
Technical Disclosure Commons Technical Disclosure Commons 

Defensive Publications Series 

November 2020 

Pass By Reference Substitution During Code Migration Pass By Reference Substitution During Code Migration 

Paneendra BA 

Abhay Garg 

Alexandre Ginet 

Arijit De 

Follow this and additional works at: https://www.tdcommons.org/dpubs_series 

Recommended Citation Recommended Citation 
BA, Paneendra; Garg, Abhay; Ginet, Alexandre; and De, Arijit, "Pass By Reference Substitution During Code 
Migration", Technical Disclosure Commons, (November 17, 2020) 
https://www.tdcommons.org/dpubs_series/3777 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for 
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/352604744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F3777&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/3777?utm_source=www.tdcommons.org%2Fdpubs_series%2F3777&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


Pass By Reference Substitution During Code Migration 

ABSTRACT 

This disclosure describes code conversion techniques for replacement of function calls 

that utilize pass by reference in program code in a source language with equivalent constructs in 

a target language that does not support pass by reference. When a pass by reference is 

encountered in the source program code, a wrapper object is created by wrapping a native object 

with a pre-defined key. In the translated code, the value of the object for the specified key is 

updated instead of being accessed as a normal variable. Upon return of program control from the 

called function, the value assigned to the object for the key is assigned back to the original 

variable. The variable now stores an updated value, just as it would in a pass by reference 

scenario. 

KEYWORDS 

● Pass by reference 

● Visual Basic 

● JavaScript 

● Code migration 

● Code conversion 

● Legacy code 

● Native type 

BACKGROUND 

Code written in a particular programming language may have to be converted (translated) 

into code in a different programming language, e.g., during migration of legacy computer 

applications. Some source programming languages such as Visual Basic for Applications (VBA), 

2

BA et al.: Pass By Reference Substitution During Code Migration

Published by Technical Disclosure Commons, 2020



support passing native type arguments to functions either by reference or by value, which can be 

specified in the function call. However, some target programming languages to which such code 

is translated, e.g. JavaScript, only support passing arguments by value and do not support passing 

arguments by reference. During conversion of code that includes function calls where arguments 

are passed by reference to such a target language, function calls need to be suitably modified 

using features supported by the target language. 

DESCRIPTION 

This disclosure describes techniques for replacement of function calls where arguments 

are passed by reference with equivalent function calls where arguments are passed by value. The 

techniques can be utilized, for example, during migration of code from one programming 

language that supports the passing of arguments by reference to another programming language 

that does not support the passing of arguments by reference. An automated tool can implement 

the described techniques to convert code written in a particular language that supports the 

passing of arguments by value or by reference, e.g., Visual Basic Applications (VBA), etc. to a 

different programming language such as JavaScript that only supports the passing of arguments 

by value for native types and passing by reference for objects/arrays. 

When a pass by reference is encountered in the source program code, a wrapper object is 

created by wrapping a native object with a pre-defined key. In the translated code in the target 

language, the value of the object for the specified key is updated instead of being accessed as a 

normal variable. Upon return of program control from the called function, the value assigned to 

the object for the key is assigned back to the original variable. The variable now stores an 

updated value, just as it would in a pass by reference scenario. 

3

Defensive Publications Series, Art. 3777 [2020]

https://www.tdcommons.org/dpubs_series/3777



Fig. 1: Pass by Reference conversion; (a) original code; (b) equivalent code 

Fig. 1 depicts an example function definition and function call where variables are passed 

by reference in source program code. Fig. 1(a) depicts code in an original programming language 

that utilizes pass by reference (for “num”) while Fig. 1(b) depicts equivalent translated code that 

utilizes a pass by value mechanism (“numwrapper”) to replicate the original function. As 

depicted in Fig. 1(b), all instances in the function definition of the object passed by reference are 

replaced in the translated code by the corresponding wrapper object. 

Techniques of this disclosure can also be extended to arrays and properties that are 

passed by reference. In this case, it is ensured that the setter is called after the method invocation 

ends instead of trying to assign it to the variable. 

In an example, the described techniques can be used to convert macros, e.g., in Microsoft 

Excel, that are written in VBA to JavaScript, e.g., suitable for web-based spreadsheet 

applications. 

CONCLUSION 

This disclosure describes code conversion techniques for replacement of function calls 

that utilize pass by reference in program code in a source language with equivalent constructs in 

4

BA et al.: Pass By Reference Substitution During Code Migration

Published by Technical Disclosure Commons, 2020



a target language that does not support pass by reference. When a pass by reference is 

encountered in the source program code, a wrapper object is created by wrapping a native object 

with a pre-defined key. In the translated code, the value of the object for the specified key is 

updated instead of being accessed as a normal variable. Upon return of program control from the 

called function, the value assigned to the object for the key is assigned back to the original 

variable. The variable now stores an updated value, just as it would in a pass by reference 

scenario. 

REFERENCES 

1. Kesavan, Raghuraman, “[Javascript] Pass By Value And Pass By Reference In 

JavaScript”, August 2017, https://medium.com/nodesimplified/javascript-pass-by-value-

and-pass-by-reference-in-javascript-fcf10305aa9c, last accessed 25 October 2020. 

2. Barbour, Brian, “Passed By Reference Vs. Value In Javascript”, June 2019, 

https://dev.to/steelvoltage/passed-by-reference-vs-value-in-javascript-2fna, last accessed 

25 October 2020. 

3. Rauschmayer, Axel, “Speaking JavaScript, Chapter 15. Functions”, 

http://speakingjs.com/es5/ch15.html, last accessed 25 October 2020. 

4. Gardner, Todd H., “How to Correctly Wrap a JavaScript Function”, 

https://trackjs.com/blog/how-to-wrap-javascript-functions/ last accessed 25 October 

2020. 

5. VBA-to-JavaScript-Translator, https://github.com/mha105/VBA-to-JavaScript-Translator

last accessed 25 October 2020. 

5

Defensive Publications Series, Art. 3777 [2020]

https://www.tdcommons.org/dpubs_series/3777


	Pass By Reference Substitution During Code Migration
	Recommended Citation

	/var/tmp/StampPDF/sYxFRbZVws/tmp.1605259779.pdf.RM4BO

