
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

August 2020

Security by Obfuscating Data Across Non-Adjacent Memory Security by Obfuscating Data Across Non-Adjacent Memory

Locations Locations

Aaron Vaage

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Vaage, Aaron, "Security by Obfuscating Data Across Non-Adjacent Memory Locations", Technical
Disclosure Commons, (August 20, 2020)
https://www.tdcommons.org/dpubs_series/3534

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F3534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/3534?utm_source=www.tdcommons.org%2Fdpubs_series%2F3534&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Security by Obfuscating Data Across Non-Adjacent Memory Locations

ABSTRACT

The bytes that make up a data primitive (e.g., float, integer, etc.) are stored in adjacent

bytes and in known order, based on a computer's architecture. Storing data in adjacent bytes is

required by the hardware in order to operate on them. Compilers, in an effort to improve cache

efficiency, pack primitives together. This packing indirectly communicates the relationship

between primitives. When reverse engineering code, an attacker can observe the state of data on

the stack. Knowing how the data is structured makes this much easier. The most reliable

structuring is knowing how primitives will be structured. This disclosure describes techniques

that achieve code security by distributing data across distinct, non-adjacent, randomly-selected

memory locations, thereby reducing the accessibility of the data to attackers.

KEYWORDS

● Computer security

● Code security

● Cybersecurity

● Reverse engineering

● Data obfuscation

● Memory localization

● Non-adjacent memory

BACKGROUND

The bytes that make up a data primitive (e.g. float, integer, etc.) are stored in adjacent

bytes and in known order, based on a computer's architecture. Storing data in adjacent bytes is

required by the hardware in order to operate on them. Compilers, in an effort to improve cache

efficiency, pack primitives together. This packing indirectly communicates the relationship

between primitives. When reverse engineering code, an attacker will observe the state of data on

2

Vaage: Security by Obfuscating Data Across Non-Adjacent Memory Locations

Published by Technical Disclosure Commons, 2020

the stack. Knowing how the data is structured makes this much easier. The most reliable

structuring is knowing how primitives will be structured.

While traditional code obfuscation can make it harder for an attacker to understand the

code's behavior, high-level behaviors can be determined by monitoring changes in memory. A

common technique for data obfuscation is using mixed Boolean-arithmetic expressions to break

basic expressions into more complex expressions. White-box AES combines and encodes

sensitive information and operations into tables such that sensitive information cannot be

extracted. While these existing techniques provide an effective means of hiding sensitive

information, they retain the standard primitives structures.

DESCRIPTION

This disclosure describes techniques that achieve code security by distributing data across

distinct, non-adjacent, and randomly-selected memory locations, thereby reducing the

accessibility of the data to attackers. The effective application of these techniques requires a

trade-off of performance in favor of security.

template <size_t width>
struct View {
uint8_t* bytes[width];
};

uin8_t buffer[128];

View<4> x;
x.bytes[0] = buffer + 32;
x.bytes[1] = buffer + 3;
x.bytes[2] = buffer + 27;
x.bytes[3] = buffer + 73;

View<4> y;
y.bytes[0] = buffer + 79;
y.bytes[1] = buffer + 59;
y.bytes[2] = buffer + 104;
y.bytes[3] = buffer + 4;

(a) (b)

Fig. 1: (a) A view; (b) Two views, x and y, that reference different parts of the buffer without
trampling on each other

3

Defensive Publications Series, Art. 3534 [2020]

https://www.tdcommons.org/dpubs_series/3534

Per the techniques, illustrated by the pseudo-code of Fig. 1(a), a view is defined as a

group of non-adjacent memory locations that should be considered a single piece of contiguous

memory. A view is an index to reassemble to individual bytes of a data primitive. Using a

reserved section of memory (buffer, of Fig. 1(b)), multiple views, e.g., x and y, can reference

different bytes of the reserved section as part of themselves.

For example, x and y represent data primitives, e.g., of type unsigned 32-bit integers

(uint32), that each occupy four bytes. Constituent bytes of x (or y) occupy distinct, randomly-

selected, non-adjacent bytes of the reserved memory section. In the example of Fig. 1(b), the

constituent bytes of x occupy offsets 32, 3, 27, and 73 of the reserved memory section. To avoid

different views from trampling on each other, each byte in the reserved memory section may

only be referenced (at most) once. Thus the constituent byes of y occupy offsets 79, 59, 104,

and 4, different from the offsets occupied by x.

Fig. 2: (a) An unobfuscated data primitive (b) A view, e.g., an obfuscated data primitive

4

Vaage: Security by Obfuscating Data Across Non-Adjacent Memory Locations

Published by Technical Disclosure Commons, 2020

Fig. 2 illustrates a graphical view of an unobfuscated data primitive and its corresponding

view, e.g., obfuscated data primitive. Fig. 2(a) illustrates a data primitive that is allocated and

stored in contiguous memory, e.g., adjacent memory locations, as is done conventionally. If an

attacker knows what some of the data should look like, by looking at a memory dump they can

find and extract sensitive data.

Fig. 2(b) illustrates a view, e.g., an obfuscated data primitive. Per the techniques, the

view stores the addresses to the constituent bytes of the data primitive, the bytes themselves

being stored in distinct, randomly-selected, non-adjacent memory locations. By grouping

together addresses of non-adjacent bytes, they can be referenced in order without being stored in

order.

Operations on views

Since the data is no longer stored in adjacent memory, standard operations (e.g.

additions) would require copying the data into the standard, architecture-defined structure,

revealing the data in memory. Instead, it is possible to define an operation that operates on the

view that avoids revealing the value in memory, as follows.

uint16_t temp = 0;
temp += x.bytes[0];

temp += y.bytes[0];
out.bytes[0] = (uint8_t)(0xFF & temp);

temp = temp >> 8;
temp += x.bytes[1];
temp += y.bytes[1];
out.bytes[1] = (uint8_t)(0xFF & temp);

temp = temp >> 8;
temp += x.bytes[2];
temp += y.bytes[2];

5

Defensive Publications Series, Art. 3534 [2020]

https://www.tdcommons.org/dpubs_series/3534

out.bytes[2] = (uint8_t)(0xFF & temp);

temp = temp >> 8;
temp += x.bytes[3];
temp += y.bytes[3];
out.bytes[3] = (uint8_t)(0xFF & temp);

Fig. 3: Illustrating operations on views, e.g., the addition of two uint32 views x and y

For example, Fig. 3 illustrates the operation of addition on two uint32 variables x and y

that have been obfuscated into views. The first bytes of x and y are dereferenced (x.bytes[0]

and y.bytes[0]), and their sum stored in a temporary variable (temp). The least significant

byte of the sum is extracted (by masking with 0xFF) and stored in the first byte of an output

variable out, which is itself a view, e.g., an index to reassemble an output variable of type

uint32.

The most significant byte of the sum, which acts as overflow towards the second byte-

addition, is extracted by right-shifting temp by eight bits. The second, third, and fourth bytes of

x and y are similarly dereferenced, added (along with the overflow from the previous byte-

addition), masked, and stored in the appropriate byte of the output view. The operations of Fig. 3

are executed without moving the operands x and y into adjacent memory locations, further

reducing the possibility of data exposure. The multiple operations of Fig. 3, which supplant a

relatively simple operation such as addition, make it difficult for an attacker to discern a pattern

in data movements within memory.

6

Vaage: Security by Obfuscating Data Across Non-Adjacent Memory Locations

Published by Technical Disclosure Commons, 2020

Fig. 4: Illustrating an addition operation on two uint32 views, x and y, to produce a third uint32

view z (a) The views x, y, and z (b) Operations on the constituent bytes of x and y to produce z

Fig. 4 illustrates graphically an addition operation on two uint32 views, x and y, to

produce a third uint32 view, z. Fig. 4(a) illustrates the views x, y, and z, showing the mapping

of their constituent bytes to randomly-selected, non-adjacent memory locations within a buffer.

Fig. 4(b) illustrates the operations on the views x and y to add them and store them in view z.

7

Defensive Publications Series, Art. 3534 [2020]

https://www.tdcommons.org/dpubs_series/3534

As explained earlier, the constituent bytes of x and y are dereferenced, added (along with

the overflow from the previous byte-addition), masked, and stored in the appropriate location of

view z. The operations of Fig. 4(b) can be executed without moving the operands x and y into

adjacent memory locations, further reducing the possibility of data exposure. The multiple

operations represented by Fig. 4(b), which supplant a relatively simple addition operation, make

it difficult for an attacker to discern a pattern in data movements within memory.

The operations on views, e.g., the addition operation illustrated here, can be designed to

achieve specific trade-offs between computational speed and data obfuscation. Data obfuscation,

as described herein, can be done at compile time. For example, a compiler can automatically

translate primitives into predefined views, such that primitives within some scope are mapped

into distinct, non-adjacent memory locations randomly selected by the compiler.

CONCLUSION

This disclosure describes techniques that achieve code security by distributing data across

distinct, non-adjacent, randomly-selected memory locations, thereby reducing the accessibility of

the data to attackers.

REFERENCES

[1] Eyrolles, Ninon. “Obfuscation with Mixed Boolean-Arithmetic Expressions: Reconstruction,

Analysis, and Simplification tools.” PhD dissertation, Université Paris-Saclay, 2017.

8

Vaage: Security by Obfuscating Data Across Non-Adjacent Memory Locations

Published by Technical Disclosure Commons, 2020

	Security by Obfuscating Data Across Non-Adjacent Memory Locations
	Recommended Citation

	/var/tmp/StampPDF/9mJF3XsxBz/tmp.1597774453.pdf.BuiVQ

