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ABSTRACT 

Network operators are overloaded with numerous recommendations coming from 

vendors, some of which come from automated recommender systems. Such automated 

recommendations may or may not apply to a customer’s specific environment, often lack 

an assessment of priority within the context of the other recommendations, and may or may 

not apply to an individual customer’s scenario.  To address these challenges, techniques 

are presented herein that provide a novel approach to generating and ranking 

recommendations coming from a dynamic recommender system where rankings are based 

on enriched context from, for example, live data on real networks, activities performed by 

real customers, etc.  Such techniques enhance the operational features of existing networks 

by recommending popular items to new customers, identifying critical items that can be 

proactively addressed in order to provide additional services, and reducing Technical 

Assistance Center (TAC) cases when patches exist for common issues. 

 

 

DETAILED DESCRIPTION 

Network operators are overloaded with numerous recommendations coming from 

vendors, some of which come from automated recommender systems. Such automated 

recommendations may or may not apply to a customer’s specific environment.  Further, 

such recommendations often lack an assessment of priority within the context of the other 

recommendations that such a system provides as well as adoption trends of industry peers.  

Finally, such recommendations may or may not apply to an individual customer’s scenario.  

Even high priority recommendations are not of value to a customer who is not running a 

configuration that would benefit from the recommendations. 
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Recommendations in this context may be sourced from, for example, vendors, 

experts, expert systems, or machine learning pipelines.  Ultimately the customer is 

presented with an unwieldy list of items that can cause them to miss the important 

recommendations or tune out the source of the items altogether.  The general professional 

services industry presents a large volume of recommendations to customers, and while 

valuable, customer feedback suggests that it is difficult to parse and prioritize the insights 

and recommendations. 

To address these types of challenges techniques are presented herein that support a 

recommender system that is designed to cover any cases that meet the following criteria: 

 New items become available all of the time. 

 A large population is available to observe the adoption of those items. 

 When the items become part of a larger set, they are no longer needed if the set 

itself is used. 

This is a common scenario across many areas regarding customer recommendations.  

There is a need to add priority and ranking to the automated recommendations such that 

the network operator can make a decision whether to implement the recommendation in 

the short term, the longer term, or not at all. 

For purposes of exposition, in the narrative that follows aspects of the techniques 

presented herein will be described with reference to software patches for an operating 

system (OS).   

Aspects of the techniques presented herein support a method for recommending 

only the most relevant items to customers, or as candidates for automated deployment 

methods.  Such ranking of the items ensures that only the highly relevant ones that are 

deployed in the largest and most active customers will be identified for deployment in 

customers that may be challenged (by, for example, a lack of skills, a lack of resources, 

etc.) in keeping up with software patch levels.  

It is important to note that software patching is only one example of how aspects of 

the techniques presented herein may be employed.  Further aspects of the techniques 

presented herein may utilize routing protocol features.  For example, perhaps most 

customers who run Open Shortest Path First (OSPF) (i.e., Feature A) on a particular device 

(i.e., Feature B) choose to change the way OSPF metrics are calculated (i.e., Feature C).  
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In addition, the rate of enabling the new feature C once it became available is relatively 

high (thus increasing the relevance).   This creates a strong recommendation to enable this 

feature for customers that have not yet enabled it.   

The framework that is associated with the techniques presented herein may be 

applied to any feature recommendation, configuration best practice, security advisory 

remediation, etc.  For simplicity of exposition the discussion that follows will focus on a 

software patching scenario. 

Aspects of the techniques presented herein include a series of stages to create a 

ranked list of recommendations.  For the purposes of illustration, in the example that is 

presented below various of the stages are highlighted using a very common yet complex 

scenario for recommendations – i.e., a base software that has both patch and service pack 

capability.  As will be readily apparent, of particular interest and note are stages one and 

two (e.g., leveraging off-the-shelf solutions for feature identification) and stages three and 

four (e.g., developing a score for each feature based on a rate of adoption and continued 

usage by peers). 

A first stage of the techniques presented herein encompasses a pairwise 

recommender system that is built using off-the-shelf algorithms.  Pairwise feature 

comparisons with historical software patch data and lift metrics are used to provide an 

initial ranking of software patches, as well as an indication of which software patches are 

"real" because they have seen in real network data.  For the general recommendations case, 

this could be classes of recommendations that have been actioned by other customers. 

A second stage of the techniques presented herein employs the initial rate of 

deployment to combine with the lift and support metrics from stage one.  This is a second 

scoring method which adjusts the patch ranking to account for deployment statistics seen 

across thousands of other network devices.  Again, for the general recommendations case 

this would be the relative pace of taking action once recommendations were first shown to 

a customer (e.g., was it immediate, thus having a high rank, or did it linger, thus having a 

lower rank). 

A third stage of the techniques presented herein utilizes network controllers or 

individual devices to collect the latest configuration data from unseen, new devices, and 

apply the ranked rules from stages one and two to generate a ranked list of candidate 
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patches for each entry.  In the general recommendations case, this could be the current 

"network improvement plan" or "action list" from a cloud service. 

A fourth stage of the techniques presented herein is a filter stage that looks at user-

to-user similarity (as opposed to item-to-item similarity in stages one and two) to determine 

the applicability of the recommended patches.  One example is configuration similarity 

(e.g., modeled features as a configuration representation) to determine possible usefulness 

based on configurations of the device population that has the software patch installed.  In 

the general recommendations case, this could be an industry peer group. 

A fifth stage of the techniques presented herein integrates with an Information 

Technology Service Management (ITSM) system to open a ticket that includes, possibly 

among other things, the recommendation, the benefits to customers, and an option/services 

to make the change for the customer.  This stage may also contain a final "don't 

recommend" list that is generated by expert systems matching (e.g., a patch is not relevant, 

a patch is in an installed service pack, etc.) as well as the input from stage six (e.g., a 

customer indicated no interest in the patch). 

A sixth stage of the techniques presented herein closes the loop by developing a 

deployment plan (e.g., manual, automated system, etc.) or removing items that are no 

longer relevant (e.g., based on information from stage five) and then applying the changes 

in the network via the appropriate process for the type of recommendation. 

Aspects of the narrative that was presented above may be illustrated through Figure 

1, below. 

 

Figure 1: Fasttrack Recommender System 
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As described above, stage one encompasses a pairwise recommender system that 

looks at all of the items in the item sets as pairs.  This identifies items that are seen together, 

and can also double as a reasoner to determine that a patch is contained in other items.  For 

example, as illustrated in Figure 2, below, both patches are contained in the service pack 

three.  In any case of the customer having one but not the other, the system can infer that a 

service pack is not installed, and the missing feature should be recommended.   

 

Figure 2: Illustrative Associations 

 

 In Figure 2, above, the top graph shows a clear relationship between two items 

commonly seen together, in a diagram that shows the overall deployment percentage.  Any 
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standard recommender system will pick these up as association rules.  (Note that the 

Apriori algorithm was used in this instance.) 

Figure 3, below, shows another example of patches that show up pairwise together 

in a different version of software. There are many patches covered, but there are clearly 

four standouts that are deployed at a much higher rate than any others.  Those standouts 

get scored higher in stage two of the system.  From some level of minimum deployment 

seen in real networks (such as, for example, 20% of the peer devices have the feature), an 

evaluation of the initial deployment line is examined and a score is generated.  The purpose 

of the score is to indicate how fast the patch was deployed once it was made publicly 

available.  Such a rate may be a proxy indicator that the patch is valuable and useful to 

most customers.  In Figure 3, below, of note are the patches and the deployed rate observed 

after they were introduced. 

 

 

Figure 3: Patch Deployment Patterns 

 

Figure 4, below, shows that there are six patches that are appearing in customer 

networks at a deployment rate greater than 20%.  By evaluating the ratio of the number of 

days it took to reach maximum deployment and the actual maximum deployment, and 

enhancing that ratio with the number of days the patch had support over the interesting 

value, a relative score may be developed for each patch of interest using the following 

calculation: 
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P = Deployment percent maximum.  

D = Days to go from a minimum to a maximum deployed percent.  

L = Length of days the patch was above the interesting deployment rate. 

P/D * L = A score used to rank the feature and influence the recommendation from 

stage one. 

 

Figure 4: Relative Patch Deployments 

 

An example of the scoring algorithm for the features that were described above is 

shown in Figure 5, below. 

 

Figure 5: Illustrative Scoring 

Under aspects of the techniques presented herein a score is normalized to fit within 

a range, such as, for example, zero (0) to ten (10).  When all of the scores are evaluated 

together elements having very high deployment rates are identified and scored higher, 

adding quality to lift scores (e.g., from the off-the-shelf algorithms) that are relatively the 

same.  As depicted in Figure 6, below, patch cscvn95059 is scored the highest and it is 

clearly visible as the most widely deployed patch in Figure 4, above. 
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Figure 6: Normalized Scoring 

During stage four, after similar devices are selected the devices are searched for 

antecedents and if a consequent is not found it is recommended.  All of the scoring is 

provided for ranking via any system that will ingest same and provide a presentation layer.  

Figure 7, below, depicts an example of applying the rules and generating the 

recommendations and scores that would be output.  Note that each underscored item is a 

real customer device. 

 

 

Figure 7: Illustrative Recommendations and Scores 

 

It is important to note that a key element for a useful system is the "null" list that is 

developed during stage five.  For a variety of reasons, recommendations that arise from the 

techniques presented herein (or from any system like it) may be applicable in a technical 

sense but may not be of interest to an end user.  This list may be maintained using inputs 

from all possible sources, including, for example, user inputs, cross validations (e.g., 

perhaps one item supersedes another, etc.), or any other methods. 

It is also important to note that the techniques presented herein do not replace any 

full software upgrade systems, such as, for example, Optimal Software Versions (OSV), 

but instead enhances cases where a full software upgrade is not necessary because patches 

are available. 
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Overall, the techniques that are presented herein can recommend changes that are 

most applicable as part of, for example, risk remediation platforms including configuration 

best practices, software updates (e.g., patching), security advisories, feature adoption, and 

more, in order to increase the value, context, and adoption success of recommendations to 

customers. 

In summary, techniques have been presented that provide a novel approach to 

generating and ranking recommendations coming from a dynamic recommender system 

where rankings are based on enriched context from, for example, live data on real networks, 

activities performed by real customers, etc.  Such techniques enhance the operational 

features of existing networks by recommending popular items to new customers, 

identifying critical items that can be proactively addressed in order to provide additional 

services, and reducing TAC cases when patches exist for common issues.  In some 

instances, the techniques may facilitate using an off the shelf recommender system for 

features combined with a score for each feature based on rate of adoption and continued 

usage by peers.  
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