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ABSTRACT 

Techniques are presented herein that support a Hypertext Transfer Protocol (HTTP) 

Representational State Transfer (RESTful) Application Programming Interface (API) 

employing a freeform Uniform Resource Locator (URL) to interact with a hierarchical 

JavaScript Object Notation (JSON) data store.  Additionally, aspects of the techniques 

presented herein incorporate a smart caching strategy to, for example, optimize cache size, 

support reads and writes to an underlying database, and reduce cache misses. 

 

DETAILED DESCRIPTION 

Websites comprising personalized user interfaces are plentiful.  Examples include, 

among others, customer portals, shopping websites, social media sites, ticketing websites, 

etc.  Additionally, an enterprise website or portal which offers a personalized user 

experience needs to save and retrieve various user data relevant to the website experience.  

In short, such websites are found anywhere users can login and experience a site according 

to their data and preferences. 

Such websites are evolving from monolithic model-view-controller (MVC) models 

to become microservice-based and cloud-based distributed solutions.  As a result, storing 

and accessing user preferences and personalized settings may be duplicated in distributed 

components.  For example, different modules may be developed and maintained by 

different teams, resulting in, possibly among other things, such data being saved in non-

uniform formats thus limiting the data’s reuse or aggregation across modules. 

To address these types of challenges techniques are presented herein that support a  

freeform Uniform Resource Identifier (URI) based, RESTful web service supporting 

hierarchical JSON data storage and retrieval. 
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Aspects of the techniques presented herein expose a dynamic and freeform "path" 

in a HTTP URL to store JSON data.  The saved data in effect aggregates into a single 

virtual JSON artifact, per user or globally.  Portions of the virtual JSON structure may then 

be retrieved using the corresponding freeform paths.  Such a capability becomes useful for 

distributed cloud-based applications as they interact with a shared and dynamic data model 

for user and global preferences and shared settings.  Additionally, aspects of the techniques 

presented herein incorporate a smart caching strategy to provide, for example, faster API 

responses by caching the most frequently used data entries for selected users who may be 

active at any time. 

Aspects of the techniques presented herein include a number of unique features, 

various of which are briefly described below. 

A first unique feature of the techniques presented herein comprises a freeform path 

in a HTTP web service having the URL pattern https://<host>/<context-

path>/user/<path>.  Data at the /user/* path is saved per user Id per path where a user 

is uniquely identified through an authentication token that is included in the HTTP request. 

A second unique feature of the techniques presented herein comprises another URL 

pattern that saves data globally (i.e., shared across all users) --  

https://<host>/<context-path>/global/<path>.  Data at the /global/* path is 

saved commonly across all users. 

Under a third unique feature of the techniques presented herein, a web service stores 

and retrieves the URLs and the associated JSON data from a relational database or from a 

non-relational (e.g., NoSQL) data store.  Data is stored along with metadata information 

including, for example, a timestamp and an owner identifier (e.g., a user Id or "global"). 

Under a fourth unique feature of the techniques presented herein, a web service 

provides the ability to store and retrieve partial data using nested URL paths to traverse the 

JSON data.  Illustrative examples of this feature are presented below. 

A fifth unique feature of the techniques presented herein comprises a caching 

strategy in support of enhanced performance.  Of interest and note in connection with the 

caching strategy are, for example: 

1. The use of write-through and a lazy-loaded cache for faster API response. 
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2. Each cache entry saves metadata information including, possibly among other 

things, a last accessed timestamp, a created timestamp, an identifier of the user 

who owns the cached data, etc. 

3. Cache logic that detects which paths are most requested (e.g., active paths), and 

by which users (e.g., active users), and then reloads that data into container 

memory every few seconds. 

4. At service startup the cache is ‘warmed up’ to load the most recently used paths 

using the strategy that was described in Item #3, above. 

5. Intelligence behind the ‘warm up’ process by which the cache is only ‘warmed 

up’ if there are active users employing the service.  If there are no active users, 

then the ‘warm up’ process may sleep to save Central Processing Unit (CPU) 

cycles. 

Under a sixth unique feature of the techniques presented herein, using the stored 

data a web service exposes API endpoints to provide aggregated information for analytics 

such as, for example, most active users, user last login, most and least paths used, etc. 

A seventh unique feature of the techniques presented herein, noted briefly above, 

comprises data storage compatibility with relational and non-relational (e.g., NoSQL) 

databases.   Of interest and note in connection with such data storage compatibility are, for 

example: 

1. Each datum that is saved is saved as a record with a unique identifier that is 

formed from the hash value of the path.  That is, there is a key (i.e., a path) and 

a value (i.e., the data itself). 

2. Multiple save requests to different paths (including a path and, possibly, one or 

more subpaths) will create separate records.  In a relational database this is 

stored as a "row" in a "table".  In a non-relational (e.g., NoSQL) database, this 

is stored as a "document" in a "collection".  If a save request overwrites a path 

for which records of subpaths exist in the database, those subpaths records are 

deleted as part of the request. 

3. When a read request is received (a) all the records for that path and subpath are 

read (from a database or from the cache), (b) sorted based on the timestamp of 

each record, and (c) processed linearly and consolidated into a single JSON 
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structure by the service.  The sorting ensures that older saves are overwritten by 

the newer data in the final output. 

Aspects of the techniques presented herein employ, among other things, standard 

web API features.  For example: 

1. A web service is authenticated using JSON Web Tokens (JWT) for Open 

Authorization Protocol (OAuth) 2.0.  See, for example, https://oauth.net/2/jwt. 

2. Following RESTful design practices, HTTP methods are used to determine an 

action that is to be performed.  For example, a GET is used to read a JSON 

artifact at a path, a POST is used to write a JSON artifact to a path, and a 

DELETE is used to delete data at a path. 

Elements of the techniques presented herein may be further explicated through the 

exemplary design illustration that is presented in Figure 1, below. 

 

 

Figure 1: Design Illustration 

 

Aspects of the techniques presented herein may be better understood through the 

illustrative example that is presented below. 
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