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 10 

Abstract 11 

From the 1850's until the 1960's, the Central Railroad of New Jersey was among several major 12 

railways shipping anthracite and bituminous coal to the New York City area, transferring coal 13 

from railcar to barge at its extensive rail yard and port facility in Jersey City.  The 490 ha Liberty 14 

State Park was developed on the site after the rail yard closed, but a ca. 100 ha brownfield zone 15 

within the park remains off limits to visitors pending future remediation.  As part of an 16 

environmental forensic and industrial archeological investigation of this zone, the present study 17 

characterizes anthracite and bituminous coal particles present in abundance in the soil by 18 

scanning electron microscopy (SEM) and pyrolysis-gas chromatography-mass spectrometry (Py-19 

GC-MS).  A simple pretreatment procedure employing density separation improved the 20 

analytical results.  This detailed information about the nature of contaminants at the site will help 21 

to inform the remediation effort in the public interest. 22 
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Keywords 24 
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 27 

Highlights  28 

• Legacy coal contamination is widespread in the soils of an unremediated restricted area 29 

within Liberty State Park (New Jersey, USA), formerly a major rail yard and port for coal 30 

shipment. 31 

• The coal particles in the soil are mostly of anthracite rank, the low PAH content of which 32 

reduces the potential environmental hazard at this brownfield site. 33 

• PAH-rich bituminous coal particles, while less abundant, may be of greater 34 

environmental concern, although the degree of bioavailability of their constituent PAHs 35 

must be considered. 36 

• Analysis of soil components by pyrolysis-gas chromatography-mass spectrometry (Py-37 

GC-MS) after a preparative density separation procedure is shown to an effective 38 

environmental forensics tool. 39 

 40 

Declarations of interest: None  41 

 42 

1. Introduction 43 

 The Central Railroad of New Jersey (CRRNJ) was one of several major private railways 44 

operating from the mid-19th to the mid-20th century with an eastern terminus on New York 45 

Harbor and the Hudson River in the U.S. state of New Jersey (Figs. 1, 2).  Typical of these 46 
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 3 

intermodal operations, the CRRNJ transported freight and passengers from the interior to a vast 47 

rail yard along the shore for transfer to barges and ferries, respectively, for connection across the 48 

water to nearby New York City and points east (Anderson, 1984).  Due to unfavorable economic 49 

conditions, including competition from highway transportation, all of these private railways 50 

ceased operations during the mid-20th century.  Some of the lines were subsequently 51 

incorporated into the New Jersey Transit regional system, which still maintains a rail-to-ferry 52 

passenger service out of the historic station in Hoboken (NJ).  CRRNJ's Jersey City station was 53 

restored as a tourist attraction but no longer operates, as the tracks were removed when the rail 54 

yard was abandoned in the late 1960's and subsequently converted into Liberty State Park (LSP) 55 

(Gallagher et al., 2008a; b).  The park takes its name from the iconic Statue of Liberty, situated 56 

about 600 m across the water at its closest point, allowing park visitors a dramatic view of the 57 

rear of the colossus. 58 

Figure 1 59 

Figure 2 60 

 Coal transport was a major component of CRRNJ operations, for example, producing 61 

about 26 % of the company's total revenue in 1943, with 28 % of the coal moving via Pier 18 and 62 

its dedicated network of tracks at that time (Figs. 2, 3).  The railroad conveyed anthracite coal 63 

(Fig. 3A) from its own mines in eastern Pennsylvania and also hauled bituminous coal trains 64 

originating further west belonging to other companies.  Relative tonnages of anthracite and 65 

bituminous coals were roughly the same, varying over time with market demand.  Arriving at 66 

Pier 18, massive coal dumping structures transferred the cargo to waiting coal barges (Figs. 3B-67 

D) (Anderson, 1984). 68 

Figure 3 69 
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Figure 1.  Index map showing location of Liberty State Park (LSP) in Jersey City 
(NJ), USA, the principal anthracite coal fields of Pennsylvania, and the former 
Central Railroad of New Jersey main line.  Base map: Google Earth; coalfields: 
Pennsylvania Dept. of Environmental Protection; rail line: Anderson (1984). 
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Figure 2.  The Central Railroad of New Jersey's rail yard and marine terminal in 
Jersey City as it appeared in a 1954 aerial image, overprinted with the location 
of the two soil samples (25R, 43) presented in this study.  At the time of the 
photograph, coal transport operations were largely confined to the zone seen in 
the lower part of the image, on the tracks leading to Pier 18.  Note the locations 
of the passenger terminal and roundhouse.  Base image: U.S. Geological 
Survey; identification of coal handling facilities: Anderson (1984); pier 
identification: Brooklyn Historical Society Archives.
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Figure 3.  Historical images of CRRNJ coal transport operations in the 1940's.  (A) Loaded coal 
trains in Jim Thorpe, Pennsylvania (Fig. 1; town formerly known as Mauch Chunk).  (B) Loaded 
coal cars approach Pier 18 in the Jersey City rail yard.  View to the west showing the yard's track 
network (Fig. 2).  (C) View of Pier 18's two coal dumping towers for transfer of coal from railcar 
to barge.  View is to the west from the eastern end of the pier.  (D) View to the northeast of Pier 
18's coal dumpers.  Note Ellis Island in the background.  Photos: Anderson (1984); used with 
permission.
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 4 

 After the rail yard and its piers were closed and dismantled, the state of New Jersey 70 

acquired the land and created the 490 ha Liberty State Park.  About 100 ha of the park remains 71 

an unremediated brownfield site, off limits to the public and constituting the study area of this 72 

project (Fig. 4A).  In recent years, the site's botanical succession, soil microbiology, and 73 

contaminant geochemistry have been extensively studied (e.g., Gallagher et al., 2008a; b; 2018; 74 

Hagmann et al., 2015; 2019; Krumins et al., 2015; Singh et al., 2019a; b).  In spite of evident 75 

inorganic and organic contamination, including abundant visible coal fragments in the soil, most 76 

of the restricted zone supports lush plant life, the product of natural, passive revegetation over a 77 

half century (Figs. 4B, C). 78 

Figure 4 79 

 Unburned coal, particularly of high volatile bituminous rank, contains high 80 

concentrations of polycyclic aromatic hydrocarbons (PAHs) among other compounds (Stout and 81 

Emsbo-Mattingly, 2008; Laumann et al., 2011).  While PAHs in soils may affect plant health 82 

(Brooks, 2004; Smith et al., 2006), the extent to which this is an environmental concern in this 83 

case is linked to the degree of PAH bioavailability and biodegradability if sequestered within 84 

coal particles in soil (Stout and Emsbo-Mattingly, 2008; Yang et al., 2008a; b; Achten and 85 

Hofmann, 2009; Achten et al., 2011; Fabiańska et al., 2016; Hindersmann and Achten, 2018; 86 

Nádudvari et al., 2018a; b).  Hagmann et al. (2019) undertook an environmental forensic 87 

investigation of coal-contaminated soils from the LSP brownfield site, describing in detail the 88 

distribution of saturated and aromatic hydrocarbons, heavy metals, and coal macerals.  However, 89 

they used only the < 2 mm particle size fraction, to the exclusion of the visible coal particles 90 

evident during field sampling.  The present study re-examines soils from two of the investigated 91 
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Figure 4.  Appearance of Liberty State Park in 2017.  (A) Aerial view towards the 
southwest showing the study area within the park.  Note the former passenger rail 
and ferry terminal, partially restored but non-functioning, and the Liberty Science 
Center museum, built on the site of the former railroad roundhouse (Fig. 2).  Photo: 
D. Hagmann.  (B, C) Dense vegetation covers most of the study area.  The top of 
the Liberty Science Center tower appears in C.  (D) Soil sample 25R was collected 
from this anomalously barren strip within the study area.  Photos B-D: M. Peters, 
Montclair State Univ.; used with permission.

(2 Column.  Grayscale in print edition; color in online edition.)
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 5 

sampling locales within LSP (Fig. 2), this time considering the full particle size range with 92 

emphasis on coal, to aid in future remediation of the brownfield. 93 

 Micro-scale analytical pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) 94 

has been shown to provide a rapid, reproducible means of chemically characterizing a wide 95 

variety of solid organic matter types with minimal sample preparation (Wampler, 2007).  Py-GC-96 

MS has increasingly been applied to environmental investigation of soils and sediments 97 

(summarized in Kruge, 2015), specifically including brownfield studies (Lara-Gonzalo et al., 98 

2015) and environmental forensics (Kruge et al., 2018).  It is utilized here for the direct, 99 

qualitative characterization of coal particles and coal-contaminated soil. 100 

 Sedimentary petrologists have long favored density separation for isolating heavy 101 

minerals from sandstones for microscopic evaluation (e.g., Boggs, 2009).  It has also been 102 

employed extensively in coal studies, evolving into the use of the sophisticated analytical 103 

technique of density gradient centrifugation for the separation of coal and kerogen macerals (e.g., 104 

Dyrkacz and Horwitz, 1982; Crelling, 1988; 1989; Stankiewicz et al., 1994a;b; Kruge et al., 105 

1997).  In the present study, a simple floatation method was employed to isolate soil organic 106 

matter and various coal types to improve the chemical characterization results. 107 

 The restricted zone of LSP is slated for gradual remediation into managed wetland, 108 

grassland, and forest with public access (McDonald, 2018).  The environmental forensic and 109 

industrial archeological approach of the present study will help to inform the remediation effort 110 

in the public interest. 111 

 112 

2. Methods 113 

2.1. Site description 114 
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 6 

 Soils for this study were collected within LSP in Jersey City (NJ, USA) include soil from 115 

vegetated Site 43, formerly beneath a railroad track, and soil from Site 25R taken on what 116 

remains an anomalously barren strip of land formerly between railroad tracks (Figs. 1-4). These 117 

sites are inside the unremediated, restricted-access 100-ha zone of the park.  The railroad tracks 118 

and their crossties were removed around the time the railyard was abandoned in the late 1960s.  119 

Since the railyard was abandoned, a dense forest consisting mostly of hardwood and herbaceous 120 

assemblages naturally grew within the restricted-access area (Gallagher et al., 2008a; b) (Figs. 121 

4A-C).     122 

 123 

2.2. Soil collection 124 

 Soil was collected from LSP sites 43 and 25R from below the leaf litter to a depth of 10 125 

cm and stored in at 4 °C.    Sample coordinates were determined by reference to Global 126 

Positioning System (GPS) satellite signals in the field, transferred to aerial imagery using the 127 

Google Earth application, and carefully matched by graphical overlay to the 1954 aerial image 128 

(Fig. 2) in the U.S. Geological Survey archives (earthexplorer.usgs.gov) as previously detailed 129 

(Hagmann et al., 2019). 130 

 131 

2.3. Hand-picked coal and plant material 132 

 Vegetation detritus from LSP site 43 was hand-picked from whole soil.  This plant 133 

material, which consisted of roots and twigs, were rinsed in deionized (DI) water and dried (40 134 

°C overnight).  In another procedure, soil samples from sites 25R and 43 were wet-sieved 135 

through a 2 mm sieve and sonicated in DI water.  The > 2 mm fraction was further separated into 136 

the following categories based on visual inspection under a binocular microscope: coal, coke, 137 
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 7 

and combustion spherules.  Coal particles from both sites (2 to 10 mm in size) were designated 138 

for further processing, as described in Sections 2.4 and 2.6 (Fig. 5). 139 

Figure 5. 140 

2.4. Scanning electron microscopy (SEM) 141 

 Before SEM, the hand-picked coal particles were individually air-dried and gently 142 

crushed using a mortar and pestle. Fragments of a single coal particle were spread on the carbon 143 

tape and then loaded on the SEM sample stub.  After applying a thin layer of carbon film under a 144 

Denton Desk 4 coater, the fragments were observed by the Hitachi S-3400N SEM and with 145 

Bruker –AXS Energy Dispersive X-Ray Spectroscopy (EDS) detector.   146 

 147 

2.5. Soil separation by density 148 

 Soils from both sites were also separated based on density (Fig. 5).  First, dried whole 149 

soil (40 °C overnight) was ground using a mortar and pestle to pass through a 1 mm sieve.  A 5 g 150 

aliquot was placed in 10 mL of DI water (1.0 g/mL) and the floating material after centrifugation 151 

was collected (Fraction 1).  An aqueous potassium iodide (ACS Reagent Grade, Ricca Chemical, 152 

Fisher Scientific) solution (1.6 g/mL in DI water, 10 mL) was added to the remaining soil (i.e., 153 

the sink material after Fraction 1 was removed).  The particles that were floating after 154 

centrifugation were collected in filter paper and rinsed with DI water (Fraction 2).  Finally, the 155 

remaining residue was rinsed with DI water and collected (Fraction 3).  For each fraction, the 156 

suspension was thoroughly mixed and then centrifuged at 4,000 rpm for 15 minutes. Aliquots of 157 

Fraction 3 residues were analyzed by SEM, following the procedure outlined in Section 2.4.   158 

Fraction 1 was predicted to contain the natural biomass that floats in water, Fraction 2 was 159 
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Figure 5.  Experimental flow chart.  See section 2 for details.  No vegetation detritus was 
picked from barren site 25R soil.   * < 2 mm size fraction previously studied in detail 
(Hagmann et al., 2019).
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 8 

expected to include the coal particles that float in the dense aqueous KI solution, while Fraction 160 

3 should include the soil mineral matter that is too dense to float in either liquid. 161 

 162 

2.6. Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) 163 

 The hand-selected vegetation detritus was crushed using a mortar and pestle and analyzed 164 

by Py-GC-MS (Fig. 5).  Several of the hand-picked coal particles were individually crushed 165 

using a mortar and pestle and separately analyzed by Py-GC-MS.  These included ten individual 166 

coal particles from site 43 and three coal particles from site 25R.  Whole soil samples and each 167 

of the three fractions separated by density from LSP sites 43 and 25R were also pyrolyzed.  For 168 

quality control, Py-GC-MS of the 25R whole soil was performed twice.  Py-GC-MS was 169 

accomplished using a CDS 5150 Pyroprobe (CDS Analytical Inc., Oxford, PA) coupled to a 170 

Thermo Finnigan Focus DSQ GC/MS (Thermo Electron Corporation, Madison, WI) equipped 171 

with an Agilent DB-1MS column (30 m × 0.25 mm i.d. × 0.25 μm film thickness). The GC oven 172 

temperature was programmed from 50 °C to 300 °C (at 5 °C min-1), with an initial hold of 5 min 173 

at 50 °C and a final hold of 15 min at 300 °C. Pyrolysis was performed for 20 s at 610 °C. The 174 

MS was operated in full scan mode (50-500 Da, 1.08 scans s-1).  The MS was calibrated by 175 

autotuning with PFTBA and blanks were run each day before samples were analyzed.  176 

Compounds were identified using the W8N08 mass spectral library (John Wiley and Sons, Inc., 177 

New York, NY), the online NIST Standard Reference Database Number 69 178 

(webbook.nist.gov/chemistry/), and by reference to the literature.  For this study, no internal or 179 

external standards were employed, thus no attempts at quantitative determination were made. 180 

 181 

3. Results and discussion 182 
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3.1. SEM of coal particles 183 

 Hand-selected coal particles from the > 2 mm fraction of soil from LSP site 43 were 184 

imaged using SEM, revealing surface encrustations that had resisted sonication (Fig. 6).  The 185 

EDS mapping indicated that the encrustations like those imaged in Figure 7 are aluminosilicate 186 

phases (strong Si, Al, and O spectral signals) adhering to the coal.  The overlapping spectral 187 

signals (Fig. 7B) can more clearly be seen in the individual mapping of Al and Si (Figs. 7C, D). 188 

Other hand-picked coal particles from LSP sites 43 and 25R produced similar SEM images. EDS 189 

also detected Fe and S in molar abundances roughly the same as those of Si and Al. 190 

Figure 6 191 

Figure 7 192 

 Using organic petrography, Hagmann et al. (2019) demonstrated that the < 2 mm size 193 

fraction of the site 43 soil contained about 32 % detrital clay by volume.  It is likely therefore 194 

that the aluminosilicate phases observed by SEM are clays.  EDS spectra show approximately 195 

equal molar amounts of Si and Al, as well as an absence of K and Na.  This suggests that the 196 

observed clays are most likely kaolinite (Welton, 1984).  The iron and sulfur might be present as 197 

pyrite or a weathered derivative, however this was not confirmed petrographically. 198 

 The aluminosilicate clay encrustations present on the site 43 and 25R coal particles, such 199 

as those seen in Figures 6 and 7, have been interpreted as hallmarks of coal weathering in that 200 

oxidation allows clay minerals to better adhere to the coal surface (Xia et al., 2014, Xia & Yang, 201 

2014).  The LSP samples are from the top 10 cm of the soil profile.  Thus, the coal particles were 202 

likely subjected to weathering over a half century or more, having been exposed to atmospheric 203 

O2 in soil pore spaces, infiltrating meteoric water, seasonal temperature swings, and action by 204 

resident soil microbes.  If the coal particles had been weathered chemically as well as physically, 205 
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Figure 6.  Scanning electron micrograph of fragments of a single wet-sieved (> 2 mm) and 
sonicated LSP 43 coal particle.  Note surface encrustations.  Scale bar is 300 μm. 
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Figure 7.  SEM EDS mapping images of a fragment of a single wet-sieved (>2 mm) and 
sonicated LSP 43 coal particle.  Scale bars are 50 μm.  (A) SEM image; box shows element 
mapping area for B-D.  (B) Multi-element map (O, Fe, S, Cl, Si, Al) superimposed on SEM 
image.  (C) Element map for aluminum.  (D) Element map for silicon.  Element mapping images 
indicate clay mineral platelets adhering to coal. 

(Two column.  Grayscale in print edition; color in online edition.)
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their composition would obviously have been affected.  The particles were therefore subjected to 206 

chemical analysis in part to determine if this indeed had been the case (Sec. 3.2). 207 

  208 

3.2. Py-GC-MS of coal particles and plant material 209 

 The pyrolysis products of the vegetation detritus from site 43 included lignin marker 210 

compounds [methoxyphenols, labeled as chromatographic peaks L1-L15], polysaccharide 211 

derivatives [P1-P6], phenols [F1-F3], long-chain aliphatic hydrocarbons [^], steroids [S1, S2], 212 

and triterpenoids similar to β-amyrone [BAM] (Fig. 8A, Table 1).  Ten coal particles were 213 

analyzed by Py-GC-MS. Nine of them had pyrograms resembling the one in Figure 8B, 214 

essentially showing only the simple monoaromatic hydrocarbons benzene [A1], toluene [A2], 215 

and alkylated benzenes [A3-A6].  Only one out of ten site 43 coal particles had a distinctly 216 

different pyrogram (Fig. 8C).  This much more complex pyrolyzate, in addition to the 217 

monoaromatics [A1-A7], contained phenol and alkylated phenols [F1-F8], dibenzofuran [DBF], 218 

alkylated dibenzofurans [DBFx], parent and alkylated PAHs including naphthalenes [Nx], 219 

phenanthrenes [PHNx], fluorene [FLU], pyrenes [PYRx], and chrysenes [CHRx].  The alkylated 220 

PAHs were relatively more abundant than the parent compounds, and pristane predominated 221 

over phytane.  222 

Figure 8 223 

Table 1 224 

  The lignin and polysaccharide marker compounds present in the pyrolyzate of the plant 225 

material (Fig. 8A), which is comprised of roots and twigs, are those typical of vegetation and 226 

forest soil biomass (e.g., Saiz-Jiménez & de Leeuw, 1986; Hempfling & Schulten, 1990; Kuder 227 

& Kruge, 1998; Kuroda & Nakagawa-izumi, 2006). The steroids and triterpenoids likely derive 228 
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Figure 8.  Py-GC-MS total ion current chromatograms of materials from the site 43 
soil sample:  (A) typical soil organic matter (roots & twigs) and (B, C) two coal 
particles hand-picked from the >2 mm size fraction after wet sieving and sonication.  
See Table 1 for peak identification. 
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from the plant matter and/or soil microbes (Hagmann et al., 2019).  Fresh and degraded plant 229 

materials obviously constitute important, non-contaminant soil components, which furthermore 230 

produce strong pyrolytic signatures.  In their prior study, Hagmann et al. (2019) pyrolyzed whole 231 

LSP soils, yielding results in which the contaminant signals were mixed with those of the natural 232 

vegetation present.  One objective of the present study is the isolation of the coal contaminant 233 

signatures from that of the plant material, for which the first step is the characterization of the 234 

individual components.  The next step (Section 3.3) is the experimental attempt to isolate these 235 

soil constituents by density separation. 236 

 It was assumed that the coal particles hand-picked from the soil samples (Sec. 2.3) would 237 

include coals of different ranks since the historical record documents bulk transport of 238 

bituminous and anthracite by coal-fired locomotives (Anderson, 1984).  One coal particle (Fig. 239 

8B) produced simple alkylated benzenes nearly exclusively upon pyrolysis, consistent with 240 

previously documented anthracite coal pyrolyzates (Xu et al., 2017).  Organic petrography 241 

indicated the presence of inertinite-dominant coal particles in soil samples from Site 43 242 

(Hagmann et al., 2019) but inertinite pyrolysis products are considerably more complex 243 

(Stankiewicz et al., 1994a).  Therefore, this coal particle and the other eight yielding similar 244 

pyrograms are all deemed to be anthracite by their distinctive pyrolytic fingerprint (although in 245 

the absence of confirmation by organic petrology or proximate and ultimate analysis).  The 246 

sample shown in the SEM images (Figs. 6, 7) is one of these eight particles.  About 70 % of the 247 

coal at this site was previously determined to be anthracite by petrographic examination 248 

(Hagmann et al., 2019), so it would not be surprising that most of the hand-picked coal particles 249 

in the present study would be anthracite.  250 
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 Pyrolysis products from the remaining coal particle (Fig. 8C) closely resemble those of 251 

bituminous coal (Hatcher et al., 1992; Kruge & Bensley, 1994; Stankiewicz et al., 1994a; b; 252 

Laumann et al., 2011).  These authors attest to the singular importance of oxygenated 253 

compounds in high-volatile bituminous coal pyrolyzates, in particular the phenols, as well as 254 

secondary amounts of dibenzofurans.  These compounds are clearly evident in this particle's 255 

pyrolyzate [F1-F7, DBF1, DBF2].  Alkylnaphthalenes are also important components of 256 

bituminous coal pyrolyzates (Hatcher et al., 1992; Kruge & Bensley, 1994; Stankiewicz et al., 257 

1994a) and are among the most abundant [N0-N3] in the present example (Fig. 8C).  These same 258 

authors also demonstrated that pyrolytic phenols predominate when analyzing vitrinite of lower 259 

rank high volatile bituminous coals.  However, in pyrolyzates of coals of increasing rank, the 260 

relative importance of the phenols is progressively reduced, while both parent and alkylated 261 

PAHs become more evident (Kruge & Bensley, 1994; Laumann et al., 2011).  Although phenols 262 

[F1-F7] are very significant components in the present case (Fig. 8C), the prevalence of 263 

naphthalenes [N0-N3], and larger parent and alkyl-PAHs including the phenanthrenes [PAHx], 264 

pyrenes [PYRx], and chrysenes [CHRx] suggest that this is likely to be a higher rank bituminous 265 

coal.  Previous petrographic examination (Hagmann et al., 2019) indicated that 17 % of the coal 266 

in the site 43 soil was medium volatile bituminous while only 8 % was high volatile.  The 267 

particle in this case (Fig. 8C) is likely to be medium volatile based on its pyrolytic signature.  268 

Pyrolysis did not reveal marked evidence of chemical weathering, such as oxygenated PAHs. 269 

  270 

3.3. Density separation of soil 271 

 Whole soils from vegetated site 43 and barren site 25R were separated into three fractions 272 

based on density (Fig. 5, Table 2).  To achieve a clean signal for the coal Py-GC-MS 273 
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fingerprints, the plant material, predicted to be Fraction 1, needed to be separated from the coal 274 

particles, expected in Fraction 2, as explained in Section 3.2.  The residue material anticipated in 275 

Fraction 3 was anticipated to confirm that the coal particles had been successfully isolated in 276 

Fraction 2.  The site 25R soil yielded only 0.06 % by weight of light Fraction 1 while site 43 277 

yielded 0.39 %.  LSP site 43 had more of the intermediate Fraction 2 (3.10 %) compared to site 278 

25R (0.89 %).  For both sites, most of the material remained in the heavy third fraction (92.6 and 279 

95.9 %, respectively, for 43 and 25R). 280 

Table 2 281 

 Previous work (on the < 2 mm size fraction) indicated that the LSP soil samples were rich 282 

in organic matter (soil biomass plus coal, coke and char).  Site 43 soil was found to consist of 283 

about 30 % by weight of organic matter, while 25R had about 11 % (Hagmann et al., 2019).  284 

Therefore, the low Fraction 1 and 2 yields (Table 2) appear incongruous at first glance.  With 285 

bituminous coal and anthracite having specific densities of 1.32 and 1.47 g/mL, respectively 286 

(Flores, 2013; Wood et al., 1983), the KI solution with a density of 1.6 g/mL employed in the 287 

present experiment was expected to be adequate for the floatation of both types of coal.  288 

However, based on the SEM observations (Figs. 6, 7), stubbornly adhering mineral phases 289 

evidently precluded a complete isolation of coal fragments by density, relegating most of the 290 

material to the third (residual) fraction (Table 2).  Adhering or embedded minerals increase the 291 

bulk density of the coal particles, perturbing the outcome of float-sink procedures (Garcia et al., 292 

1991; Stankiewicz et al., 1994b; Suárez-Ruiz & Crelling, 2008).  SEM examination of the 293 

residual fraction did indeed reveal abundant, widely-distributed mineral matter for both soil 294 

samples.  A more rigorous attempt to isolate the organic materials from the minerals by a 295 

micronization pretreatment was beyond the scope of this project. 296 
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Table 2.  Dry weight percentages of density fractions separated from whole 
soil of LSP Sites 43 and 25R. See text and Figure 5 for procedural details.
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 297 

3.4.  Py-GC-MS of soil density fractions 298 

 To investigate their organic chemical composition in detail, whole soil and each density 299 

fraction were subjected to Py-GC-MS (Fig. 5).  Results from the two field sites are presented 300 

separately. 301 

 302 

3.4.1.  Forested site 43 soil 303 

 Upon pyrolysis, forested site 43's whole soil revealed a predominance of simple 304 

alkylbenzenes and naphthalenes [A1-A7, N0-N3] (Fig. 9A).  Notable minor components include 305 

polysaccharide and lignin marker compounds [P1-P3, L1], phenols [F1-F5], dibenzofurans 306 

[DBFx], PAHs [FLUx, PHNx, FLA, PYR, CHR], diketodipyrrole [DKDP] and long-chain n-307 

alkanes [+].  Hagmann et al. (2019) noted a greater prevalence of polysaccharide and lignin 308 

markers, as well as phenols in site 43 soil pyrolyzates, but it must be kept in mind that they 309 

analyzed only the < 2 mm soil size fraction.  The site 43 density Fraction 1 pyrolyzate is 310 

distinctly different from the whole soil, with lignin and polysaccharide markers dominant [L1-311 

L15, P1-P6], along with phenols [F1-F8], diketodipyrrole [DKDP], fatty acids [FA1-FA3], long-312 

chain n-alkenes [^], and sterols [S1, S2] (Fig. 9B). 313 

Figure 9 314 

 The complex pyrolyzate of Site 43's Fraction 2 has an overwhelmingly aromatic 315 

signature (Fig. 9C).  Significant compounds include monoaromatic hydrocarbons [A1-A7], 316 

phenols [F1-F8], naphthalenes [N0-N3], dibenzofurans [DBFx], and parent and alkylated PAHs 317 

[FLU1, PHNx, PYRx, CHRx, BeP].  n-Alkanes [+] and triterpenoids [BAM] are also 318 

noteworthy.  In contradistinction, Fraction 3 produced mostly monoaromatic hydrocarbons [A1-319 
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Figure 9. Py-GC-MS total ion current chromatograms. Forested LSP site 43: (A) 
whole soil, (B) Fraction 1 floated in DI water, (C) Fraction 2 floated in KIaq (1.6 
g/mL), and (D) Fraction 3 sank in KIaq (1.6 g/mL).  See Table 1 for peak 
identification. 
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A7] upon pyrolysis, accompanied by naphthalenes [N0-N2] with relatively minor phenols [F1-320 

F3] and aliphatics [+] (Fig. 9D). 321 

 322 

3.4.2.  Barren site 25R soil 323 

 Site 25R is anomalously free of plant life (Fig. 4D), standing in stark contrast to its lushly 324 

vegetated surroundings (Fig. 4B, C).  Hagmann et al. (2019) concluded that this is primarily due 325 

to the extraordinarily high heavy metal contamination of this narrow strip of land, formerly 326 

between train tracks (Fig. 2) which were removed when the railyard was closed in the 1960's 327 

(Gallagher et al., 2008a).  The abundant coal particles in its soil are the subject of the present 328 

study.   329 

 Simple monoaromatic [A1-A9] and diaromatic [N0-N2, BB0] compounds with a trace of 330 

phenanthrene [PHN] comprise nearly all of site 25R's whole soil pyrolyzate (Fig. 10A).  This 331 

site's < 2 mm soil size fraction previously pyrolyzed (Hagmann et al., 2019) yielded similar 332 

results but with a distinct shift towards the heavier aromatics.  The first density fraction (Fig. 333 

10B) produced a contrastingly complex distribution of pyrolysis products, in particular, 334 

monoaromatics [A1-A5], polysaccharide and lignin markers [P1-P6, L1-L15], phenols [F1-F8], 335 

diketodipyrrole [DKDP], fatty acids [FA1-FA3], and steroids [S1-S3]. 336 

Figure 10 337 

 The second density fraction's pyrogram is also complex, but it indicates a very different 338 

distribution of compounds (Fig. 10C).  Monoaromatic [A1-A7] and diaromatic [N0-N3, BB1] 339 

hydrocarbons predominate, along with phenols [F1-F8].  Three to five-ring aromatic compounds 340 

are also in evidence, notably dibenzofurans [DBFx], phenanthrenes [PHNx], pyrenes [PYRx], 341 

chrysenes [CHRx], and benzo[e]pyrene [BeP].  Pristane [Pr] and n-alkanes [+] attest to a minor 342 

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512



Figure 10. Py-GC-MS total ion current chromatograms. Barren LSP site 25R: (A) 
whole soil, (B) Fraction 1 floated in DI water, (C) Fraction 2 floated in KIaq (1.6 
g/mL), and (D) Fraction 3 sank in KIaq (1.6 g/mL).  See Table 1 for peak 
identification.
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aliphatic component.  The third, residual density fraction offered a very limited yield upon 343 

pyrolysis, mostly benzene [A1], a few other monoaromatics [A2-A5] and naphthalene [N0] (Fig. 344 

10D). 345 

 346 

3.4.3.  Coal contamination in soil: Insights from Py-GC-MS of density fractions 347 

 A temperate forest soil is naturally rich in organic material, with roots, leaf litter, humus, 348 

fungi, and soil microbes.  Forested soils in LSP have an anomalously high organic matter 349 

content: 30 % by weight in the case of site 43 compared to a natural background value of about 350 

7.5 %, attributed to the additional burden of coal, coke and char contamination therein (Hagmann 351 

et al., 2019).  Pyrolysis of the whole soil should therefore yield a complex mixture of products 352 

from all organic materials present, in proportion to the relative amounts of each type.  Pyrolysis 353 

proneness should also be considered as wood and coal would yield abundant pyrolysis products, 354 

whereas coke and char would not.  The combined effect can be seen in Figure 9A, showing 355 

aromatic hydrocarbons together with polysaccharide and lignin marker compounds in site 43's 356 

whole soil pyrolyzate. 357 

 The soil density fractionation experiment was undertaken in an attempt to separate the 358 

soil's organic components to improve the specificity of the subsequent chemical analyses.  A 359 

critical factor was the isolation of the soil biomass from the fossil fuel contaminants present.  360 

The pyrolysis products of the first density fractions of both soils (Figs. 9B, 10B) closely 361 

resemble those of the soil vegetation detritus (Fig. 8A) in the predominance of lignin and 362 

polysaccharide markers and steroids.  Therefore, plant matter is evidently the main component of 363 

the light fraction in both cases.  The presence of diketodipyrrole [DKDP] – a known protein 364 

pyrolysis product (Orsini et al., 2017) – and relatively more fatty acids in the density fractions is 365 
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most likely due to soil microbial contributions.  Although site 25R is barren of plant life, trace 366 

amounts of biomass were detected in its soil (Fig. 10B, Table 2), likely derived from the adjacent 367 

vegetated areas (Fig. 4D). 368 

 The second density fractions (Fraction 2) of both soils also produced very similar 369 

pyrolyzates (Figs. 9C, 10C).  As described above, their pyrograms both show a predominance of 370 

mono- and diaromatic hydrocarbons, and phenols, along with parent and alkylated PAHs.  The 371 

polysaccharide and lignin markers compounds characteristic of the vegetation debris are not 372 

detected.  These distributions in turn closely resemble those derived from the medium volatile 373 

bituminous coal particle (Fig. 8C).  It can be concluded that the second density fractions are 374 

predominantly bituminous coal.  The triterpenoids [BAM] evident in soil 43's pyrogram likely 375 

indicate some, perhaps degraded, biomass contribution (Fig. 9C). 376 

 The third density fractions (Fraction 3) are alike in that their pyrolyzates contain 377 

predominantly simple monoaromatic hydrocarbons (Figs. 9D, 10D).  They bear a strong 378 

resemblance to the anthracite pyrolysis products (Fig. 8B), indicating that anthracite is the 379 

primary pyrolyzable component therein.  The presence of anthracite in this residual density 380 

fraction is likely due to the added mass of adhering mineral phases, as observed by SEM (Figs. 6, 381 

7), precluding floatation in the 1.6 g/mL fluid employed.  The site 43 pyrogram shows more of 382 

the alkylbenzenes and naphthalenes, along with trace amounts of phenols, suggesting that some 383 

bituminous coal is also present in this fraction, similarly burdened with mineral matter.  The 384 

minor C11-C26 n-alkanes detected (Fig. 9D) may arise from petroleum or coal tar-derived 385 

contamination in the soil adhering to mineral phases.  Solvent extraction to test this supposition 386 

was beyond the scope of this project, but it is compatible with the conclusions of the prior study 387 

which did employ extraction and subsequent GC-MS (Hagmann et al., 2019).  This prior work 388 
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also documented the presence of coke and char in these soils, confirmed during the hand-picking 389 

procedure of the present study (Sec. 2.3), but these materials yield little upon pyrolysis and thus 390 

escape detection by Py-GC-MS.   391 

 392 

4. Conclusions 393 

 Analytical pyrolysis provided compelling evidence for the presence of biomass and 394 

bituminous and anthracite coal in the LSP soil density fractions.  These insights should ideally be 395 

checked by organic petrography.  The simple density separation experiment undertaken in this 396 

soil contamination study is shown to offer a helpful preparative technique, although not a 397 

rigorously quantitative one.  The procedure could be improved by a micronization pretreatment 398 

step to more effectively permit separation of mineral components from the organic ones and by 399 

organic petrographic confirmation of the fraction compositions. 400 

 Of primary concern with the presence of coal at Liberty State Park is the potential 401 

environmental risk, principally due to coal's constituent PAHs.  The abundant coal particles in 402 

LSP soils are the legacy of the park's past as major rail yard and port for the large-scale 403 

commercial transport and transfer of coal, powered by coal-fired steam locomotives, riding on 404 

rails supported by wooden crossties likely treated with coal tar-derived creosote.  However, 405 

much of the LSP coal is anthracite and higher rank (medium volatile) bituminous.  Extractable 406 

PAH content in coal decreases markedly with increasing coal rank (Stout and Emsbo-Mattingly, 407 

2008; Laumann et al., 2011), therefore high rank coal particles in soil should pose less of an 408 

environmental concern on this basis.  While the PAH-rich high volatile bituminous coal is 409 

proportionately less abundant at LSP, the extent to which it might be toxic or mutagenic to 410 

humans, plants, and animals is nonetheless linked to its degree of bioavailability.  With the 411 
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evidently flourishing plant communities in great majority of the LSP brownfield zone, limited 412 

hot spots of acute contamination therein (Hagmann et al., 2019) likely demand the most intensive 413 

remediation efforts.  Analysis of soil components by Py-GC-MS, particularly after a preparative 414 

density separation procedure, is shown to be effective in the environmental forensic and 415 

industrial archeological investigation of this urban brownfield.  This detailed information about 416 

the nature of contaminants will help to inform future remediation efforts in the public interest. 417 

 418 
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 562 

Figure and table captions 563 

Figure 1.  Index map showing location of Liberty State Park (LSP) in Jersey City (NJ), USA, the 564 

principal anthracite coal fields of Pennsylvania, and the former Central Railroad of New Jersey 565 

main line.  Base map: Google Earth; coalfields: Pennsylvania Dept. of Environmental Protection; 566 

rail line: Anderson (1984). 567 

 568 

Figure 2.  The Central Railroad of New Jersey's rail yard and marine terminal in Jersey City as it 569 

appeared in a 1954 aerial image, overprinted with the location of the two soil samples (25R, 43) 570 
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presented in this study.  At the time of the photograph, coal transport operations were largely 571 

confined to the zone seen in the lower part of the image, on the tracks leading to Pier 18.  Note 572 

the locations of the passenger terminal and roundhouse.  Base image: U.S. Geological Survey; 573 

identification of coal handling facilities: Anderson (1984); pier identification: Brooklyn 574 

Historical Society Archives. 575 

 576 

Figure 3.  Historical images of CRRNJ coal transport operations in the 1940's.  (A) Loaded coal 577 

trains in Jim Thorpe, Pennsylvania (Fig. 1; town formerly known as Mauch Chunk).  (B) Loaded 578 

coal cars approach Pier 18 in the Jersey City rail yard.  View to the west showing the yard's track 579 

network (Fig. 2).  (C) View of Pier 18's two coal dumping towers for transfer of coal from railcar 580 

to barge.  View is to the west from the eastern end of the pier.  (D) View to the northeast of Pier 581 

18's coal dumpers.  Note Ellis Island in the background.  Photos: Anderson (1984); used with 582 

permission of the Delaware & Lehigh National Heritage Corridor, Inc., Easton (PA). 583 

 584 

Figure 4.  Appearance of Liberty State Park in 2017.  (A) Aerial view towards the southwest 585 

showing the study area within the park.  Note the former passenger rail and ferry terminal, 586 

partially restored but non-functioning, and the Liberty Science Center museum, built on the site 587 

of the former railroad roundhouse (Fig. 2).  Photo: D. Hagmann.  (B, C) Dense vegetation covers 588 

most of the study area.  The top of the Liberty Science Center tower appears in C.  (D) Soil 589 

sample 25R was collected from this anomalously barren strip within the study area.  Photos B-D: 590 

M. Peters, Montclair State Univ.; used with permission. 591 
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Figure 5.  Experimental flow chart.  See section 2 for details.  No vegetation detritus was picked 593 

from site 25R soil.   * < 2 mm size fraction previously studied in detail (Hagmann et al., 2019). 594 

 595 

Figure 6.  Scanning electron micrograph of fragments of a single wet-sieved (> 2 mm) and 596 

sonicated LSP 43 coal particle.  Note surface encrustations.  Scale bar is 300 μm. 597 

 598 

Figure 7.  SEM EDS mapping images of a fragment of a single wet-sieved (>2 mm) and 599 

sonicated LSP 43 coal particle.  Scale bars are 50 μm.  (A) SEM image; box shows element 600 

mapping area for B-D.  (B) Multi-element map (O, Fe, S, Cl, Si, Al) superimposed on SEM 601 

image.  (C) Element map for aluminum.  (D) Element map for silicon.  Element mapping images 602 

indicate clay mineral platelets adhering to coal. 603 

 604 

Figure 8.  Py-GC-MS total ion current chromatograms of materials from the site 43 soil sample:  605 

(A) typical soil organic matter (roots & twigs) and (B, C) two coal particles hand-picked from 606 

the >2 mm size fraction after wet sieving and sonication.  See Table 1 for peak identification. 607 

 608 

Figure 9. Py-GC-MS total ion current chromatograms. Forested LSP site 43: (A) whole soil, (B) 609 

Fraction 1 floated in DI water, (C) Fraction 2 floated in KIaq (1.6 g/mL), and (D) Fraction 3 sank 610 

in KIaq (1.6 g/mL).  See Table 1 for peak identification. 611 

 612 

Figure 10. Py-GC-MS total ion current chromatograms. Barren LSP site 25R: (A) whole soil, (B) 613 

Fraction 1 floated in DI water, (C) Fraction 2 floated in KIaq (1.6 g/mL), and (D) Fraction 3 sank 614 

in KIaq (1.6 g/mL).  See Table 1 for peak identification. 615 
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 616 

Table 1.  Pyrolysis-GC-MS peak identification for Figures 8-10. 617 

 618 

Table 2.  Dry weight percentages of density fractions separated from whole soil of LSP Sites 43 619 

and 25R. See text and Figure 5 for procedural details. 620 
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