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   ABSTRACT  

 

PALEOENVIRONMENT RECONSTRUCTION OF THE EOCENE 

SOUTHEASTERN TETHYS USING GEOCHEMISTRY OF 

SEDIMENTARY ROCKS 

 

By Liliana Calderón Convers 

 

The Early Eocene hyperthermals are a series of transient global warming events that 

occurred between 54.09 and 52.63 Ma, and are considered as ancient analogues for future 

climate change. These hyperthermal events are well studied in the deep sea sites, but have not 

been investigated in the eastern Tethys Ocean. Here, we report new major and trace element 

geochemistry and stable carbon isotope data of the Early Eocene strata deposited in a shallow 

marine foreland basin prior to the main stage of India-Asian continent collision at Qumiba 

section in the Tingri County, southern Tibet. These geochemical data are used to reconstruct the 

paleoenvironment and past carbon cycle dynamics in the Early Eocene. The collision of India 

with Asia continent led to the formation of the Himalayas and the demise of the Tethys Ocean. 

This tectonic event played a significant role in the paleotopography, paleoceanography and 

paleoclimate of the southeastern Tethys. The youngest marine sediments (Enba Formation and 

Zhaguo Formation) represent the closure of the Tethys Ocean, and suggest an age of 53.67 to 

52.63 Ma. Major element geochemistry and weathering indices indicate that the Eocene 

southeastern Tethys may have experienced periodic pulses of nutrient-rich detrital sediments, 

weathering supplies and the development of hypoxia in the water column, consistent with the 

warm and humid climate in the Early Eocene.  

 

Keywords: Paleoenvironment, Eocene Thermal Maximum 2 (ETM 2), Qumiba section, 

geochemistry, Carbon, Nitrogen stable isotopes. 
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1 Introduction 

The initial stage of the continental collision between India and Asia has complex 

consequences for the paleoenvironment and paleoclimate of the eastern Tethys ocean before 

its final closure (Aitchison et al., 2011; Hu et al., 2012; Jiang et al., 2016; Najman et al., 

2010; Zhu et al., 2019). Numerous studies have investigated the age of the initial collision, 

but no consensus has been reached, with estimates ranging from ~65 to 34 million years ago 

(Ma) (Cai et al., 2011; Rowley, 1996; Searle et al., 1987; Singh, 2013; van Hinsbergen et al., 

2012; Wang et al., 2012; Yin and Harrison, 2000). Furthermore, the growth of the Himalaya-

Tibetan orogen is thought to have played a critical role in driving the long-term Cenozoic 

cooling through the negative silicate weathering feedback (Caves et al., 2016; Kump and 

Arthur, 1997; Raymo and Ruddiman, 1992). Despite these efforts, few studies have looked 

into the paleoenvironmental evolution of the eastern Tethys during the initial stage of the 

India-Asia continental collision (e.g., Kahsnitz, 2017; Wang et al., 2017; Zhang et al., 2012), 

possibly because of the sparse age constraint of this interval. 

The Early Eocene Ypresian (ca. 56 to 47.8 Ma) is characterized by a hothouse climate with 

temperatures 15 oC warmer than the present day (Miller et al., 2020), and was punctuated by 

a series of rapid global warming events, known as Early Eocene hyperthermals (Nicolo et al., 

2007; Slotnick et al., 2012). Large benthic foraminifera and negative carbon isotope 

excursion (CIE) allow for the recognition of the Paleocene-Eocene Thermal Maximum at 

Tingri in the  Early Eocene Tethyan Himalaya (Zhang et al., 2013), but evidence for other 

Early Eocene hyperthermals is still lacking. Here, we present major and trace elements data 

and stable isotopes of carbon and nitrogen from the Qumiba section across the Early Eocene 

Enba and Zhaguo Formations in the hope to link the Early Eocene hyperthermal events to 
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geochemical characteristics of the siliciclastic sediments deposited in the foreland basin 

during the initial collision stage of the India-Asia continents.  

2 Geological Background  

Southern Tibet was located in the Tethyan Himalaya of the northern Greater Indian 

continental margin, formed by the collision of India and Asia in the Eocene epoch (~55 Ma) 

(Ding et al., 2016; Hu et al., 2016; Najman et al., 2017; Wang et al., 2008) (Figs 1 and 2). 

Prior to the collision, this region was part of the interior Tethys oceans in the Cretaceous. The 

collision of Indian-Asian plates resulted in the closure of the Neo-Tethys Ocean and 

subsequent stages of tectonic uplift and the formation of the Tibetan Plateau (Spicer et al., 

2020; Wang et al., 2008). Therefore, the sediments of the Eocene period record the final 

stages of sedimentation on the southern margin of the Tethys ocean (Najman et al., 2010).  

 
Figure 1. Geological map of the Himalayas modified from Hu et al. (2012) and Najman et al. (2017). The 

inset maps show the location of the Himalayas. The studied Qumiba section is shown in red triangle, 

which is located in the Tingri region in southern Tibet, China.  
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The study site, the Qumiba section, is located south of the Yarlung-Tsangpo structure in 

central Tethyan Himalayas in southern Tibet, west of the Zhepure Shan mountain in Tingri 

area (GPS N28º 41′ 26″, E86º 43′ 37″, elevation 4924 to 4970 m). Six stratigraphic units 

have been identified in the Zhepure Shan mountain (Willems et al., 1996), i.e. from oldest to 

youngest the Gamba Group (late Albian-early Santonian), the Zhepure Shanbei Formation 

(early Santonian-middle Maastrichtian), the Zhepure Shanpo Formation (middle 

Maastrichtian-early Paleocene), the Jidula Formation (Danian), the Zhepure Shan Formation 

(late Danian-Lutetian) and Zongpubei Formation (Lutetian or younger). The Gamba Group, 

Zhepure Shanbei Formation and Zhepure Shan Formation mainly consist of limestones and 

marls, while the Zhepure Shanpo Formation, Jidula Formation and Zongpubei Formation 

mainly consist of sandstones and mudstones. The Zongpubei Formation is composed of 

green-colored mudstones and sandstones overlain by red-colored mudstones, wackestones 

and sandstones, corresponding to Enba Fm. and Zhaguo Fm. respectively (Hu et al., 2012; 

Wang et al., 2002; Willems et al., 1996).  

The studied successions consist of the upper part of Enba Formation and the lower part of the 

Zhaguo Formation (Najman et al., 2010). The Enba Formation consists of greenish-grey 

mudstones with thin interbedded sandstones and few thin limestones, with a thickness of 

approximately 105 m (Fig. 3). The quartzose sandstones are mature and lithic-rich, which are 

mainly volcanic fragments (Zhu et al., 2005). The sandstone beds become thicker and more 

abundant in the upper part of Enba Fm., with horizontal and wavy cross-lamination. Among 

them, hummocky cross-stratified beds can also be found, which implies the influence of 

storm waves (Figure 3; Zhu et al., 2005). It has been suggested that the Enba Fm. was 

deposited in an outer shelf environment, in which the mudstones were deposited by 
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suspension settling and sandstones by turbidity currents or high-energy events (Hu et al., 

2012; Zhu et al., 2005).   

The overlying Zhaguo Fm. (~75m) is composed of red mudstones and interbedded 

sandstones, and has similar lithologies to those of the Enba Fm. (Zhu et al., 2005). The 

boundary between Enba Fm. and Zhaguo Fm. is marked by a thick sandstone bed (~8m) 

featured by poorly sorted, angular, and pebble/cobble-sized grains derived from the 

underlying unit, interpreted as paleoregolith  (Zhu et al., 2005). The subtle angular variations 

are observed by the minor dip differences between the Enba Fm. and the Zhaguo Fm. (≈11°). 

But it is still controversial whether unconformities and depositional hiatus exist at the 

Qumiba section (Najman et al., 2010; Hu et al., 2012). The thin sandstone beds in the Zhaguo 

Formation are commonly characterized by fining upwards, scoured bases, trough cross-

lamination, horizontal lamination, and wavy cross-lamination. The sedimentary environment 

was interpreted as the shallow marine shelf environment (Wang et al., 2002). 

The ages of the Enba Fm. and Zhaguo Fm. are Early Eocene, evidenced by no difference of 

the stratigraphically mixed calcareous nannofossil assemblages preserved in the two 

formations (Najman et al., 2010). Since the youngest assemblage can represent the age of the 

sediments, the ages of the two formations correspond to Ypresian stage (50.6–53.5 Ma) 

according to the nannofossil zones NP11–12, which is also consistent with the foraminiferal 

zones P7–8 (ca. 50.4–52.3 Ma) (Zhu et al., 2005; Najman et al., 2010). 
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                        Figure 2. Tectonic evolution model of India–Asia collision (Ding et al., 2016) 
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Figure 3. The stratigraphic log of the Eocene strata of the Qumiba section in this study, sample positions 

are shown as horizontal bars. Also shown is the field photography of the Qumiba section, which consists 

of Lower Eocene Enba and Zhaguo Formations with the thick sandstone as their boundary. 

 

Motivation and Research Questions 

Previous studies have shown that the nannofossil and foraminifera assemblages from the 

Lower Eocene Enba Formation and Zhaguo Formation are strongly influenced by the 

recycling and redeposition of Cretaceous and Paleocene age sediments from the Lhasa 

Terrain (Hu et al., 2012; Najman et al., 2010). This research aims to answer three research 

questions: 1) What are the paleoenvironmental and paleoclimatological responses in the 

eastern Tethyan ocean to tectonic forcings during India-Asia collision? 2) Are Early Eocene 

hyperthermal events recorded in the eastern Tethyan ocean?  3) What are the roles of 

recycled continental materials in the sediment provenance?  
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3 Materials and Methods  

A total of 66 freshly excavated outcrop samples were collected from the sandstone and 

mudstone bearing the Qumiba section for this study, and each sample was taken one meter 

apart from the Enba Formation to the Zhaguo Formation (Table 1). These samples were 

examined for major, trace and rare earth elements (REE) analysis using an Inductively 

Coupled Plasma – Mass Spectrometry (ICP-MS) housed at the Department of Earth and 

Environmental Studies at Montclair State University. Thirty out of 66 samples were analyzed 

for stable carbon and nitrogen isotopes via EA-IRMS (Elemental Analyzer - Isotope Ratio 

Mass Spectrometer) in order to understand the carbon and nitrogen cycle of the Early Eocene 

in response to the closure of the Tethys Ocean and Himalaya uplift. 

 

3.1 Major and Trace Element Analysis 

All the Qumiba samples were crushed using a SPEX zirconia ceramics ball mill. Around 100 

mg powder was mixed with 400 mg of ultrahigh-purity lithium metatetraborate flux ((R)Spex-

Certiprep) and fused in high-purity graphite crucibles at 1050 °C for 40 minutes in the 

Thermo Scientific™ Lindberg/Blue MTM Box Furnace. Afterwards, molten samples were 

immediately dissolved in 50 ml of 7% HNO3, then transferred for a second dilution of 6.5 

mL of the sample plus HNO3 (dilution factor of ~4000×) before ICP-MS analysis. The Milli-

Q® Direct 8 Water Purification system was used for distilled and deionized experimental 

water; nitric acid from Fisher Scientific was of trace metal grade. Additional blanks and flux 

were prepared for analytical corrections to the analytical signal (<1.5% for all elements). 



16  

Instrument calibration was conducted using ten rock standards of the U.S. Geological Survey 

(USGS) (DNC-1, BHVO-2, G-2, W-2, BCR-2, GSP-2, QLO-1, AGV-2, BIR-1 and RGM-1). 

ICP-MS performed three analytical runs for all the samples, blanks and standards. 

 

3.2 Stable carbon and nitrogen isotope analysis 

Thirty samples were analyzed for stable carbon and nitrogen isotopes, and samples were first 

crushed using a SPEX zirconia ceramics ball mill. Powers are then dissolved in 10% HCl and 

neutralized with deionized distilled water and centrifuged. Solutions were decanted, and 

powders were dried using the Labconco 4.5 Freezone freeze dryer before folding in a tin boat 

and loaded in a Thermo Elemental Analyzer coupled to Delta V Advantage IRMS at 

Montclair State University (USA) to measure stable carbon and nitrogen isotopes. Precision 

is better than 0.5‰ for carbon, and better than 0.1‰ for nitrogen isotopes. 

 

4 Results 

Geochemical data for major, trace elements and REE concentrations, and stable carbon and 

nitrogen isotopes of the Qumiba section are shown in Table 1, 2, 3, 4 and 5. The major 

elements and trace elements are interpreted as weathering proxies and ocean redox proxies 

respectively. Trace elements and REE analysis are useful to reconstruct paleoenvironment 

and to trace sediment provenance. Based on the variations of major oxides contents, chemical 

weathering proxies, provenance proxies, redox proxies and nutrient proxies, the stratigraphic 

profile can be roughly divided into four parts (i.e.  Part Ⅰ: 0-10 m; Part Ⅱ: 10-30 m; Part Ⅲ: 

40-66 m; Part Ⅳ: 66-80m) (Figure 4). In addition, Part Ⅱ can be further subdivided to Part Ⅱ-

A (10-21m) and Part Ⅱ-B (21-30m) because of the small variations inside. 
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4.1 Major element geochemistry  

The major oxides are dominated by SiO2 (61.2 – 77.0%), Al2O3 (10.3 – 19.8%), Fe2O3 (3.9 – 

11.3%) and CaO (0.4 – 8.1%) (Figure 4). Other major oxides such as MgO (1.5 – 3.5%), 

CaO (0.4 – 8.1%), K2O (0.7 – 4.0%), MnO (0.0 – 0.5%), Na2O (0.58 – 1.81%), TiO2  (0.39 – 

1.01%) and P2O5 (0.10 – 0.19%) exhibit small variations. The mudstone samples commonly 

show higher Al2O3 contents (12.3 – 19.8%, average 16.3%) and lower SiO2 contents (61.2 – 

73.2%, average 65.9%) than those of the sandstone samples (Al2O3: 11.5 – 12.7, average 

10.3%; SiO2: 69.4 – 77.0%, average 72.7%).  Both mudstone and sandstone samples show a 

linear trend on the SiO2 vs. Al2O3 (Figure 4), indicating they are similar to the siliciclastic 

rocks. Meanwhile, there is a strong positive correlation between Al2O3 and TiO2 (R
2 = 0.86; 

p-value < 0.001), suggesting there is no significant difference in provenance between the 

mudstones and sandstones. The stratigraphic variations of major oxides contents of the 

Qumiba section along with the lithology is shown in Figure 4. The samples of Part Ⅰ and Part 

Ⅳ display higher SiO2 contents and lower Al2O3 contents than those of Part Ⅱ and Part Ⅲ. In 

addition, Part Ⅱ shows small variations inside, in which the samples of Part Ⅱ-A have lower 

SiO2 content and higher Al2O3 content than those of Part Ⅱ-B. 
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Figure 4. Content of major oxides from the Qumiba section, including SiO2, Al2O3, TiO2, Fe2O3, MnO, 

CaO, MgO, Na2O, K2O, and P2O5. Eight sandstone samples are plotted as triangles and 57 mudstone 

samples are plotted in closed circles.  

 

4.2 Trace element geochemistry  

Trace elements can be used to analyze the material provenance, water column redox and 

nutrient conditions through the concentrations, enrichment factors and the ratios of different 

trace elements. In order to interpret and compare the results properly, it is common to use 

enrichment factors (EF) of trace elements via aluminum (Al) normalization: EFelement X = 

X/Alsample /X/Al average shale (Tribovillard et al., 2006). Europium anomaly (Eu/Eu*) (see 

below), Y/Ho, Th/Sc, Zr/Sc, La/Th vs. Hf, La-Th-Sc, Th/Co, and La/Sc can be used as 

sediment provenance proxies (Figure 11; discussed below) (Floyd and Leveridge, 1987; Gu 

et al., 2002). In addition, cerium anomaly (Ce/Ce*), U/Th ratios,  and EF U, are paleoredox 

indices to help reconstruct the water column oxygen conditions at the study site (Figure 13). 

U/Th ratios range from 0.15 to 0.29 with an average of 0.17. EF U values range from 0.48 to 

1.24 with an average of 0.71. The elements, such as phosphorus (P), barium (Ba), cobalt 
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(Co), and nickel (Ni), are used as the nutrient proxies to explore the paleoproductivity in the 

ocean (Anagnostou et al., 2011; Large et al., 2014; Tribovillard et al., 2006). The enrichment 

factors of the nutrient elements (P, Ba, Co and Ni) show the similar variation trends in the 

stratigraphic profile of the Qumiba section, in which the values of Part Ⅱ-B and Part Ⅳ are 

relatively higher than those of other parts.  

 

4.3 Rare earth elements geochemistry 

Rare earth elements (REEs) tend to be constant in abundance and steady in properties due to 

their low mobilities and solubilities during sedimentary process (Cullers et al., 1988; 

McLennan et al., 1993; McLennan, 1989). Thus, the REE geochemistry can be used to trace 

the signature of the source materials of sedimentary rocks and speculate changes in tectonics 

and paleoenvironment (McLennan et al., 1993; McLennan, 1989). All the measured REE 

concentrations of both mudstone and sandstone samples are normalized to the North 

American shale composition (NASC) (Gromet et al., 1984). The shale normalized trace 

elements (X) are presented as XSN. The traditional formula Ce/Ce* = CeSN/(0.5LaSN+ 

0.5PrSN) and Eu/Eu* = EuSN/(0.5SmSN+ 0.5TbSN) was used to calculate the cerium (Ce) 

anomalies and europium (Eu) anomalies respectively (Bau and Dulski, 1996). Negative 

Ce/Ce* anomaly suggests low oxygen environment because Ce is depleted in oxic water due 

to its high redox sensitivity (German and Elderfield, 1990).  
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Figure 5. REE patterns of the samples in the Qumiba section. (A) Type 1 REE pattern; (B) Type 2 

REE pattern; (C) Type 3 REE pattern; (D) The stratigraphic variations of the REE pattern types and 

ErSN/TmSN ratios 

 

The mudstone samples generally have higher total contents of REEs (ΣREE) (126.7 –

214.99 ppm, average 161.37 ppm) than those of sandstone samples (89.11 – 151.08 ppm, 

average 123.93 ppm). The NASC-normalized REE abundance patterns of sandstone and 

mudstone samples can be divided into three types, of which mudstone samples display as 

Type 1 and Type 2 and sandstone samples display as Type 3 (Figure 5). Type 1 and Type 2 

mudstones exhibit similar trends with flat REE patterns, except that Type 1 mudstones yield 

lower ErSN/TmSN ratios than those of Type 2 mudstones. Stratigraphically, the Type 1 

mudstones mostly correspond to Part Ⅰ, Part Ⅱ-B and Part Ⅲ, while Type 2 mudstones 

correspond to Part Ⅱ-A and Part Ⅳ. The Type 3 sandstones exhibit a left-inclined REE 
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pattern with LREE (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd) depleted. The Eu anomalies of all the 

samples show a small range of ratios from 0.87 to 1.31 with an average value of 1.14. The 

Eu/Eu* values decrease steadily from 1.3 to 0.87 in Part Ⅰ and Part Ⅱ from 0 to 30 m depth. 

Above 30 m, the Eu/Eu* values remain stable with an average of 1.2 in Part Ⅲ and then 

increase to 1.3 in Part Ⅳ. The Ce anomalies show small fluctuations, ranging from 0.94 to 

1.07 with an average value of 1.02. In general, the Ce/Ce* values of Part Ⅱ-A and Part Ⅲ are 

slightly higher than those of Part Ⅰ, Part Ⅱ-B and Part Ⅳ (Figure 6). 

 

 

Figure 6. Eu/Eu* and Ce/Ce* anomalies cross-plot showing variations. 
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4.4 Stable carbon and nitrogen isotopes 

The stable carbon (δ13C) and nitrogen isotopes (δ15N) are useful stratigraphic and 

paleoenvironmental tools. There are two stable isotopes of carbon in the Earth’s crust, 13C 

(1.11%) and 12C (98.89%) (Tyson, 1995). Similarly, there are two stable isotopes of nitrogen, 

15N and 14N respectively (Talbot, 2002). The relative abundance of the two carbon and 

nitrogen isotopes in a sedimentary sample can be expressed as δ13C and δ15N values in per 

mil (‰):  

δ13C = [(13C/12Csample)/(
13C/12Cstandard) – 1] × 1000  (Eq. 1) 

δ15N = [(15N/14Nsample)/(
15N/14Nstandard) – 1] × 1000  (Eq. 2) 

δ13C and δ15N can be used as indicators of marine productivity and water column 

redox conditions. Additionally, δ13C gives information about carbon cycles and changes in 

the global climate. δ15N variations indicate the intensity of denitrification, in which high 

intensity of denitrification suggests oceanic dysoxic condition. δ13Corg and δ15Norg values are 

plotted versus sample depth (Figure 7), and low values of δ13Corg may be an indicator for 

Early Eocene hyperthermal 2 (ETM2 or H1; ca. 53.7 Ma). δ13Corg values range from -25.4‰ 

to -33.8‰ with an average value of -29.2‰ and δ15Norg values range from 4. 6‰ to 7.0‰ 

with an average of 5.6‰. The most abrupt decrease in δ13Corg occurs at ~15m (-33.8‰), 

which is considered as a negative carbon isotope excursion (CIE), a possible sign of an Early 

Eocene hyperthermal (Figure 7).  
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Figure 8. Cross-plot of δ13C and δ15N show statistically significant negative correlation (R2 = 0.29, p value 

< 0.005), supporting warming ocean led to dysoxia condition. 
 

 

Figure 7. Stable carbon and nitrogen isotope profiles of the Enba Formation at the Qumiba section. Also shown 

is the warm-water oligotrophic Neochiastozygus  calcareous nannofossils richness. 
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In contrast, δ15Norg  values range from 4.8‰ to 7.0‰ and exhibit three pulses of enrichment 

at approximately 10 m, 15 m and 20 m in the Enba Formation (Figure 7). In general, δ15Norg 

values exhibit an upward increasing trend. The highest δ15Norg  values correspond to the 

lowest δ13Corg, which is an indicator of increased 12C input to the ocean-atmosphere system 

leading to warmer and more reduced water column conditions. The cross-plot of δ13Corg and 

δ15Norg from the Enba Formation shows a statistically significant negative correlation (Figure 

8). δ13Corg is influenced by primary productivity and δ15Norg is affected by denitrification 

intensity through the reduction of nitrate by bacteria as a result of organic material input. 

Peaks of decreasing δ13Corg and increasing δ15Norg   can suggest oversaturation of organic 

matter resulting in excessive nitrate causing restriction of oxygen transport related to dysoxic 

conditions. 

 

5 Discussion 

5.1 Provenance proxies 

Several proxies have been suggested to infer the provenance of sedimentary rocks, including 

europium anomaly (Eu/Eu*), Y/Ho ratios, Th/Sc vs. Zr/Sc cross-plot, La/Th vs. Hf cross-plot 

(Floyd and Leveridge, 1987; Gu et al., 2002), La-Th-Sc and Th-Sc-Zr ternary diagrams 

(Bhatia and Crook, 1986) and Th/Co vs. La/Sc cross plot (Cullers, 2002). Here we take a 

multi-proxy approach to reconstruct the provenance of the sedimentary basin of the eastern 

Tethys.  

The Qumiba section formed between 55 and 53 Ma in the Early Eocene in the subducting 

Paleo-Tethys foreland basin and was sourced mainly from the main mantle thrust (MMT), 

Kohistan-Ladakh, and main Karakoram thrust (MKT) according to Hu et al. (2012). The 



25  

La/Th vs. Hf cross-plot suggests these samples were derived from acidic arc source, with 

some influence of recycled sediment component (Figure 11), supporting the paleontological 

evidence of recycled Cretaceous and Paleocene fossils (Jiang et al., 2016). Both Th-Sc-Zr 

and La-Th-Sc ternary diagrams suggest the mudstone and sandstone samples from the 

Qumiba section are sourced from continental island arc (Figure 12), likely located in the 

Lhasa terrane as suggested by Hu et al. (2012).  

 

Figure 9. La/Th vs. Hf of both sandstone and mudstone samples modified from Floyd and      

Leveridge (1987). 

  

  

Figure 10. Th-Sc-Zr and La-Th-Sc ternary diagram showing tectonic discrimination (Bhatia and 

 Crook, 1986); PM: passive margin; ACM: active continental margin; CIA: continental island     

arc; OIA: oceanic island arc. 
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5.2 Reconstructions of the Tethys ocean nutrient conditions 

It has been suggested that marine surface productivity changes as a result of glacial-

interglacial atmospheric CO2 variations through the operation of biological pump (Berger et 

al., 1989; Paytan et al., 1996). The enrichment factor of phosphorus (P), barium (Ba), cobalt 

(Co), and nickel (Ni) have been suggested to be effective nutrient proxies (Anagnostou et al., 

2011; Large et al., 2014; Tribovillard et al., 2006). For example, calibrations of deep-sea 

coral and sediments suggest that the enrichment of Ba element is a straightforward proxy for 

seawater dissolved Ba, which is an indicator of ocean paleoproductivity rate (Anagnostou et 

al., 2011; Dymond et al., 1992; Gingele et al., 1999). To interpret the elemental data as 

nutrient proxies, we follow Tribovillard et al. (2006) and calculate the enrichment factors 

(EF) of P, Ba, Co and Ni. EFelement X = X/Alsample/X/Alaverage shale, with values greater than 1 

indicating element X is enriched compared to the average shale, and values less than 1 being 

depleted. We note that both EFP and EFNi show strong enrichment at about 20 m (Part II), 

coincident with the maximum weathering indices, the lowest δ13Corg, and the maximum 

δ15Norg, consistent with warming-induced high weathering flux, causing high nutrient and 

low oxygen condition in the water column.  
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Figure 11. Enrichment factor of phosphorous, barium, cobalt, nickel and uranium and Ce anomalies 

from the Enba and Zhaguo Formation at the Qumiba section. 

 

5.3 Reconstructions of the Tethys ocean redox conditions 

Three trace element-based paleo-redox proxies are used in this study: Ce/Ce*, and EFU 

(Figure 13) (Tribovillard et al., 2006). Ce/Ce* is a widely used paleoredox proxy for shallow 

water carbonates and mudstones (Murray et al., 1990; Webb and Kamber, 2000). The 

uranium (U) can always be precipitated by adsorption on or with organic matter in forms of 

+6 (i.e. UO2
2+) in reducing environment, which high U contents indicate less oxic to anoxic 

conditions (Webb and Kamber, 2000; Tribovillard et al., 2006). The negative anomaly of 

Ce/Ce* and elevated EFU both occur at ~20 m (top of Part IIA) and at ~66 m (top of Part III), 

consistent with increased chemical weathering driving low water column oxygen condition 

through elevated primary productivity (see nutrient proxies).  
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5.4 Chemical weathering intensity near the eastern Tethys   

Chemical index of alteration (CIA) is a useful weathering proxy for mudstones generated in 

glaciated catchments (Nesbitt and Young, 1982; Wang et al., 2019), but controversies exist 

regarding its effectiveness in a wider range of global drainage basins (Li and Yang, 2010). 

Other chemical weathering proxies, such as chemical index of alteration without CaO (CIX)  

(Garzanti et al., 2014; Harnois, 1988), chemical index of weathering (CIW; Harnois, 1988), 

weathering index of Parker (WIP) (Parker, 1970), and weathering intensity scales (WIS) 

(Meunier et al., 2013) have also been proposed. Approaches that combine multiple 

weathering proxies are thought to be more reliable in fluvial drainage basins in China (Shao 

et al., 2012). We use three weathering proxies, namely CIA, CIX and WIP, to infer the 

weathering control on the composition of the siliciclastic sedimentary rocks in the Qumiba 

section.  

CIA = Al2O3 / (Al2O3 + Na2O + K2O + CaO*) × 100  (Eq. 3) 

CIX = Al2O3 / (Al2O3 + Na2O + K2O) × 100    (Eq. 4) 

WIP = (2Na2O / 0.35 + MgO / 0.9 + 2K2O / 0.25 + CaO* / 0.7) × 100  (Eq. 5)  

In order to calculate CIA and CaO*, the CaO incorporated in the silicate fraction 

needs to be known. An indirect method to quantify CaO* has been suggested by McLennan 

et al. (1993), and reasonable Ca/Na ratios of silicate should be assumed. The molar 

proportion of P2O5 needs to be subtracted from the molar proportion of total CaO. Then 

CaO* can be approximated by phosphate-CaO corrected values and Na2O for samples with 

moles of CaO greater than Na2O after phosphate-CaO correction (Fedo et al., 1995; 

McLennan et al., 1993; Yang et al., 2020). Because CIX does not require the knowledge of 

CaO*, we calculated CIX to compare the efficacy of this approach.  



29  

 

 

 

Figure 12. Calculated weathering proxies CIA, CIX and WIP for the mudstone samples from the Enba 

and Zhaguo Formation at the Qumiba section. 

 

The major chemical weathering process in the continental upper crust is the formation of clay 

minerals through the degradation of feldspars, when Ca, Na and K ions are removed from the 

feldspars (Nesbitt and Young, 1982). In general, the CIA values for shales range around 70 to 

75 due to the large amount of clay minerals, and the higher CIA indicates more intense 

chemical weathering (Bahlburg and Dobrzinski, 2011; Goldberg and Humayun, 2010). There 

appears to be three intervals where CIA, CIX and WIP show similar increasing trends: 10-20 

m in the Enba Formation, ~40 m in the Zhaguo Formation, and 70-80 m in the Zhaguo 

Formation (Figure 9). These intervals also correspond to increased nutrient levels in the 

eastern Tethys ocean, as evidenced by the nutrient proxies shown below. The CIX vs. WIP 

cross-plot (Figure 10), shows the weathering trend of the mudstones from the four parts of 

the Qumiba section data plotted near the lowerleft corner suggest more sedimentary 

carbonate recycling. 
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Figure 13. Weathering trend of the mudstones from the four parts of the Qumiba section (modified from 

Yang et al., 2020). 

 

 

5.5 Carbon and nitrogen cycle during the Early Eocene Tethys 

During carbon assimilation, marine phytoplankton preferentially take up 12C due to the 

kinetic effect (Galimov, 1985). Marine organic matter is composed of both marine and 

terrigenous particulate organic sources (Andrews et al., 1998; Dean et al., 1986). Studies 

have shown that modern terrestrial organic matter exhibits lower δ13C values (average -27‰; 

Diefendorf et al., 2010) than marine organic matter (-22‰; Hayes et al., 1999) as shown in 

the Global distribution of modern δ13C value ranges in carbon dioxide, methane, dissolved 

inorganic and organic carbon (DIC, DOC), particulate organic matter (OM) and carbonates 

(Figure 14). In the Cretaceous, however, marine organic matter is shown to have much lower 

values (average -28‰) (Arthur et al., 1985), likely because the CO2 levels were much higher 

than the present day. The variation of marine δ13Corg is often interpreted as the relative 

proportions of marine versus terrestrial sources of the sedimentary organic matter (Hedges 
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and Parker, 1976; Sackett, 1964). They can also be used as global stratigraphic correlation 

tools (chemostratigraphy) and paleoenvironmental tools (Ando et al., 2002; Erbacher et al., 

2005; Mackensen and Schmiedl, 2019; Popp et al., 1997; Ruhl et al., 2009). 

The Early Eocene eastern Tethys receives two primary sources: recycled organic matter from 

continental weathering and marine organic matter.  The δ15Norg values ranging from -5‰ to 

18‰ indicate terrigenous organic input (Peters et al., 1978; Schoeninger and DeNiro, 1984). 

The 4.6 to 7.0‰   δ15Norg  values in the Qumiba samples suggest terrigenous organic matter 

influence. Additionally, the negative correlation between δ13Corg and  δ15Norg  suggest 

increasing influence of nitrate reduction (Jacot Des Combes et al., 2008). To understand the 

relative contribution of recycled organic matter and marine organic matter, a simple two end-

member mixing equation can be used, in which we assign mean δ13C values to recycled 

Cretaceous and Paleogene organic matter (δ13Crecycled) and coeval marine organic matter 

(δ13CMOM):  

Frecycled (%) = (δ13Corg – δ13CMOM)/(δ13Crecycled – δ13CMOM) × 100  (Eq. 6)   

δ13Corg is the measured carbon isotope value from the Qumiba section, δ13CMOM is the carbon 

isotope value of coeval marine organic matter, δ13Crecycled is the recycled Cretaceous and 

Paleogene marine organic matter.  
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Figure 14. Global distribution of modern δ13C value ranges in carbon dioxide, methane, dissolved 

inorganic and organic carbon (DIC, DOC), particulate organic matter (OM) and carbonates based on 

Mackensen and Schmiedl (2019). 

 

Compared to marine δ13C, nitrogen isotopes are used less frequently as stratigraphic 

correlation tool, but widely used as paleoenvironmental proxies (Altabet, 2006; Kashiyama et 

al., 2008; Rau et al., 1987; Sigman et al., 2009). Similar to carbon isotope fractionation, 

primary producers preferentially use 14N relative to 15N in nitrate during nitrate assimilation 

because of kinetic effects (Montoya, 1994; Waser et al., 1998). The degree of nitrogen 

fractionation depends on the amount of available nitrate and the rate of nitrate consumption 

(Deutsch et al., 2004; Sigman and Haug, 2003). The largest nitrogen fractionation incurs 

during denitrification (the microbial process of nitrate reduction and the ultimate production 

of N2) (Dähnke and Thamdrup, 2013; Kritee et al., 2012) as showing in the Global marine 

nitrogen cycle (Figure 15). Foraminifera bound nitrogen isotopes show that the early 
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Cenozoic is characterized by elevated δ15N values, an indicator of intensified denitrification 

facilitated by reduced oxygen concentration (Kast et al., 2019). Elevated δ15N values at the 

lower Enba Formation reflect stronger denitrification in the Qumiba section, supporting an 

episodic water column oxygen reduction.  

 

Figure 15. Global marine nitrogen cycle based on Casciotti et al. (2016). 
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Figure 16. EFU, and δ15Norg showing low oxygen, and denitrification for upper part 
of ~0 - 30m section. 
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6 Conclusion  

The initial stage of the India-Asia collision occurred during the early Cenozoic ice-free 

greenhouse world, which was punctuated by a series of transient global warming events, 

likely driven by volcanic eruptions and orbital forcings. To understand the 

paleoenvironmental conditions of the Early Eocene eastern Tethys ocean before its final 

closure, we study the youngest marine successions from the southern Tibet in their 

geochemical characteristics. We report new major, trace element geochemistry and stable 

carbon and nitrogen isotope data of the Early Eocene strata deposited in a shallow marine 

foreland basin prior to the main stage of India-Asian continent collision at Qumiba section in 

the Tingri County, southern Tibet. Major element geochemistry and weathering indices 

suggest that the Eocene southeastern Tethys may have experienced episodic input of nutrient-

rich weathering supplies and the development of hypoxia in the water column, consistent 

with the warm and humid climate in the Early Eocene (Figure 16). 
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