Montclair State University

Montclair State University Digital Commons

Department of Earth and Environmental Studies Faculty Scholarship and Creative Works

9-2006

Significance of Polycyclic Aromatic Hydrocarbons (PAHs) and Petroleum Biomarker Compounds in Contaminated Passaic River Sediments

Michael A. Kruge Montclair State University, krugem@mail.montclair.edu

Follow this and additional works at: https://digitalcommons.montclair.edu/earth-environ-studies-facpubs

Part of the Analytical Chemistry Commons, Environmental Chemistry Commons, Environmental Monitoring Commons, and the Geochemistry Commons

MSU Digital Commons Citation

Kruge, Michael A., "Significance of Polycyclic Aromatic Hydrocarbons (PAHs) and Petroleum Biomarker Compounds in Contaminated Passaic River Sediments" (2006). *Department of Earth and Environmental Studies Faculty Scholarship and Creative Works*. 89. https://digitalcommons.montclair.edu/earth-environ-studies-facpubs/89

This Poster is brought to you for free and open access by the Department of Earth and Environmental Studies at Montclair State University Digital Commons. It has been accepted for inclusion in Department of Earth and Environmental Studies Faculty Scholarship and Creative Works by an authorized administrator of Montclair State University Digital Commons. For more information, please contact digitalcommons@montclair.edu.

Significance of Polycyclic Aromatic Hydrocarbons (PAHs) and Petroleum Biomarker Compounds in Contaminated Passaic River Sediments. MONTCLAIR STATE UNIVERSITY

Michael A. Kruge

Dept. of Earth & Environmental Studies and Passaic River Institute Montclair State University, Montclair, NJ 07043 USA (krugem@mail.montclair.edu)

Abstract

The lower Passaic River (northeastern New Jersey) flows through one of the most densely populated regions of the United States. The area's long history of industrial activity is reflected in the complex and variable hydrocarbon composition of the river sediments. Sediments from river bottom grab samples at Newark and a 30 cm deep core at Kearny were subjected to thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). This technique offers a practical alternative for rapid, inexpensive analysis, simply employing milligram quantities of dry, disaggregated sediment, avoiding the use of hazardous organic solvents. For each sample, a total of 181 hydrocarbons and organosulfur compounds were quantitated, including normal and isoprenoid alkanes, tricyclic terpanes, hopanes, steranes, sterenes, linear alkylbenzenes, C0-C4 alkylnaphthalenes, C0-C3 alkylphenanthrenes and anthracenes, C0-C2 alkylpyrenes and isomers, C0-C2 alkylchrysenes and isomers, 5 and 6 ring parent PAHs, C0-C2 alkyldibenzothiophenes, and C20 isoprenoid thiophenes. As a guide in the interpretation of the results, principal components analysis (PCA) was employed.

The resulting first two principal components accounted for 65% of the variance in the data set. While all samples appear enriched in PAHs and petroleum biomarkers, there are considerable differences in the distributions of these compounds from sample to sample. PCA results delineate three distinct chemostratigraphic zones in the Kearny core, each approximately 10 cm thick. The lower zone is enriched in alkylated three and four ring PAHs and dibenzothiophenes, as well as five ring parent PAHs and isoprenoid thiophenes, relative to rest of the core. The middle zone shows relative enrichment in isoprenoid and normal C14-C24 alkanes, alkylnaphthalenes, and dibenzothiophenes. The upper zone exhibits relative enrichment in C25-C31 *n*-alkanes, sterenes, linear alkylbenzenes, parent PAHs and isoprenoid thiophenes. The Newark surface grab samples resemble the upper Kearny core samples, although they show relatively higher concentrations of hopanes, steranes, linear alkylbenzenes, and isoprenoid thiophenes. The PCA results indicate distinct differences between the grab samples themselves, but of lesser magnitude than those observed within the core.

Kearny site: 32 cm sediment core

Aerial photos of the Passaic River showing the Kearny (above) and Harrison Reach (below) sampling sites.

Photos: Mike Peters

While the presence of hopanes, steranes, tricyclic terpanes, and isoprenoid alkanes in all samples points to the presence of (heavier) petroleum products, the middle zone of the Kearny core appears to be the most impacted. The predominance of alkylated PAHs in the lower core is suggestive of coal tar as well as heavy petroleum fractions. Since the core was taken from an undisturbed site, its middle and lower portions record historic pollution events. The LABs and sterenes relatively more prominent in the surface samples point to more recent input, likely from sewer discharge, while the long chain alkanes in part derive from natural organic input. The ubiquitous parent PAHs most likely indicate non-point airfall deposition of combustion products. The TD-GC/MS is shown to be an effective approach for the environmental forensic analysis of organic contaminants in sediments.

Detail showing Harrison Reach sampling sites. GS sites: grab samples only Sites A3-E1: 120 cm cores and grab samples

Mass chromatograms comparing the Kearny Core sample at 27-30 cm and the Harrison Reach Core B3 sample at 0-30 cm sediment depth.

The principal components diagrams (top) show little difference in the relationships between the samples, indicating that the majority of the variance is in the proportions of the compound classes, rather than between individual isomers within a group. The eigenvectors from the analysis using individual compounds (lower left) show an obvious clustering of like compounds

Industry along the Passaic River in Newark, New Jersey, 1895

Royal Society of Chemistry conference "Environmental Forensics: Chemical, Physical and Biological Methods, University of Durham, UK., September, 2006

Methods

Sediment cores & grab samples.

Thermodesorption-gas chromatography/mass spectrometry of whole, dry sediment samples

Target organic analytes (SIM): Normal & isoprenoid hydrocarbons Hopanes & steranes Aromatic hydrocarbons (1 to 6 ring) Thiophenes

Principal components analysis (181 organic compounds)

	L1	Methylfluorenes	
	F0	Phenanthrene & anthracene	
	F1	Methyl phenanthrenes & anthracenes	
	F2	C2-phenanthrenes & anthracenes	
	F3	C3-phenanthrenes & anthracenes	
	RET	Retene	
	P0	Pyrene & fluoranthene	
	P1	Methylpyrene & isomers	
	P2	Dimethylpyrene & isomers	
of the Passaic River (23 m high	C0	Chrysene & benzo[a]anthracene	
	C1	Methylchrysene & isomers	
Paterson, NJ	C2	Dimethylchrysene & isomers	
Photo: Mike Poters)	PAH5	Pentaaromatic hydrocarbons	
FIIO(O,IV) I V I V C C C C C C C C	PAH6	Hexaaromatic hydrocarbons	
	DBT0	Dibenzothiophene	
	DBT1	Methyldibenzothiophenes	
	DBT2	Dimethyldibenzothiophenes	
	BNT	Benzonaphthothiophene	
	IT	Isoprenoid thiophenes	
	DBF	Dibenzofuran	

100	A33	Harrison Reach core A3	60 to 90				
178	A34	Harrison Reach core A3	90 to 120				
192	B30	Harrison Reach core B3	surface				
206	B31	Harrison Reach core B3	0 to 30				
 220	B32	Harrison Reach core B3	30 to 60				
 220	B33	Harrison Reach core B3	60 to 90				
232	B34	Harrison Reach core B3	90 to 120				
202	C20	Harrison Reach core C2	surface				
216	C21	Harrison Reach core C2	0 to 30				
230	C22	Harrison Reach core C2	30 to 60				
 230	C23	Harrison Reach core C2	60 to 90				
 228	C24	Harrison Reach core C2	90 to 120				
242	D20	Harrison Reach core D2	surface 0 to 30				
256	D21	Harrison Reach core D2					
252	D22	Harrison Reach core D2	30 to 60				
 232	D23	Harrison Reach core D2	60 to 90				
 270, 278	D24	Harrison Reach core D2	90 to 120				
184	E10	Harrison Reach core E1	surface				
198	E11	Harrison Reach core E1	0 to 30				
212	E12	Harrison Reach core E1	30 to 60				
 234	E13	Harrison Reach core E1	60 to 90				
 204	E14	Harrison Reach core E1	90 to 120				
308	NIST	Reference NY/NJ Harbor sediment					
168	NY	Piermont Marsh, Hudson River, New York					
	СТ	New Haven Harbor, Connecticut, USA					

m/z 191

B513

40

41

B413

Variation in the relative abundance of compound classes in samples B31 and K27.

Acknowledgements

This work was supported by the Passaic River Institute of Montclair State University, with assistance from the U.S. Environmental Protection Agency and the New Jersey Dept. of Transportation

m/z	Code	Compound	m/z	Code	Compound	m/z	Code	Compound	m/z	Code	Compound
			_						_		
71	A14	C14 n-alkane	170	emN1	me-et-naph1	198	4DBT	4mDBT	220	TMP1	TMP1
71	A15	C15 n-alkane	170	emN2	me-et-naph2	198	2DBT	2+3mDBT	220	TMP2	TMP2
71	A16	C16 n-alkane	170	137N	137-TMN	198	1DBT	1mDBT	220	TMP3	ТМРЗ
71	A17	C17 n-alkane	170	136N	136-TMN	202	FLA	fluoranthene	220	TMP4	TMP4
71	A18	C18 n-alkane	170	146N	146+135-TMN	202	PYR	pyrene	220	TMP5	TMP5
71	A19	C19 n-alkane	170	236N	236-TMN	206	36P	36-DMP	220	TMP6	ТМР6
71	A20	C20 n-alkane	170	127N	127-TMN	206	26P	26-DMP	220	TMP7	TMP7
71	A21	C21 n-alkane	170	167N	167+126-TMN	206	27P	27-DMP	220	TMP8	TMP8
71	A22	C22 n-alkane	170	125N	125-TMN	206	13P	13+210+39+310-DMP	220	TMP9	ТМР9
71	A23	C23 n-alkane	178	PHE	phenanthrene	206	16P	16+29-DMP	220	TMP10	TMP10
71	A24	C24 n-alkane	178	ANT	anthracene	206	17P	17-DMP	220	TMP11	TMP11
71	A25	C25 n-alkane	180	2mL	2+3-meFluorene	206	23P	23-DMP	228	BaA	benzo[a]anthracene
71	A26	C26 n-alkane	180	1mL	1-meFluorene	206	19P	19-DMP	228	CHR	chrysene
71	A27	C27 n-alkane	180	4mL	4-meFlourene	206	18P	18-DMP	230	dmPY1	dmPYR1
71	A28	C28 n-alkane	184	1357N	1357-TeMN	206	12P	12-DMP	230	dmPY2	dmPYR2
71	A29	C29 n-alkane	184	1367N	1367-TeMN	212	46DBT	46-DMDBT	230	dmPY3	dmPYR3
71	A30	C30-nalkane	184	1247N	1247-TeMN	212	24DBT	24-DMDBT	230	dmPY4	dmPYR4
71	A31	C31 n-alkane	184	1257N	1257-TeMN	212	36DBT	36+26-DMDBT	230	dmPY5	dmPYR5
71	NP	norpristane	184	2367N	2367-TeMN	212	37DBT	37-DMDBT	230	dmPY6	dmPYR6
71	PR	pristane	184	1267N	1267-TeMN	212	14DBT	14+16+18-DMDBT	230	dmPY7	dmPYR7
71	PH	phytane	184	1236N	1236-TeMN	212	12DBT	12+13+19-DMDBT	230	dmPY8	dmPYR8
91	B611	LAB6-11	184	1256N	1256-TeMN	215	CHL27	cholestene	230	dmPY9	dmPYR9
91	B511	LAB5-11	184	DBT	dibenzothiophene	215	CHL28	methylcholestene	234	RET	retene
91	B411	LAB4-11	191	T23	tric terp 23	215	CHL29	ethylcholestene	234	BNT	benzonaphthothiophene
91	B612	LAB6-12	191	T24	tric terp 24	216	BaF	benzo[a]fluorene	242	3mCH	3mCHR
91	B512	LAB5-12	191	T25	tric terp 25	216	2PYR	2-mPYR	242	2mCH	2mCHR
91	B412	LAB4-12	191	T26	tric terp26	216	4PYR	4-mPYR	242	6mCH	6-meCHR
91	B613	LAB6-13	191	T28A	tric terp 28A	216	1PYR	1-mPYR	242	1mCH	1mCHR
91	B513	LAB5-13	191	T28B	tric terp 28B	217	D27S	ST27BAS	252	BbiF	Bb&iFluoranth
91	B413	LAB4-13	191	T29A	tric terp 29A	217	D27R	ST27BAR	252	BkF	BkFluoranth
128	NO	naphthalene	191	T29B	tric terp 29B	217	D28S	ST28BAS	252	BeP	benzo[e]pyrene
142	2mN	2-methylnaphthalene	191	H27A	hopane 27 18A	217	D28R	ST28BAR	252	BaP	benzo[a]pyrene
142	1mN	1-methylnaphthalene	191	H27B	hopane 27 17A	217	S27AS	ST27AAAS	252	PERY	pervlene
154	BB0	Biphenyl	191	H29	hopane 29	217	D29S	ST29BAS	256	dmCH1	dmCHR1
156	eN	ethylnaphthalene	191	M29	moretane 29	217	S27BR	ST27ABBR	256	dmCH2	dmCHR2
156	25N	25DMN	191	H30	hopane 30	217	S27BS	ST27ABBS	256	dmCH3	dmCHR3
156	27N	27DMN	191	M30	moretane 30	217	S27AR	ST27AAAR	256	dmCH4	dnCHR4
156	13N	13DMN	191	H31S	hopane 31 22S	217	D29R	ST29BAR	256	dmCH5	dmCHR5
156	16N	16+17DMN	191	H31R	hopane 31 22R	217	S28AS	ST28AAAS	276	IcdP	Indeno[cd]pyrene
156	14N	14+15+23DMN	191	H32S	hopane 32 22S	217	S28BR	ST28ABBR	276	BahiP	Benzo[ghi]pervlene
156	12N	12DMN	191	H32R	hopane 32 22R	217	S28BS	ST28ABBS	278	DBA	DB[ah]Anth
166	LO	fluorene	192	3mP	3-methylphenanthrene	217	S28AR	ST28AAAR	308	14IT2	C14.DM-ison thionhene
168	2BB	2(?)methylbinhenyl	192	2mP	2-methylphenanthrene	217	S29AS	ST29AAAS	308	15IT1	C15.me-ison thionhene
168	3BB	3+4(?)methylhinhenyl	192	mA	methylanthracene	217	S29BR	ST29ABBR	308	16170	C16-ison thionhene
168	DBF	dibenzofuran	192	9mP	9-methylphenanthrene	217	S29BS	ST29ABBS	500	10110	
100			102	1mP	1-methylphenanthrong	217	S2000	ST29AAAP			
			192	11111		21/	JJZJAK	JIZJAAAN			