
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

October 2020

Addressing Priority Inversion In Dynamic Priority Schedulers Addressing Priority Inversion In Dynamic Priority Schedulers

Corey Edward Tabaka

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Tabaka, Corey Edward, "Addressing Priority Inversion In Dynamic Priority Schedulers", Technical
Disclosure Commons, (October 29, 2020)
https://www.tdcommons.org/dpubs_series/3717

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/352604633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F3717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/3717?utm_source=www.tdcommons.org%2Fdpubs_series%2F3717&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Addressing Priority Inversion In Dynamic Priority Schedulers

ABSTRACT

Dynamic priority schemes may be employed in real-time schedulers in which tasks meet

specific deadlines. For example, in an earliest deadline first (EDF) scheme, the task with the

earliest deadline is considered the most important. As time passes, the relative priorities of tasks

are dynamic, e.g., they change based on their proximity to their respective deadlines. Priority

inversion, which takes place when a low-priority task preempts a high-priority task, e.g., by

locking a resource needed by the high-priority task, is difficult to handle in dynamic priority

schedulers. This disclosure describes techniques to forestall or mitigate priority inversion in

dynamic priority schemes. Per the techniques, a low-priority task that blocks higher priority tasks

from running due to its owning a lock on a resource needed by the higher priority tasks is granted

a new deadline and capacity such that the lock owner has the same overall opportunity to run as

the lock contenders, were they not blocked on the lock. In this way, the lock-owing task gets

sufficient time to execute while avoiding a priority inversion.

KEYWORDS

● Priority inversion

● Real-time scheduling

● Deadline scheduling

● Task scheduling

● Operating system scheduler

● Earliest deadline first

● Priority inheritance

● Deadline inheritance

2

Tabaka: Addressing Priority Inversion In Dynamic Priority Schedulers

Published by Technical Disclosure Commons, 2020

BACKGROUND

Priority inversion takes place when a low-priority task preempts a high-priority task, e.g.,

by locking a resource needed by the high-priority task. Priority inheritance is a standard solution

to the priority inversion problem in task scheduling in operating systems. Most schedulers

employ a static priority scheme, where threads are assigned a numeric value that indicates

importance. Different priority values may be assigned to tasks to favor the execution of specific

work; however, once configured, these values usually remain fixed. Moreover, the importance of

a task doesn't change with respect to time as a function of the scheduling algorithm.

In a static priority scheduler, priority inheritance involves selecting the highest priority

contender for a lock and elevating the owner of the lock to that priority. This prevents the owner

of the lock from being starved by higher priority tasks and unnecessarily delaying contenders for

the lock. This scheme is successfully implemented in many contemporary operating systems.

In contrast to static priority schemes, dynamic priority schemes may be used in real-time

schedulers in which tasks are associated with specific deadlines. In a dynamic priority scheme,

the importance of a task changes with respect to time as a function of the scheduling algorithm.

An example of such an algorithm is the earliest deadline first (EDF). In this algorithm, the task

with the earliest deadline is considered the most important. If a new task arrives with a deadline

earlier than the currently executing task, the scheduler switches to the task with the earlier

deadline. Additionally, if the deadline for the currently executing task passes, then the task with

the next earliest deadline is selected to run.

Priority inheritance in a dynamic priority scheme is difficult compared to priority

inheritance in static priority schedulers. Because the importance of a task evolves over time, it is

3

Defensive Publications Series, Art. 3717 [2020]

https://www.tdcommons.org/dpubs_series/3717

no longer a simple matter of selecting the lock contender with the highest priority for the lock

owner to inherit; as time passes, the most important contender changes.

DESCRIPTION

This disclosure describes techniques to forestall or mitigate priority inversion in dynamic

priority schemes. The techniques apply to a variety of scheduling algorithms, including the

earliest deadline first algorithm.

Each of N contending tasks Pi (1 ≤ i ≤ N) has two parameters, the capacity Ci and the

relative deadline, or period, Di. These two parameters have time units that represent respectively

how long a task may run per period and the period between runs. For example, if task P1 has

parameters C1=1 ms and D1=3 ms, then the task may run for at most 1 ms out of every 3 ms.

Fig. 1: The relationship between the capacity and the relative deadline of a task

Fig. 1 illustrates the relationship between the capacity and the relative deadline for a

single activation of a task. The relative deadline D defines both how frequently a task may run

(f=1/D) and when it must complete relative to its activation point (ϕ). In this diagram, the task

runs immediately at the beginning of a period, however, the scheduler may place the task

anywhere within the period as long as it will complete before the deadline. The ability to move a

task within its period is how the scheduler accommodates multiple concurrent tasks.

4

Tabaka: Addressing Priority Inversion In Dynamic Priority Schedulers

Published by Technical Disclosure Commons, 2020

The relationship between the capacity and the relative deadline of a task is constrained to

0 < Ci ≤ Di such that a task cannot be given a larger capacity than its period. However, a task

may execute for multiple periods, which may or may not be back-to-back.

The ratio Ui = Ci/Di of the period of a task to its relative deadline is referred to as the

worst-case utilization of the task (worst-case because the task may always complete before a

time Ci has elapsed since launch). Worst-case utilization measures the percentage of processor-

time a task may take when it uses its full capacity every period. In order to guarantee a set of

tasks are successfully scheduled without missing deadlines, the sum Uproc of the worst-case

utilizations of all tasks must be less than or equal to one:

Uproc ≜ U1 + U2 + … + UN ≤ 1.

Fig. 2: Three tasks, their respective parameters, and how they complete prior to their respective
deadlines while avoiding time-overlap with each other

Fig. 2 is an illustrative timeline with three tasks P1, P2, P3, and their respective

parameters. The labels e1, e2, and e3 denote events that started the tasks running. After starting,

the tasks continue to execute back-to-back periods. A downward arrow (⬇) indicates the

5

Defensive Publications Series, Art. 3717 [2020]

https://www.tdcommons.org/dpubs_series/3717

activation (or launch) of a task, and an upward arrow (⬆) indicates the deadline of a task. After

the first period, the deadline of the previous task is coterminous with the activation of the next

task; thus boundaries between periods are represented by two-sided arrows (⬍=⬆+⬇). The

scheduler acts to ensure that each task gets its allotted proportion of CPU time, completes before

its deadline, and doesn’t overlap with other tasks. The scheduler leverages the fact that the

capacity Ci of a task is less than its deadline Di to start tasks asynchronously, e.g., not necessarily

at the beginning instant of its period, so that contending tasks do not overlap in time while each

finishing before their respective deadlines.

Fig. 3: Each of three tasks complete prior to their deadlines. Tasks P2 and P3 are temporarily
preempted to enable task P1 to meet its deadline

Fig. 3 illustrates another example of three tasks coordinated by a scheduler such that each

task gets its allotted proportion of CPU time, completes before its deadline, and doesn’t overlap

with other tasks. In this example, the task P2 is preempted on two occasions to enable task P1,

which has an earlier deadline, to complete. A task has its context saved upon preemption and

reloaded upon restarting. Similarly, task P3 is also preempted on two occasions to enable task P1

to complete before its deadline.

6

Tabaka: Addressing Priority Inversion In Dynamic Priority Schedulers

Published by Technical Disclosure Commons, 2020

A problem arises when we consider lock contention in a dynamic priority scheduler.

Suppose that tasks P2 and P3 both contend on a lock (or mutually-exclusive resource) owned by

another task Ps. In such a situation, the task Ps should get enough time to execute while avoiding

a priority inversion. In a static priority scheduler, where tasks have a single comparable numeric

priority, the choice, as mentioned before, is simple: find the maximum priority among the

contenders and raise the priority of the lock owner to that priority. In dynamic priority

schedulers, there is no immediate way to compare priorities, since tasks do not have comparable

numeric priorities. The relative priorities of tasks can change depending on how close they are to

their respective deadlines. Unlike a static scheduler, the parameters C2, D2 of task P2 are not

comparable to the parameters C3, D3 of task P3.

Per the techniques of this disclosure, instead of choosing from among the contenders the

best set of parameters for task Ps to inherit, a new set of parameters is derived that provide the

same overall opportunity, or bandwidth, to run as all the contenders would have had were they

not blocked on the lock. Priority inversion is thereby effectively avoided.

The new set of parameters for the task Ps is determined as follows. The worst-case

utilization for the task Ps is set to the sum of the utilizations of the contending tasks. The

deadline (period, Ds) of the task Ps is the minimum of the contending tasks. The capacity Cs of

the task Ps is given by Cs = UsDs. In mathematical notation,

Us = U2 + U3 = C2/D2 + C3/D3 ,

Ds = min(D2, D3) , and

Cs = UsDs

7

Defensive Publications Series, Art. 3717 [2020]

https://www.tdcommons.org/dpubs_series/3717

Fig. 4: Preventing priority inversion in dynamic priority schedulers

Fig. 4 illustrates how the new parameters for the process Ps enables the tasks to meet the

same deadlines and produce the same total utilization. Effectively, the task Ps executes with the

same absolute bandwidth and minimum relative deadline as constituent tasks P1 and P2. The top

half Fig. 4 represents a possible timeline for the tasks if they had not blocked on the lock. The

three tasks have utilizations U1 = 1/4, U2 = 5/20, and U3 = 5/10, such that Uproc = U1 + U2 + U3

= 1. The bottom half of the diagram shows the alternate timeline, where task Ps inherits the new

set of parameters, e.g.,

Us = U1 + U2 = 5/10;

Ds = min(D1, D2) = 4;

Cs = UsDs = 20/10;

and runs in place of tasks P1 and P2. The gray dashed lines show where the original deadlines fall

in the alternate timeline. It is observed that task Ps always completes at least as much work as the

constituent tasks P1 and P2 would have by each of their respective deadlines. For example, at

8

Tabaka: Addressing Priority Inversion In Dynamic Priority Schedulers

Published by Technical Disclosure Commons, 2020

time t+20, task Ps completes 10 units of work, which is the sum of the work tasks P1 and P2

would have completed by that time. Also, because task Ps has the same relative deadline, but

greater capacity and lower laxity (difference between Ds and Cs) than the tightest task P1, task Ps

receives more service in the same interval and can meet the same demands. Therefore, priority

inversion is avoided since task Ps can meet all of the same timing and utilization requirements as

the contending tasks that are waiting for it to release the lock. Effectively, the task that holds a

lock and blocks the other tasks from running is given bandwidth from the blocked tasks in order

to complete faster and release the lock.

The techniques apply to any number of contending tasks as follows. The period Ds is

computed as the minimum of the periods of the contending tasks and the capacity Cs is computed

based on the sum-of-utilizations formula

Us = Cs/Ds = Ux + Uy + ... + Uz ,

where x, y, z are indices to the contending tasks.

CONCLUSION

This disclosure describes techniques to forestall or mitigate priority inversion in dynamic

priority schemes. Per the techniques, a low-priority task that blocks higher priority tasks from

running due to its owning a lock on a resource needed by the higher priority tasks is granted a

new deadline and capacity such that the lock owner has the same overall opportunity to run as

the lock contenders, were they not blocked on the lock. In this way, the lock-owing task gets

sufficient time to execute while avoiding a priority inversion.

REFERENCES

[1] https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html, accessed Oct. 18,

2020.

9

Defensive Publications Series, Art. 3717 [2020]

https://www.tdcommons.org/dpubs_series/3717

	Addressing Priority Inversion In Dynamic Priority Schedulers
	Recommended Citation

	/var/tmp/StampPDF/V59Yy9AiVU/tmp.1603867597.pdf.NgEIT

