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ABSTRACT
Recent studies using genetically manipulated mouse models have shown the pivotal role
of O-linked N-acetylglucosamine modification (O-GlcNAcylation) in the metabolism of mul-
tiple organs. The molecular mechanism involves the sensing of glucose flux by the hex-
osamine biosynthesis pathway, which leads to the adjustment of cellular metabolism to
protect against changes in the environment of each organ through O-GlcNAcylation.
More recently, not only glucose, but also fluxes of amino acids and fatty acids have been
reported to induce O-GlcNAcylation, affecting multiple cellular processes. In this review,
we discuss how O-GlcNAcylation maintains homeostasis in organs that are affected by
diabetes mellitus: skeletal muscle, adipose tissue, liver and pancreatic b-cells. Furthermore,
we discuss the importance of O-GlcNAcylation in the pathogenesis of diabetic complica-
tions. By elucidating the molecular mechanisms whereby cellular homeostasis is main-
tained, despite changes in metabolic flux, these studies might provide new targets for the
treatment and prevention of diabetes and its complications.

INTRODUCTION
Diabetes mellitus is rapidly emerging as one of the greatest glo-
bal health challenges of the 21st century. The International Dia-
betes Federation estimates that by the year 2030 approximately
578 million, and by the year 2045 approximately 700 million
people will have diabetes1. This epidemic is also expected to
trigger a steep rise in the incidences of complications associated
with diabetes, such as neuropathy, retinopathy, nephropathy,
ischemic heart disease and stroke. Therefore, the development
of better treatments and novel prevention strategies for diabetes
and its complications is a matter of great urgency. However, to
accomplish this goal, a better understanding of the pathogenesis
of diabetes and its complications is necessary. Although the
underlying cause remains unknown, insulin resistance, meta-
bolic disorders, and hyperglycemia play critical roles in the
development of diabetes and its complications2,3. Over the past
decade, several groups, including our own, have used genetically
manipulated mouse models to investigate the physiological and
pathological roles of O-linked N-acetylglucosamine (GlcNAc)

modification (GlcNAcylation) in vivo. In this brief review, we
discuss recent studies of the role of O-GlcNAcylation in the
organs that are most affected by diabetes, which have shed new
light on the cellular and molecular mechanisms of diabetes
mellitus.

O-GLCNACYLATION AS A NUTRIENT FLUX SENSOR
O-GlcNAcylation is evolutionarily conserved, being present in
many species, including C. elegans4, Drosophila5, zebrafish6,
mammals7 and plants8. O-GlcNAcylation is regulated by two
enzymes: O-GlcNAc transferase (Ogt) and O-GlcNAcase
(Oga) (Figure 1). Both enzymes are encoded by each single
gene, but a number of splice variants are differentially
expressed in many tissues, which suggests that they have
important regulatory roles in specific tissues9. Unlike other
glycoproteins, which are expressed on the cell surface or the
endomembranes of organelles, O-GlcNAcylated proteins are
mostly nuclear, mitochondrial and cytoplasmic (Figure 1). The
O-GlcNac moiety is generally not elongated and is attached
as a single moiety to serine or threonine residues, and is
removed rapidly, depending on the status of the cell (referred
to as O-GlcNAc cycling)10.Received 29 June 2020; revised 7 July 2020; accepted 9 July 2020
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The hexosamine biosynthesis pathway is a branch of glycol-
ysis, and approximately 1–5% of the glucose flux is used to
generate uridine diphosphate-GlcNAc, which is a substrate for
Ogt. The generation of glucosamine-6-phosphate from fruc-
tose-6-phosphate is the first reaction in the hexosamine
biosynthesis pathway, which is catalyzed by glutamine:fructose-
6-aminotransferase, and is considered to be the rate-limiting
step11. Hyperglycemia12, glucosamine infusion12, glucose trans-
porter overexpression13and glutamine:fructose-6-aminotrans-
ferase overexpression14,15, all of which increase flux through
the hexosamine biosynthetic pathway, result in higher intracel-
lular O-GlcNAc concentration. Approximately 4,000 proteins
have been predicted to be targets of O-GlcNAcylation16. Thus,
O-GlcNAcylation is a metabolic sensor. The precise mecha-
nisms involved have been effectively summarized in previous
reviews9.

PANCREATIC b-CELLS: A PRIMARY TARGET IN
DIABETES MELLITUS
Pancreatic b-cell failure is a key component of the pathogenesis
of diabetes mellitus, because pancreatic islets govern whole-
body metabolism, mainly through insulin secretion. b-Cells
sense the plasma glucose concentration through the glucose
transporter 2–glucokinase–adenosine triphosphate/adenosine
monophosphate–adenosine triphosphate sensitive potassium
channel–Ca2+ influx axis17. In parallel, a high level of O-
GlcNAcylation occurs in the nuclei of b-cells18, which is consis-
tent with the high expression of Ogt in the pancreas (Fig-
ure 2)19,20. During islet development, Ogt – expressed in
pancreatic epithelial progenitor cells – plays an important role
in cell survival, and thus pancreatogenesis, which is mediated
through pancreatic and duodenal homeobox 1 and p5321. In
adult mice, greater O-GlcNAcylation, induced by glutamine:
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Figure 1 | Link between O-linked N-acetylglucosamine modification (O-GlcNAcylation) and metabolic flux in the regulation of cellular homeostasis.
O-GlcNacylation is determined by two key enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The activities of these two enzymes and
substrate availability in each subcellular fraction determine the level of O-GlcNAcylation of target proteins. Although most glucose enters the
glycolytic or pentose phosphate pathways, approximately 1–5% enters the hexosamine biosynthesis pathway, which is a branch of glycolysis.
Fructose-6-phosphate and glutamine are converted to glucosamine-6-phosphate (GlcN-6-P) by glutamine:fructose-6-phosphate transferase (GFAT).
Acetyl coenzyme A (Acetyl-CoA) then contributes to GlcNAc-6-phosphate (GlcNAc-6-P) synthesis. Uridine diphosphate (UDP)-GlcNAc is produced
using UDP and is used by OGT for O-GlcNAcylation.
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fructose-6-aminotransferase overexpression, causes hyperinsu-
linemia22. In contrast, the disruption of O-GlcNAcylation
induces endoplasmic reticulum stress, which results in b-cell
failure23, and analogous effects are induced by the depletion of
Ogt in Drosophila24. Before b-cell failure, the knockdown of O-
GlcNAcylation induces hyperinsulinemia, which suggests a link
with the pathogenesis of type 2 diabetes mellitus18. Streptozo-
tocin is a chemical inducer of diabetes that works through mul-
tiple mechanisms. Because it is structurally similar to GlcNAc,
streptozotocin is a competitive inhibitor of Oga that increases
O-GlcNAcylation25. These findings suggest that GlcNAcylation

might be involved in the molecular mechanisms of glucotoxic-
ity and streptozotocin-induced b-cell failure26. However, further
studies are required to fully elucidate the molecular mecha-
nisms of b-cell failure and glucotoxicity, especially in humans.

ADIPOSE TISSUE: A KEY REGULATOR OF WHOLE-BODY
HOMEOSTASIS
Adipose tissue stores energy in the form of lipid droplets. It
releases free fatty acids and glycerol during fasting, prolonged
exercise, and physical stress, but takes up glucose and stores
triglyceride in the postprandial phase. The role of O-
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Figure 2 | Role of O-linked N-acetylglucosamine modification (O-GlcNAcylation) in specific organs in diabetes and its complications. Most research
has been carried out under extreme conditions in animals with genetically determined organ-specific changes in O-GlcNAcylation. However, O-
GlcNAcylation is a finely-tuned system that maintains homeostasis. Thus, relevant symptoms only develop in chronic pathological conditions. In
humans and diabetic animal models, there are several states in which O-GlcNAcylation is higher or lower (red characters). AMPK, adenosine
monophosphate-activated kinase; CAMK-II, calcium/calmodulin-dependent kinase II; CES1, carboxylesterase 1; CRTC2, cyclic adenosine
monophosphate-response element binding protein-regulated transcription coactivator 2; eNOS, endothelial nitric oxide synthase; EZH2, enhancer of
zeste homolog 2; Foxo1, forkhead box O1; FXR, Farnesoid X receptor; GK, Goto-Kakizaki; IL-15, interleukin-15; MLKL, mixed lineage kinase domain-
like; Pdx1, pancreatic and duodenal homeobox 1; PGC-1a, peroxisome proliferator-activated receptor-gamma coactivator-1a; Ptf1a, pancreas-
associated transcription factor 1a; RIPK3, receptor interacting serine/threonine kinase 3; SCD-1, stearoyl CoA desaturase; STZ, streptozotocin.
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GlcNAcylation in the balance between these processes has been
shown by studies of adipose tissue-specific genetic models. An
increase in O-GlcNAcylation, induced by overexpression of Ogt
in adipose tissue, inhibits lipolysis and promotes diet-induced
obesity, whereas the disruption O-GlcNAcylation in adipose tis-
sue by Ogt knockout promotes lipolysis by stimulating perilipin
activity by phosphorylation (Figure 2)27. In addition, high O-
GlcNAcylation in adipocytes induces hyperphagia by transcrip-
tionally activating genes that mediate de novo lipid desaturation
through the accumulation of N-arachidonoylethanolamine, an
appetite-inducing cannabinoid28. Recently, an elegant study
showed that glucose flux has a role in diet-induced thermogen-
esis in brown adipose tissue, which is mediated through leptin-
induced adrenal catecholamine secretion29. In that study, an
increase in O-GlcNAcylation in adipose tissue was demon-
strated after a meal, and this was shown to play a role in the
postprandial increase in plasma leptin concentration and diet-
induced thermogenesis.
In addition to diet-induced thermogenesis, O-GlcNAcylation

has also been shown to have a significant role in cold-induced
thermogenesis, which was established using brown adipose tis-
sue-specific Ogt knockout mice30. Although the brown adipose
tissue-specific Ogt knockout mice showed almost no phenotype
at 25°C, severe hypothermia was induced by exposure to a 4°C
environment. In these mice, low expression of b-oxidation
enzymes and uncoupling protein 1 is observed, which is likely
to be secondary to low expression of peroxisome proliferator-
activated receptor-c coactivator (PGC)-1a, a master regulator
of mitochondrial biogenesis.
These data suggest that O-GlcNAcylation has two roles in

adipose tissue. First, O-GlcNAcylation contributes to diet-in-
duced obesity through perilipin and the CB-1 receptor. Second,
it also contributes to thermogenesis, through the leptin-cate-
cholamine pathway post-prandially, and maintains PGC-1a
and uncoupling protein 1 expression, and mitochondrial bio-
genesis.

ROLE OF O-GLCNACYLATION IN THE LIVER
During starvation, the liver has a central role in the mainte-
nance of plasma glucose through glycogenolysis and gluconeo-
genesis. Furthermore, the liver generates ketone bodies using
free fatty acids derived from adipose tissue. In addition, starva-
tion stimulates autophagy in the liver to provide amino acids
for use by other organs. PGC-1a and Foxo1 together regulate
gluconeogenesis2, and O-GlcNAcylation of PGC-1a increases
its stability by recruiting host cell factor C31 (Figure 2). In addi-
tion, greater O-GlcNAcylation of hepatic forkhead box O1 and
cyclic adenosine monophosphate-response element binding pro-
tein-regulated transcription coactivator 2 increases the expres-
sion of phosphoenolpyruvate carboxykinase and glucose 6-
phosphatase32,33. O-GlcNAcylation of calcium/calmodulin-de-
pendent kinase II is also involved in the regulation of autop-
hagy in the liver34,35. Furthermore, liver pathology has also
been shown to be associated with O-GlcNAcylation. Low O-

GlcNAcylation has been identified in liver biopsy samples from
patients with cirrhosis, alongside low expression of Ogt and
Oga. Low O-GlcNAcylation is also associated with greater
necroptosis, through higher expression of MLKL and RIPK336.
Thus, changes in glucose flux, especially in the portal vein,
might affect multiple metabolic pathways in the liver.

ROLE OF O-GLCNACYLATION IN SKELETAL MUSCLE
Skeletal muscle is a major insulin target organ, and plays an
essential role in glucose, lipid and amino acid metabolism. In
addition to its locomotor function, skeletal muscle serves as a
huge protein pool, because it comprises ~40% of body mass in
humans37. Although the molecular mechanism underlying insu-
lin resistance remains to be fully established, dysregulation of
the insulin signaling cascade is considered to be a key compo-
nent38. In skeletal muscle, the level of O-GlcNAcylation differs
after exercise39 or muscle atrophy (Figure 2)40. Recently, the
expression of Ogt and Oga was measured in human skeletal
muscle, and no differences were found among people with
type 2 diabetes, lean individuals and obese individuals41. How-
ever, the disruption of O-GlcNAcylation in skeletal muscle
increases the secretion of IL-15, a myokine that regulates
whole-body oxidative metabolism42, through an effect on
enhancer of zeste homolog 241. In addition, the disruption of
O-GlcNAcylation in skeletal muscle also stimulates adenosine
monophosphate kinase-a expression in both muscle-specific
Ogt knockout mice and C2C12 myotubes treated with small
interfering ribonucleic acid targeting Ogt43.

ROLE OF O-GLCNACYLATION IN DIABETIC
COMPLICATIONS
Hyperglycemia is a key feature of diabetes mellitus and a major
cause of diabetic complications. In the excellent review by
Brownlee, (i) greater flux through the polyol pathway; (ii) the
intracellular production of advanced glycation end-product pre-
cursors; (iii) PKC activation; and (iv) greater hexosamine path-
way activity were proposed as the mechanisms underlying
hyperglycemia44. Greater O-GlcNAcylation is present in the sci-
atic nerves, kidneys and liver of diabetic Goto-Kakizaki rats,
alongside the morphological changes in these tissues45.
Genetic manipulations that alter the level of O-GlcNAcyla-

tion have shown its role in diabetic complications (Figure 2).
In the kidney, the depletion of O-GlcNAcylation in podocytes
causes marked proteinuria because of a reduction in podocin
expression, which alters the shape of podocyte foot processes46.
The proximal renal tube is highly oxidative, and the depletion
of O-GlcNAcylation in tubules induces a Fanconi syndrome-
like phenotype, which is accompanied by abnormal lipid dro-
plet breakdown and tubular cell damage, mediated through the
Farnesoid X receptor–carboxylesterase-1 axis47. In addition,
greater O-GlcNAcylation is present in renal tubular cells during
prolonged fasting and diabetes47, which suggests that free fatty
acid flux is a stimulus, in contrast to the situation in other tis-
sues.
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Greater O-GlcNAcylation is present in the retinas of diabetic
Goto-Kakizaki rats, Akita mice, aged animals48 and the vitreous
humor of patients with proliferative diabetic retinopathy49,
alongside high Ogt and low Oga expression50. Recently, an
effect on signal transducer and activator of transcription 3
phosphorylation has also been reported in retinal vascular
endothelial cells49. However, the role of O-GlcNAcylation in
diabetic retinopathy is unknown.
High O-GlcNAcylation has been identified in the sural nerve of

diabetic Goto-Kakizaki rats45. O-GlcNAcylation promotes periph-
eral nerve remyelination through AP-1 and the transcription fac-
tor Jun51. Defects in the injury response in Schwann cells might
contribute to the pathogenesis of diabetic neuropathy.
In the cardiovascular system, acute injury is associated with

greater O-GlcNAcylation in the heart, which seems to be car-
dioprotective. Disruption of O-GlcNAcylation in the heart
causes ventricular dysfunction, but no cardiac hypertrophy52.
However, a prolonged increase in O-GlcNAcylation, in combi-
nation with stress, might have adverse effects53. Greater O-
GlcNAcylation is also present in patients with heart failure52.
Hyperglycemia increases the O-GlcNAcylation of endothelial
NO synthase, which results in lower NO production and a con-
sequent impairment in NO-dependent arteriolar dilation54.
These changes might explain the higher prevalence of diabetic
cardiomyopathy, heart failure and diabetic macroangiopathy in
patients with diabetes.

CONCLUSION
In summary, recent studies of genetically altered O-GlcNAcyla-
tion have provided important new insights into the pathogene-
sis of diabetes mellitus and its complications. However, the
cellular and molecular mechanisms responsible for the changes
in metabolism remain to be fully elucidated. Post-translational
modification by O-GlcNAcylation is a fine-tuning process that
permits cells to maintain homeostasis in the face of environ-
mental changes. Future studies should further characterize this,
such that novel strategies can be developed to protect diabetes
patients from the development of complications.
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