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Programmable Hardware Accelerator For Regular Expression Queries 

ABSTRACT 

Regular expression (regex) queries are used extensively in data analytics applications. 

Hardware-based regex searches can make searches efficient across a variety of application 

domains. However, hardware accelerators that can support arbitrary regular expressions are 

currently infeasible due to the very large number of possible states and state transitions. This 

disclosure describes techniques to map an input regular expression to a non-deterministic finite 

automaton and hardware such as FPGA or ASIC that can be programmed to filter an input data 

stream to search for arbitrary (customer-given) regular expressions. 

KEYWORDS 

● Regular expression 

● Regex query 

● Regex matching 

● Hardware accelerator 

● Deterministic finite automaton (DFA) 

● Non-deterministic finite automaton (NFA) 

BACKGROUND 

Regular expression (regex) queries are used extensively in data analytics applications, 

e.g., to search through data, to match patterns, to match logs, to crawl websites, in search 

indexing, etc. Regular expression query filtering is usually performed by mapping the regular 

expression query to either a deterministic finite automaton (DFA) or non-deterministic finite 

automaton (NFA). Implementing DFA and NFAs in hardware such as a field-programmable gate 

array (FPGA) or application-specific integrated circuit (ASIC) for a single regular expression is 
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relatively straightforward. However, DFA/NFA hardware accelerators that can support arbitrary 

regular expressions are currently considered infeasible due to the very large number of possible 

states and state transitions.  

DESCRIPTION 

This disclosure describes techniques to map an input regular expression to an NFA and a 

hardware design such as a field-programmable gate array (FPGA) or application-specific 

integrated circuit (ASIC) that can be programmed to filter an input data stream to search for an 

arbitrary (customer-given) regular expression. 

Per the techniques, a regular expression, e.g., one that is to be matched on a large data 

set, is converted into an NFA using standard techniques. The states and state-transitions of the 

NFA are converted into programmable values in a regex accelerator. The regex accelerator has 

programmable logic that has as activations the NFA that is programmed into it.  

At this initial state after programming, the NFA has no states that are active; its output is 

therefore zero. The input data that is to be filtered is broken into tuples and streamed through the 

filter. Tuples are individual units of data, each comprising one or more ASCII characters. The 

inflow of ASCII characters into the regex accelerator causes state transitions to occur. The output 

result logic monitors for the required state to be activated in order to provide a positive result. 

The output is ready after all the characters of the tuple have passed through the filter.  
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Fig. 1: Programmable hardware accelerator for regular expression queries 

Fig. 1 illustrates an example schematic for a programmable hardware accelerator for 

regular expressions, in particular, the query accelerator, per the techniques of this disclosure. The 

query accelerator includes the following components. 

● High speed interfaces such as peripheral component interconnect express (PCIe) to off-

chip or off-FPGA components such as memories, CPU, etc. that are communicate with 

the query accelerator

● On-chip (or on-FPGA) interconnect used to move data through different components of 

the accelerator.

● Regular expression hardware accelerator (regex accelerator), which receives input data 

from the direct memory access (DMA) and filters the input as per the required regular 

expression. The regex accelerator is described in greater detail below.

● DMA engine for data moves to and from the regex accelerator. 

● Controller used to configure and control the regex accelerator.
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Fig. 2: Regex accelerator 

Fig. 2 illustrates an example schematic for the regex accelerator. The regex accelerator 

includes the following components: 

● Controller FSM: The controller FSM is used to forward the configuration data to 

appropriate locations. It is also used to control the next state logic and allow for epsilon 

propagation. 

● Next state logic blocks: These are logic blocks that compute the next state of the NFA 

when a character of a tuple is received. The number of these blocks is equal to the 

number of states, N, of the biggest NFA that the accelerator can handle. For example, if 

the accelerator is to be capable of handling an NFA with 500 states, then the number of 

next state logic blocks is 500. When processing an NFA with less than 500 states, only a 

subset of the next state logic blocks are active. The next state logic block is described in 

greater detail below. 

● State register: This is a register to hold the current state of the NFA. The total bit-width 

of this register equals N. After a character is received, the output of every next state logic 

is flopped into the corresponding bit of the state register. 
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● Result mask register: This is a programmable register that indicates the state of the NFA 

that provides a positive result. It is applied to the state register (using a bitwise AND 

gate) to obtain the result. For example, consider an NFA with five states such that the 

result is positive if the fifth state is activated. In this case, the fifth bit of the result mask 

register is 1, e.g., when state 5 activates, the output of the regex accelerator is 1 for this 

tuple. 

● Character mask memory: This is a 256-entry memory (ASCII characters are 8 bits, 

e.g., 28=256 in number). Each entry corresponds to a valid ASCII character. The bit-

width of an entry is N. A bit i of an entry “m” is 1 if the NFA’s state[i] is 1 when the 

character “m” is received. In other words, if character “m” is received, the states that are 

activated have 1 in the corresponding bits of the “m”th entry of the character mask 

memory. This memory is read when a character is received, and the read data is provided 

to the next state logic blocks for computation of the next state. For example, suppose 

state 3 is 1 if character “A” is received. The ASCII value of “A” is 65. Therefore, in the 

65th entry of the memory, the 3rd bit is 1. 

Fig. 3: Next state logic 
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Fig. 3 illustrates an example schematic for the next state logic block. The next state logic 

block includes the following components: 

● Input interfaces for the current state [N−1:0] (from the state register) and the character 

mask [N−1:0] (from the character mask memory).

● State activation mask register: This register represents all the states that have arcs 

feeding into the given state. In other words, this register represents the states that, if 

active, cause the given state to also be active when the appropriate character is received. 

This is applied to the current state along with the character mask in order to determine if 

there is an activation to 1. For example, suppose there is an arc from state 3 to state 5 and 

this arc activates when character “C” is received. In the state activation mask for the next 

state logic of state 5, bit 3 is 1. Suppose the current state of state 3 is a 1. Because state 3 

is a 1, and because there is an arc from state 3 to state 5 (as programmed in the state 

activation mask), the next state of state 5 will also be a 1 if character “C” is received. The 

character mask determines if a character “C” was received by having bit 5 set. Therefore, 

when the character mask and the state activation mask are applied to the current state, the 

next value of this state is known. 

● Epsilon transition mask register: Epsilon transitions are special transitions that can be 

thought of as arcs that have no character needed for activation. For a given state, the 

epsilon transition mask register can be used to compute the next state value based on 

epsilon transitions. For example, if there is an epsilon transition from state 1 to state 3, 

then if the current value of state 1 changes to 1, the current value of state 3 should also 

change to a 1. For this example, in the next state logic of state 3, bit 1 of the epsilon 

transition mask register is set to 1. 
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● Multiplexer: A multiplexer is provided that selects between the epsilon-transitioned next 

state value and the character activated next state value. This is because every next state 

logic computation is split into two phases for every character in the following order - the 

controller finite state machine (FSM) controls the phases and aligns them with the 

reading of the character mask from the memory:  

○ Character-based state activation: When a character is received, based on the 

current state, the character mask, and the state activation mask, the next state is 

computed. This value is updated into the state register.  

○ Epsilon-based state activation: After character-based state activation, the 

updated value of the state register is subjected to epsilon transitions if any. This 

value is also updated into the same state register. The next state logic is then ready 

to receive the next character.

Example use cases 

The disclosed regex hardware accelerator can efficiently run regex queries on large data 

sets with millions or billions of records, with speeds approximately 100-200 times faster than 

traditional general-purpose multicore CPUs. The power consumed (and the cost) of running such 

regex queries on very large datasets is a fraction of the power consumed by traditional CPUs. As 

long as the datasets comprise alphanumeric data, the data can be from a variety of application 

domains, e.g., census data, protein patterns, logs, data from crawled websites, search indexing, 

etc.  

The following is an example application of the disclosed regex hardware accelerator 

applied to census data: 
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1. Setup: The disclosed regex hardware accelerator is implemented, e.g., in an FPGA or an 

ASIC, is attached to a server with a general-purpose CPU, as shown in Fig. 1. The 

accelerator is attached to the CPU using a high-speed connection such as PCIe. 

2. Query: An example query is as follows: match all records that start with “100,” that 

have an apartment number, and that are in cities of Austin or Round Rock in the state of 

Texas. The query accelerator is configured to run the regex matching on the “address” 

field of each record. 

3. Configuration: The CPU converts the above query to an NFA and then into the actual 

values that are programmed into the registers (result mask register, character mask 

registers, state activation mask registers, epsilon transition mask registers, etc.). The CPU 

also programs the addresses of the location of the to-be-filtered data set and the address 

where the output has to be written. This is programmed into the controller for the 

accelerator. The CPU notifies the accelerator to start processing.  

4. Hardware operation: The controller creates DMA requests to read the data into the 

accelerator. As the data starts to stream into the accelerator, the regex accelerator 

processes the characters of the tuples (in this case, the “address” field of each record is a 

tuple) and indicates a match/no-match after each tuple. This result is recorded as an 

output. The number of results in the output matches the number of input tuples. The 

output of the accelerator is streamed back to a destination address specified by the CPU. 

5. Performance: The regex accelerator can intake one character per 2 clock cycles. 

Assuming that the “address” field of the record (the tuple) is about 1000 characters and 

that the accelerator is running at 1.5GHz, the accelerator can run regex queries on 

approximately 0.75 million records per second. Assuming that there are 330 million 
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records in the US Census data set (matching the population of the United States), the 

accelerator can run a regular expression query on the entire data set in approximately 

seven minutes. The same task is likely to take multiple days or weeks to run on a state-of-

the-art multi-core general-purpose CPU. Note that if the tuple size, which is application 

dependent, is smaller than 1000, it can process more records per second thus yielding 

higher performance. 

CONCLUSION 

This disclosure describes techniques to map an input regular expression to a non-

deterministic finite automaton and hardware such as FPGA or ASIC that can be programmed to 

filter an input data stream to search for arbitrary (customer-given) regular expressions. 

REFERENCES 

[1] Gonzalo Navarro and Mathieu Raffinot, “Fast and Simple Character Classes and Bounded 

Gaps Pattern Matching, with Applications to Protein Searching”, Journal of Computational 

Biology, Vol. 10, No. 6, 903-923.

[2] R. Sidhu and V. K. Prasanna, "Fast Regular Expression Matching Using FPGAs," The 9th 

Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'01), 

Rohnert Park, CA, USA, 2001, pp. 227-238. 

10

: Programmable Hardware Accelerator For Regular Expression Queries

Published by Technical Disclosure Commons, 2020


	Programmable Hardware Accelerator For Regular Expression Queries
	Recommended Citation

	/var/tmp/StampPDF/PXW7RTWByh/tmp.1603812654.pdf.L2N55

