive action to be taken, avoiding 

possible downtime or outage. 

Previously, such an approach was not practical as developing a monitoring system 

for each component individually was uneconomical. Techniques herein address this issue 

by building a general pipeline that adapts to individual characteristics of the components 

using machine learning. 

During operation utilizing the system of this proposal, sensor data is combined with 

'healthy population' data collected during the manufacturing stage of device lifecycle and 

'aged/weak population' data from stress-testing and other sources. 

Combining data collection using telemetry and processing using machine learning 

with healthy and weak population examples provides for the ability to follow the health of 

individual components. As representations of specific components may shift to a low-

density space or to a vicinity of weak population, the system can calculate risks for 

components involved.  Figure 1, below, provides a high-level overview illustrating the core 

concepts of the system. 

 
Figure 1: System Concepts 

 
Utilizing the system, risk of failure is evaluated as proximity changes to weak or 

known failure pattern groups.  The representation shown in Figure 1, above, is a product 
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of combining an unsupervised processing pipeline creating representations and use of 

known good and known degraded populations as the supervision signal. 

As illustrated in the following Figures, the system of this proposal consists of 3 

parts: training, accelerated inference, and automated analysis.  Figure 2, below, illustrates 

example details associated with system training operations that may be performed. 

 

Figure 2: System Training Operations 

 

Training operations may utilize a Uniform Manifold Approximation and Projection 

(UMAP) algorithm for dimensionality reduction from 'wide' space (equal to number of 

sensors) to a narrow space - which can be quickly examined visually. Subsequently low-

dimensional representation is segmented utilizing a Density-based Spatial Clustering of 

Applications with Noise (DBSCAN) algorithm with silhouette analysis driving the hyper-

parameters of the DBSCAN algorithm.   

Implementations may utilize similar algorithms such as Hierarchical DBSCAN (H-

DBSCAN) or Ordering Points To Identify the Clustering Structure (OPTICS), hierarchical 

clustering, and/or the like. As dimensionality reduction is computationally intensive, a 

proxy model (e.g., utilizing a Random Forest algorithm) can be utilized to allow fast 
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inference, which permits making predictions using very little resources and, thus, allows 

the system to scale. It should be noted that alternative algorithms can be utilized for 

different implementations such as Gradient Boosting Machine (GBM), neural networks, 

and/or the like. The probability of errors introduced by bypassing dimensionality reduction 

is compensated by batch-reconfirming predictions on a periodic basis, as discussed in 

further detail below with reference to periodic analysis operations that may be performed 

by the system. 

 Figure 3, below, illustrates example details associated with accelerated inference 

operations that may be performed. 

 

Figure 3: Accelerated Inference Operations 

The inference step, as illustrated in Figure 3, above, applies the proxy model to a 

data point (e.g., a sensor reading) to establish whether the given data point belongs to 

common population. Additionally, distances to centers of interest (e.g., healthy, aged, 

known issues, etc.) are evaluated. Together with prior history, this provides for the ability 

to produce a marginality score for new data points very quickly.  Predictions are validated 

versus pre-calculated distance distributions for validity.  For example, if distances fall out 

of the expected distributions, a prediction is discarded and for batch workflows a valid 

prediction will be made during periodic workflow.  For flows requiring near-real time 

prediction, a data point prediction is recalculated using the full workflow, as illustrated 

above via the training operations. 

Figure 4, below, illustrates example details associated with periodic analysis 

operations that may be performed. 
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Figure 4: Periodic Analysis Operations 

Periodic analysis may serve several purposes.  For example, periodic analysis may 

provide for the ability to revalidate predictions in a batch, thus detecting/correcting any 

potential imprecision introduced by proxy modelling.  However, a main purpose of 

periodic analysis may be to detect large changes that are not specifically related to a 

particular device/component, but rather to a population as a whole. Such issues can be 

detected by spotting formations of new clusters in a low-dimensional representation.  Even 

earlier dynamics can be seen by observing the shifts within a cluster such as, for example, 

when a subset of devices starts to move toward the fringes of a cluster. 

Thus, provided herein are a system and techniques to utilize intrinsic sensor 

readings for evaluation of marginality and risk using the representation of 

multidimensional sensor data. Data from various stages of device lifecycle such as 

manufacturing and accelerated stress-testing can be utilized to complement representations 

produced through unsupervised and self-supervised techniques and enable predictions for 

products before instances of products reach old age. 

Additionally, techniques herein may provide for establishing hyper-parameters for 

grouping (e.g., utilizing DBSCAN or other density-based algorithm) using silhouette 

analysis and may also facilitate automated centroid splitting for complex shaped clusters 

to balance accuracy and computational load during inference.  Further, techniques herein 

may provide cluster membership explanations using a Shapley algorithm for analysis and 

interpretation.  Further, techniques herein may facilitate the acceleration of inference 

utilizing proxy modelling such that inference can be performed in very resource-lean 

manner, for example, on a device, and also later through slow-batch confirmation.  
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Moreover, techniques herein may facilitate population-level discovery via new cluster 

formation detection and population shift detection. 

In summary, techniques herein provide a capability to predict failures of hardware 

by using onboard sensors and provide for the ability to move from detection to prediction 

for hardware failures.  In turn, this helps to reduce downtime due to marginal hardware and 

improves network availability.  The techniques also help to reduce unnecessary 

maintenance and changes related to replacing hardware that has not failed, which can lead 

to business efficiencies for both customers and vendors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

8

Goloubew et al.: SYSTEM AND METHOD FOR PREDICTING HARDWARE FAILURES OF ELECTRONIC

Published by Technical Disclosure Commons, 2020


	SYSTEM AND METHOD FOR PREDICTING HARDWARE FAILURES OF ELECTRONIC DEVICES USING ONBOARD SENSORS AND DEVICE LIFECYCLE DATA
	Recommended Citation

	Microsoft Word - 1283669_1

