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ABSTRACT 

Parasitoid wasps are a hyper-diverse monophyletic group of Apocrita (Hymenoptera) that 

typically oviposit inside or on an arthropodal host, whereafter the wasp larvae obtain nutritional 

resources for development. Although some species are well-studied as agents in biological 

control, little is known about the biology of the less diverse and less abundant superfamilies; and 

even less about assemblages of parasitoid wasp taxa within a given habitat. The aim of the 

present study was twofold: to estimate parasitoid wasp assemblages within two habitats common 

in central and northern New Jersey, USA, and to develop a protocol to increase the yield and 

diversity of parasitoid wasps collected through the use of different trap types, across different 

months, and in different habitats.  Specimens of Chalcidoidea and Ichneumonoidea were most 

frequently collected; with more Chalcidoidea collected than Ichneumonoidea, which was 

surprising for the latitude of the study location. Meadow habitats yielded more parasitoid wasps 

than wooded habitats, and yellow pan traps captured more specimens than flight intercept or 

malaise traps. Potential factors underlying these outcomes may include availability of hosts, 

competition, developmental time of the parasitoid offspring, temporal dispersal of adults, and 

gregarious oviposition. A trapping protocol is suggested, in which strategically utilizing yellow 

pan traps in a meadow habitat during July would give the highest trapping success in terms of 

count by unit effort. 
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INTRODUCTION 

The life history of parasitoid wasps has been well-studied; generally, parasitoid wasps 

deposit eggs either externally or internally on the pre-adult developmental stages of other 

arthropods (Godfray 1994; Goulet & Huber 1993; Sharkey et al. 2012; Quicke 1997). The 

parasitoid larva inevitably kills the host invertebrate, but there are exceptions within this diverse 

group that function as pollinators, such as the fig wasp (Chalcidoidea) (Godfray 1994), or 

herbivores like the gall-forming cynipids (Quicke 1997). This parasitoid life history may be a 

key driver to speciation  ( Sharkey et al. 2012; Peters et al. 2017) and the resulting high 

biodiversity of this monophyletic group of Hymenoptera. The group includes herbivores, 

predators, pollinators and parasitoids that can occupy pivotal roles in terrestrial ecosystems 

(Quicke 1997). The family Braconidae, for example, is one of the most diverse families of 

parasitoid wasps, and braconid species are known to parasitize every life stage of species in all 

the insect orders with holometabolous development (Brajković et al. 1999).  

Estimates of the number of species of Hymenoptera may be as many as one million 

species, described and undescribed (Grimaldi & Engle 2005; Agular et al. 2013). The two most 

diverse parasitoid superfamilies, Ichneumonoidea (ICH) and Chalcidoidea (CAL), are 

conservatively estimated to comprise at least 47,000 species, while liberal estimates including 

undescribed species may exceed 650,000 species (Mills, 2009). Genetic barcoding techniques 

have revealed that parasitoid wasps underwent a major adaptive radiation 281 million years ago. 
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Analysis of 3256 protein-coding genes of 173 species indicates that parasitoid wasps are 

monophyletic and originated from a single endophytic ancestor (Peters et al. 2017). Parasitoid 

wasp radiation may have occurred primarily through ecological speciation, i.e. influenced more 

by ecological factors such as predators and resource acquisitioning than by geographic barriers 

(Mayhew 2007). Prey switching may also have been important in the speciation of parasitoid 

wasps (König et al. 2015). The deep constriction of the first and second abdominal segments (the 

so-called “wasp-waist”) is also thought to have influenced adaptive radiation of the Hymenoptera 

because of increased abdominal mobility (Vilhelmsen et al. 2010). 

Ecological habitat and its modification can have multiple effects on parasitoid abundance, 

diversity, and community ecology. Plant diversity has been shown to have a strong, positive 

association with arthropod diversity (including parasitoids), whereas low plant diversity can 

create a herbivore dominated ecosystem with lower arthropod abundance influencing ecosystem 

function (Haddad et al. 2009). However, deforestation for agriculture can still result in regionally 

high parasitoid diversity due to ease of finding hosts although host quality can diminish 

(Laliberte & Tylianakis 2010). However, fragmentation can create a bottom-up trophic cascade 

in plant-herbivore-parasitoid tritrophic food webs, leading to local parasitoid extinctions and 

lower parasitism rates (Fenoglio et al. 2012).  Parasitoid diversity can depend on several factors 

in a habitat and individual species can have specific responses to habitat fragmentation (Didham 

et al. 1996; Lennartsson 2002). For example, a study in the Czech Republic demonstrated that 

the abundance of host-specific families of Chalcidoidea are largely reliant on the location of 

hosts, unlike the more generalist Ichneumonids, for which plant diversity and canopy 

stratification can have a greater effect on diversity (Šigut et al. 2018). However, species richness 
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and abundance of ichneumonids were adversely impacted by anthropogenic change in Warsaw 

(Sawoniewiczs 1986). 

There are many types of sampling methods and traps used to collect invertebrates. 

However, the kinds of insects collected can vary among trap types, potentially creating bias in 

the sample. Two active collection methods commonly used, vacuum and sweep netting, were 

found to be biased with respect to size, type, developmental stage, and species diversity of the 

arthropods collected, when implemented in the same habitat in Oklahoma (Doxon et al. 2011). 

Sweep netting is inexpensive, easy to use, and standardized efforts (per sweep, per area, etc.) 

allow for replicability (McCravy 2018). But this technique also has drawbacks, including 

problems of interobserver reliability when more than one person collects samples. Also, insect 

species with fast locomotion are less likely to be sampled and unswept vegetation will go 

unsampled (McCravy 2018). Malaise traps, however, are more effective for producing a sample 

that accurately represents community composition, especially with small mesh size for collection 

of Hymenoptera (Noyes 1989). Unfortunately, malaise traps can be costly and time consuming to 

manage. Pan traps are also effective for trapping small Hymenoptera (McCravy & Ruholl 2017; 

Noyes 1989) and can be deployed in a transect with minimal effort and expense. However, pan 

traps tend to capture a large number of pollinators (McCravy & Ruholl 2017), producing a large 

bycatch that requires significant processing time and can be compromised by environmental 

factors like evaporation and precipitation, which requires almost daily maintenance. Used in 

concert, as in a study of Illinois forest and prairie habitats, malaise traps and pan traps can be 

highly effective (McCravy & Ruholl 2017; McCravy et al. 2019). 
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The present study examined parasitoid biodiversity in two nature preserves with 

fragmented deciduous forest and transitional meadows. I sampled woodland and meadow 

habitats using three types of traps commonly employed in collection of parasitoid wasps. This 

permitted the estimation of count-based parasitoid wasp abundance in habitats that are 

representative of most preserved land in rural central and northern New Jersey, U.S.A. I was 

particularly interested in how factors like seasonality, habitat, site, trap type, and individual traps 

may be associated with estimates of parasitoid wasp superfamily abundance and diversity.  These 

results may be used to develop trapping protocols that maximize yield of parasitoid wasps of 

specific superfamilies and increase accuracy of estimation of parasitoid biodiversity. 
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METHODS 

Study Sites and Habitat Delineations 

The two habitat types sampled in this study are defined as “woodland” and “meadow”. 

They are delineated by the vegetation found within. The two woodland habitats were 

characterized in this study as a fragmented mixed deciduous forest ecosystem with a clearly 

defined canopy and subcanopy of woody plants, a sparse herbaceous layer and ever-present 

vegetative detritus in multiple stages of decomposition.  The meadow habitats were characterized 

in this study as a transitional tract of field with no canopy and a dominating layer of non-woody, 

herbaceous plants commonly found in the local geographical region.  

Maureen Ogden Preserve: 

The Maureen Ogden Preserve (MOP) is a 92.27 hectare preserve acquired by the New 

Jersey Conservation Foundation in 2010 from a private citizen located in Long Valley, NJ, with 

an average temperature of 10.594 C and an average annual precipitation of 133.075cm. The 

Maureen Ogden Preserve is part of the Highlands physiographic province of New Jersey and part 

of the Appalachian Highlands geographical region of the United States ( https://www.nj.gov). 

MOP is located atop limestone and Gneiss bedrock and contains loamy soils (Collins & 

Anderson 1973). The Preserve is in fragmented land and surrounded by a small farm to the 

southwest, a horse stable business to the west, and small patches of suburban homes to the north, 
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south, and east. The two habitats sampled for this study were “woodland” and “meadow”. The 

woodland habitat was a mixed deciduous forest containing a canopy dominated by several 

species of Quercus and Acer, a subcanopy dominated by Carpinus caroliniana, Fagus 

grandifolia  and Betula lenta, and an herbaceous layer containing  Daucus carota, Eupatorium 

rugosum, and Aster vimineus. The forest floor was covered with a layer of dead deciduous leaves 

throughout the year and fallen trees. The meadow habitat vegetation was dominated by Lobelia 

spp, Solidago spp, Agrostis spp, Andropogon virginicus, and Setaria viridis. Salix spp and Rhus 

spp. made up an extremely sparse shrub layer. 

Hill & Dale/Hell Mountain Preserve: 

The Hill and Dale Preserve (HD) is located approximately 22.4 km south by southwest of 

MOP (Figure 1) and is a 120.60 hectare tract of land owned by the New Jersey Conservation 

Foundation and is located in Lebanon, NJ, with annual precipitation 150.96cm and average 

temperature of 10.78 Degrees Celsius ( https://www.usclimatedata.com).  HD is part of the 

Piedmont physiographic province of New Jersey and part of the Appalachian Highlands 

geographic region of the United States ( https://www.nj.gov). The bedrock largely consists of 

shale, argillite, and sandstone with well, to moderately well-drained, loamy soil (Collins & 

Anderson 1973). The Preserve is surrounded by small farms and suburban/rural neighborhoods. 

There is a small spring creek that flows into the Rockaway Creek bordering the preserve. As 

with MOP, the two habitats chosen for trap placement were “woodland” and “meadow”. The 

woodland consisted of a mixed deciduous forest whose canopy is dominated by several Quercus 

and several Acer species. The subcanopy was dominated by Fagus grandifolia  and Betula lenta, 

and the herbaceous layer patched with Gaultheria procumbens,  Monotropa uniflora, and 
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Daucus carota. The meadow habitat used in this study had a very similar vegetation abundance 

(dominated by Lobelia spp, Solidago spp, Agrostis spp, Andropogon virginicus, and Setaria 

viridis), but with no Salix spp or Rhus spp. 

Collection Methods: 

The collection period of this study was 5/18/17 to 10/25/17. All traps used passive 

collection methods to mitigate bias in human sampling effort and the traps ran continuously (i.e. 

as soon as one sample was collected the trap was reset). The traps used for collection (Figure 2) 

included malaise traps (MT), flight intercept traps (FI), and yellow pan traps (PT). The flight 

intercept traps were constructed from black mosquito netting with an aperture of 1.7 x 0.8mm 

with cord attached to each corner by 0.94 cm brass grommets (General Tools & Instruments New 

York, New York 10013). The flight intercept traps were 125cm x 70cm and suspended 

approximately 40cm above the ground. Directly below the netting were two rows of five .355L 

blue plastic bowls (Signature Home Pleasanton, CA 94566) (Figure 2). The traps were placed in 

areas that showed characteristics of flight paths such as openings through vegetation that act as 

flight corridors for insects. For example, moths that fly parallel to hedgerows (Coulthard et al. 

2016) and several species of Hymenoptera, Coleoptera, and Lepidoptera where individuals are 

known to disperse through vegetative corridors in rainforests (Hill 1995).  Blue bowls (instead of 

yellow) and a larger mesh size were used to construct these flight intercept traps to minimize 

overlap in materials used for the three trap types. This was to ensure  that each trap type was as 

unique as possible. Additionally, blue pan traps are known to be successful for capturing 

Hymenoptera (Cambell & Hanula 2007).  
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The malaise traps were Towne’s style malaise traps invented by Swedish entomologist 

René Edmond Malaise and are a popular flying insect collection method. The  dimensions of the 

malaise traps (MT) were L165 x W115 x H190 cm comprised of polyester netting (96 x 26 | 680 

µm aperture). A plastic kill jar at the top of the trap had a volume of 500ml (Figure 2).  

To create the yellow pan traps (often called the Moericke pan trap), 25 0.355L 

disposable, yellow plastic bowls (Dart Container Corporation Mason, MI 48854) were placed 

evenly in a square grid with an area of 16 square meters containing 25 bowls arranged in the grid 

equidistant from each other. The bowls were secured to the ground by a pair of 30cm long 

bamboo skewers (Figure 2). When set, a solution of iodized salt (Morton Salt Inc, Chicago, IL 

60606), dishwashing soap (Procter & Gamble Cincinnati, OH 45202), and tap water was placed 

in each bowl. The ratio of the solution was 5ml of soap to approximately 11.625g of salt per 1L 

of water. The 0.355L blue bowls used in FI contained the same solution as the yellow pan traps 

(PT). Dish soap was used to break the surface tension of the solution, allowing insects to fall into 

the solution and perish. Salt was placed in the solution to slow evaporation. The amount of 

solution administered to the bowls varied depending on current and predicted future weather 

over the next few days. This variation was required for two reasons: 1) to prevent the bowls from 

overflowing with rain, or (2) to prevent evaporation during sunny, hot days. For the MT killjars, 

225ml of 70% isopropyl rubbing alcohol (Better Living Brands LLC Pleasanton, CA 94566) was 

used. The volatility of the isopropyl alcohol aided in the insect collection of the kill jar and 

facilitated the preservation of samples. 

After the samples were transported to the laboratory, all specimens of Hymenoptera were 

separated and the bycatch disposed of. The total hymenopterans were then counted from each 
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trap (the 25 yellow bowls set up in a grid considered 1 PT) after each sampling session. All 

non-parasitoid hymenopterans were preserved in 70% ethanol and preserved for potential later 

study. The remaining parasitoid wasps  were then identified to the 11 superfamilies and counted. 

Identifications were aided by Goulet & Huber, 1993. 

Trap Placement: 

One of each type of trap was placed in each of the two habitats (Figure3). In MOP a 

Malaise Trap (MT) was placed in the woodland habitat (Lat 40° 49’, 32.9”N; 74° 45’ 4.6’’W; 

altitude 325.9m). The yellow pan traps (PT) placed in MOP were located at  40° 49’ 25.5” N, 

74° 44’ 59.5” W (altitude 275.6m) in the meadow habitat. A flight intercept trap (FI) was also 

placed in the meadow habitat located at MOP ( 40° 49’ 28” N, 74* 44’ 59.9” W). Hill & Dale 

Preserve had a PT (40° 41’ 6.5” N; 74° 46’ 47.8” W) and a FI (40° 41’ 74.3”N; 74° 46’ 46.8” W) 

set in the woodland habitat. The PT was set at an elevation of 87.3m and the FI had an elevation 

of 91.7m. A MT was placed in the meadow habitat (40° 41’ 0.6” N; 74° 46’ 46.1” N) at an 

elevation of -25.167m.  

Statistical Analysis: 

All analyses were performed in JMP Pro (JMP ®, Version 14.2 . SAS Institute Inc., Cary, 

NC, 1989-2019). Collection days varied due to environmental variables such as precipitation or 

aridity so the data were normalized so that each sample took place across 10 days, with each trap 

actively running for 170 days total; with samples collected and traps reset every ten days. Data 

were normalized prior to statistical analyses. Differences in counts were expressed graphically 

and over time, with the two x-factors being days (0-170) and months (May, June, July, August, 

September, October). The bivariate Pearson’s correlation was performed among the eleven 
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superfamilies collected to determine whether any relationships occurred. It was decided a priori 

that only relationships between 0.5-1.0 & -0.5- -1.0 would be reported in the Results; although 

the full correlation table  can be found in the Appendix (pg. 104 ). Non-parametric 

Wilcoxon/Kruskal-Wallis Tests were performed to elucidate any potential effect a number of 

independent variables would have on the number of parasitoid wasps collected as a whole and at 

the superfamily level. The independent variables included Months (6 levels= May, June, July, 

August, September & October), Trap (6 levels= HDFI, HDMT, HDPT, MOPFI, MOPMT, & 

MOPPT; with HD and MOP denoting Hill & Dale and Maureen Ogden respectively, and FI, MT, 

and PT denoting Flight Intercept, Malaise Trap, and Yellow Pan Trap, respectively ), Trap Type 

(3 levels= Flight Intercept, Malaise Trap, Pan Trap), Habitat (2 levels= Meadow & Woodland), 

and Site (2 levels= HD & MOP). Comparisons on all pairs using the Steel-Dwass Method were 

performed post-hoc. A Bonferroni correction was administered to the study-wide alpha level of 

0.05 in analyses using the factors Month and Trap. The adjusted alpha value for these analyses 

was 0.0033. When the factors Trap Type, Habitat, and Site contained the highest mean of a 

dependent variable (superfamily), then that factor was considered the preferable factor to use 

when attempting to collect parasitoid wasps of that taxon. Means, degrees of freedom, critical 

values, and p-values were reported where applicable; but a list of means tables, 

Wilcoxon/Kruskal-Wallis tables, and pair comparison tables can be found in the Appendices (pg. 

56).  
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RESULTS 

A total of 8287 parasitoid wasps, representing all of the 11 Superfamilies found 

on the North American continent, was collected during the 170 day sampling period (Figure 4). 

The average number of the 11 superfamilies collected per sampling effort (sampling effort being 

10-day periods) is found in Table 1. 

Table 1. Total Parasitoid wasps collected throughout the 170 day sampling period, N, and the 
average number of parasitoid wasps collected per 10-day sampling effort. Superfamilies: 
Ichneumonoidea (ICH), Chalcidoidea (CAL), Diaprioidea (DIA), Proctotrupoidea (PRC), 
Cynipoidea (CYN), Platygastroidea (PLT), Ceraphronoidea (CER), Evanioidea (EVN), 
Mymarommatoidea (MYM), Stephanoidea (STF). 
 

SF  ICH  CAL  DIA  PRC  CYN  PLT  CER  EVN  MYM  STF  TRI 

N  2291  2758  650  918  645  623  177  75  90  29  45 

Mean  134.76  162.24  38.24  54  37.94  36.65  10.41  4.1  5.29  1.71  2.65 

 
There was variation among the different superfamilies in seasonal patterns of abundance. 

Ichneumonoidea exhibited two distinct peaks in capture frequency (Figure 5), one between June 

and July; and one in September. Chalcidoidea were captured in two distinct peaks, one in July 

and the second in August/September. Diaprioidea and Proctotrupoidea had one distinct peak in 

August (Figure 5). Cynipoidea had one distinct peak in July. Platygastroidea reported one peak 

in July. Ceraphronoidea were collected in two distinct peaks in the sampling period, the largest 

being in June and a second peak in September (Figure 6).  Evanioidea had one distinct peak in 

June. Mymarommatoidea had 1 distinct peak in July. Stephanoidea had two small peaks in July 
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and September. Trigonalioidea had one distinct peak in June and a smaller peak in September 

and October. 

There appeared to be associations among certain families in patterns of seasonal 

abundance. For example, Ichneumonoidea exhibited a notable, positive correlation with 

Chalcidoidea, Cynipoidea, and Platygastroidea. Chalcidoidea had a strong, positive relationship 

with the superfamilies Cynipoidea and Platygastroidea, and a notable, positive relationship with 

Mymarommatoidea. The strongest positive association occurred between Diaprioidea and 

Proctotrupoidea (Table 2). 

Table 2: Correlation table showing notable and strong relationships among Superfamilies and the 
associated p-values (in parenthesis). Weak relationships are red, notable  relationships in yellow, 
and strong relationships in green. 
 
Row ICH CAL DIA PRC CYN PLT MYM 

ICH 
1 

(<0.0001) 
0.7617 

(<0.0001) 
0.354 

(0.0003) 
0.3303 

(0.0007) 
0.7392 

(<0.0001) 
0.6837 

(<0.0001) 
0.4984 

(<0.0001) 

CAL 
0.7817 

(<0.0001) 
1 

(<0.0001) 
0.1089 

(0.2758) 
0.0818 

(0.4139) 
0.8125 

(<0.0001) 
0.8282 

(<0.0001) 
0.5148 

(<0.0001) 

DIA 
0.354 

(0.0003) 
0.1089 

(0.2758) 1 
0.9967 

(<0.0001) 
0.2819 

(0.0041) 
0.1379 

(0.1669) 
-0.0281 

(0.7791) 

PRC 
0.3303 

(0.0007) 
0.0818 

(0.4139) 
0.9967 

(<0.0001) 
1 

(<0.0001) 
0.2527 

(0.0104) 
0.1169 

(0.2420) 
-0.0282 

(0.7791) 

CYN 
0.7392 

(<0.0001) 
0.8125 

(<0.0001) 
0.2819 

(0.0041) 
0.2527 

(0.0104) 
1 

(<0.0001) 
0.8625 

(<0.0001) 
0.469 

(<0.0001) 

PLT 
0.6837 

(<0.0001) 
0.8282 

(<0.0001) 
0.1379 

(0.1669) 
0.1169 

(0.2420) 
0.8625 

(<0.0001) 
1 

(<0.0001) 
0.5627 

(<0.0001) 

MYM 
0.4984 

(<0.0001) 
0.5148 

(<0.0001) 
-0.0281 

(0.7791) 
-0.0282 

(0.7781) 
0.469 

(<0.0001) 
0.5627 

(<0.0001) 
1 

(<0.0001) 

 
Habitat Type and Study Site.  

Habitat type was significantly associated with the number of all parasitoid wasps 

collected (df=1, H=48.5615, p<0.0001, Figure 10). The meadow habitat collected an average of 
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10.21 per trap per day and accounted for 69.13% of the total parasitoid wasps collected; while 

the woodland habitat collected an average of 4.56 per trap per day and contained 30.87% of all 

parasitoid wasps collected. Habitat type was also significantly associated with collection 

frequencies of Ichneumonoidea, Chalcidoidea, Cynipoidea, Platygastroidea, Evanioidea, 

Mymarommatoidea, Stephanoidea, and Trigonalioidea. There was no statistically significant 

association between habitat type and collection frequency of Diaprioidea, Proctotrupoidea, and 

Ceraphronoidea (Table 3). All Superfamilies were collected more often in the meadow habitat 

with the exceptions of Diaprioidea and Proctotrupoidea. 

Table 3: Results of the Wilcoxon Rank Sums Test for each Superfamily and habitat. 

SF  ICH  CAL  DIA  PRC  CYN  PLT  CER  EVN  MYM  STF  TRI 

df  1  1  1  1  1  1  1  1  1  1  1 

H  6.745
2 

22.42
25 

0.001
7 

0.009
7 

15.78
41 

22.97
77 

0.009
7 

18.37
91 

22.632
8 

9.555
8 

8.819
6 

p  0.009
4 

<0.00
01 

0.967
1 

0.921
7 

<0.00
01 

<0.00
01 

0.174
8 

<0.00
01 

<0.00
01 

0.002
2 

0.003
0 

 
 

Overall, more parasitoids were collected at HD than at MOP (df=1, H=7.5764, 

p=0.0059). HD had an average of 9.08 parasitoid wasps collected per trap per day and accounted 

for 61.47% of all parasitoid wasps collected; while MOP had an average of 5.69 collected per 

trap per day and contained 38.53% of all parasitoid wasps collected. There were significant 

differences between sites in the frequency of Ichneumonoidea, Diaprioidea, Proctotrupoidea, 

Cynipoidea, and Ceraphronoidea collected; all of which were collected more often at the Hill & 

Dale Preserve. There were no significant differences between sites in the number of 
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Chalcidoidea, Platygastroidea, Evanioidea, Mymarommatiodea, Stephanoidea, and 

Trigonalioidea collected (Table 4). 

 
Table 4: Results of the Wilcoxon Rank Sums Test between each Superfamily and site.  

SF  ICH  CAL  DIA  PRC  CYN  PLT  CER  EVN  MYM  STF  TRI 

df  1  1  1  1  1  1  1  1  1  1  1 

H  25.83
54 

0.072  9.001
7 

11.12
90 

5.839
5 

0.608
7 

6.517
7 

1.318
6 

0.7857  2.997
3 

1.341
4 

p  <0.00
01 

0.788
8 

0.002
7 

0.000
8 

0.015
7 

0.435
3 

0.010
7 

0.242
0 

0.3754  0.083
4 

0.246
8 

Site  HD  na  HD  HD  HD  na  HD  na  na  na  na 

 
Month. 

 Seasonality was significantly associated with the number of all parasitoid wasps 

collected (df=5, H=30.7256, p<0.0001), with the highest overall average frequency in June 

(10.1718) and accounting for 23.59% of all parasitoid wasps collected (Figure 7). Overall, the 

collection means were significantly different (Bonferroni corrected alpha = 0.0033) between 

three seasons: June, mean=7.6210 versus May, mean=3.5657; October, mean=4.1253 versus 

July, mean=10.1718; and October versus June). However, when superfamilies were analyzed 

separately by month, time of year was not significantly associated with the number of parasitoid 

wasps collected from each superfamily. 

 
Trap Type.  

Trap type had a significant effect on the overall number of parasitoid wasps collected 

(df=2, H=194.3048, p<0.0001)(Figure 9). The flight intercept traps had an average of 0.7513 

parasitoid wasps caught per trap per day and represented 3.36% of all parasitoid wasps caught 

22 



 

and the malaise traps had a mean of 8.6938 and represented 39.23% of all parasitoid wasps 

caught; while the pan traps had a mean of 12.7142 and represented 57.38% of parasitoid wasps 

caught. The Steel-Dwass Method indicated all 3 pairs of means were statistically significantly 

different from each other at alpha-values 0.05  Trap type had a significant effect on collection 

frequency of all superfamilies except Evanioidea (Table 5). 

Table 5: Results of the Kruskal-Wallis Rank Sums Test among each Superfamily and statistically 
significant Steel-Dwass pairs and the 3 trap types. 

SF  ICH  CAL  DIA  PRC  CYN  PLT  CER  EVN  MYM  STF  TRI 

df  2  2  2  2  2  2  2  2  2  2  2 

H  61.43
21 

38.33
20 

57.30
77 

48.22
10 

31.21
52 

32.79
80 

17.69
64 

0.124
7 

9.2589  8.634
9 

27.69
05 

p  <0.00
01 

<0.00
01 

<0.00
01 

<0.00
01 

<0.00
01 

<0.00
01 

0.000
1 

0.939
5 

0.0098  0.013
3 

<0.00
01 

Pairs  
With 
p<0.
05 

PT/FI 
 
MT/FI 

PT/FI 
 
MT/FI 

PT/FI 
 
PT/MT 
 
MT/FI 

PT/FI 
 
PT/MT 
 
MT/FI 

PT/FI 
 
MT/FI 

PT/FI 
 
MT/FI 

PT/FI 
 
MT/FI 
 
PT/MT 

None  MT/FI  PT/FI 
 
MT/FI 

PT/FI 
 
MT/FI 
 
PT/MT 

 
Individual traps captured a significantly different number of all parasitoid wasps 

collected (df=5, H=275.1012, p<0.0001), with HDMT having the highest mean 15.5 collected 

per day, and accounting for 34.98% of the parasitoid wasps collected, followed by HDPT 

(mean=14.3, 32.27% of total parasitoid wasps collected in this study)(Figure 8). Steel-Dwass 

pairwise comparisons, however, indicated no statistically significant difference between the 

means of HDPT & HDMT at the corrected alpha-value of 0.0033. The Steel-Dwass Method 

indicated 9 of the 15 pairs to have a statistically significant difference in means (alpha= or < 

0.0033; Appendix p.g 57). Individual traps had a statistically significant effect on each 

Superfamily when they were analyzed individually (Table 6). 
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Table 6: Results of the Kruskal-Wallis Rank Sums Test between Superfamily and the individual 
traps.  

SF  ICH  CAL  DIA  PRC  CYN  PLT  CER  EVN  MYM  STF  TRI 

df  5  5  5  5  5  5  5  5  5  5  5 

H  73.500
7 

38.332
0 

69.173
5 

63.860
9 

64.73
85 

64.86
92 

31.306
3 

18.688
1 

41.078
6 

20.626
2 

49.932
0 

p  <0.00
01 

<0.000
1 

<0.00
01 

<0.00
01 

<0.00
01 

<0.00
01 

<0.000
1 

0.0022  <0.000
1 

0.0010  <0.000
1 
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DISCUSSION 
 

The large number of chalcids and ichneumonids collected in the present study is 

unsurprising. These taxa are the two most abundant and species-rich of the parasitoid wasp 

superfamilies and are known to compete for the same host species (Frederick et al. 1927; Zhang 

et al. 2017). Indeed, chalcid and ichneumonid larvae have been observed to attack each other if 

both are found in the same host; as observed in the host larvae of the Lepidopteran Zygaena 

filipendulae in Serbia (Žikic et al. 2013). The superfamily Chalcidoidea represented the highest 

number of parasitoid wasps in this study and the meadow habitat yielded 88.25% of the chalcids 

collected. Chalcids are extremely abundant in habitats with canopy-less vegetation, and a diverse 

assemblage of herbaceous plants and grasses (Kruess & Tscharntke 2002; Todorov et al. 2017); 

although in studies of urban systems in California and Mexico, there was a decrease in 

abundance with increased herbaceous richness (Morales et al. 2018). Even in monoculture 

habitats, such as rice fields, chalcids can be diverse. For example, a chalcid biodiversity survey 

of rice fields in Northern Iran found no fewer than 16 species from eight families (Hossein et al. 

2016). Conversely, a study in Minnesota exploring the relationship between plant functional 

group diversity and arthropod diversity in an old field found that chalcids were the most 

abundant superfamily of arthropods within the scope of the study (Symstad et al. 2000). While 

chalcids are largely parasitoids of other arthropods (Goulet & Huber 1993; Quicke 1997), they 

also function as pollinators and pests through seed parasitization (Kant et al. 2013). These factors 

may be indicative of the high chalcid abundance in the meadow habitat of the present study. A 

biodiversity study of the family Eulophidae (Chalcidoidea) using malaise traps in the herb-shrub 

layer of a site in Israel proved to be extremely effective at capturing specimens of this taxon 
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(Yefremova et al. 2013). Micro hymenopteran chalcids are also known to have unusually large 

dispersal circumferences. One study demonstrated that eulophid species can disperse up to 88 km 

in a single growing season to locate Mexican bean beetle larvae (Stevens et al. 1975). Long 

distance dispersal is also necessary for chalcids with hosts that inhabit scattered substrate such as 

manure (Smith 1988; Southwood 1978; Southwood 1981). Indeed one mymarid species 

(Hymenoptera: Chalcidoidea) disperses over one km offshore to parasitize its host on oyster bars 

(Antolin & Strong 1987).  This evidence suggests that at least some chalcids collected in the 

present study may not have spent the entire growing season at the study sites.  

Ichneumonids were the second most abundant superfamily of parasitoid wasps collected 

in this study. A biodiversity study in Sub-Arctic Canada revealed that 75% of all hymenopteran 

specimens were from Ichneumonoidea and 91% of all hymenopteran specimens collected and 

identified were parasitoid wasps using DNA barcoding to identify molecular operational 

taxonomic units (Stalhut et al. 2013)  In the present study, malaise traps were the most successful 

collection method based on the number of individuals caught for Ichneumonoidea; although not 

significantly different from the pan traps; while the meadow habitat yielded a larger mean 

number of ichneumonids than the woodland habitat. These results are quite surprising for several 

reasons. Woodland canopies are known to contain a high diversity and abundance of ichneumon 

wasps, especially in tall tree canopies (Fraser 2007). Previous studies suggest that old growth 

forests yield a higher number of ichneumonids than secondary growth communities in the 

rainforests of Costa Rica and Panama (Shapiro & Pickerling 2000). Biodiversity surveys of 

Ichneumonoidea in Spain using malaise traps and pan traps detected higher diversity of 

Ichneumonoidea in ash forests than in a canopy-less habitat while implementing malaise traps, 
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although yellow pan traps collected higher abundances and diversity than malaise traps in the 

canopy-less habitat (Mazón & Bordera 2008). This is consistent with the lack of difference 

between the two trap types in the present study.  These results align with other studies of the 

biology and ecology of Ichneumonoidea, a highly diverse superfamily (Quicke 2015), with large 

abundances and biodiversity at latitudes found within the two study sites. A long ovipositor 

adapted for parasitizing larvae in rotting trees is a common morphological trait found within the 

Superfamily(Quicke 2015). Relative abundance of several ichneumonid families can also be 

associated with the vertical stratification of their hosts in broadleaf deciduous forests (Šigut et al. 

2018). Similarly, vertical stratification might explain why fewer ichneumonids than chalcids 

were collected in the present study, when most research suggests that Ichneumonoidea are the 

most abundant superfamily at the latitudes of the study sites (Fraser 2007; Shapiro & Pickerling 

2000). Additionally, studies of ichneumonid assemblages in Ghana suggest the cosmopolitan 

subfamily Rhyssinae favors primary forests and habitats with a substantial amount of dead wood 

(Hopkins et al. 2019).  Hence adding malaise traps to the canopy of deciduous forests might 

yield a more accurate sample. 

The large number of Proctotrupoidea and Diaprioidea specimens collected in late summer 

from the pan traps in the woodland habitat could potentially be explained by gregarious 

oviposition; which has been found in small-bodied species in both superfamilies (Mayhew 

1998). However body size has also shown a positive, linear relationship in terms of amount of 

eggs laid regardless of gregariousness (Segoli & Rosenheim 2015). Interestingly Diaprioidea was 

once considered a family of Proctotrupoidea by earlier taxonomists due to similar morphology 

and life history (Quicke 1997). Members of Proctotrupoidea and Diapridea have been known to 
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parasitize hosts found in leaf litter (Early & Dugdale 1994; Madl 2015). Leaf litter covered the 

top soil in both woodland habitats in this study. 

Cynipoidea are known for gall-forming in Quercus leaves and many other herbaceous 

plants and are most diverse in temperate zones of the northern hemisphere (Ronquis et al. 2015). 

However parasitoid cynipids do exist and make up around 30% of species within the superfamily 

(Stone et al. 2002).  These species parasitize larvae of holometabolous insects in pine cones, 

rotting wood, and larvae-formed galls found in organs of woody and herbaceous plants (Ronquis 

1999; Ronquis et al. 2015; Buffington et al. 2011). The meadow habitat yielded 80.37% of the 

cynipids collected in this study; however, like Ichneumonoidea, a more effective sampling 

technique would include malaise traps in the canopy because of their galling nature in oaks. 

However in Maine Cynipoidea exhibited little difference in abundance among vertical gradients 

in fragmented habitat consisting of forest and lowland blueberry patches (Karem et al. 2006).  

Platygastroidea is a superfamily of parasitoid wasp in which all members are parasitoids 

of arthropods, are common in nearctic regions, and have been successfully used in biocontrol to 

reduce the host population size to ineffectual numbers (Petrov 2013). Unfortunately, most of the 

biology that is known for Platygastroidea comes from biological control studies which represent 

only a few genera of Platygastroidea diversity (Austin et al. 2005). The meadow habitat of the 

present study yielded nearly 85% of the total Platygastroidea collected, and there was no 

difference in the yield between MOPPT and HDMT. Graphical representation of the data 

indicated no sharp peaks or depressions in the frequencies of Platygastroidea collected 

throughout the seasons, rather the curve was parabolic over time. This could potentially be 

associated with the propensity for Platygastroidea to parasitize multiple life stages of its 
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arthropod hosts. For instance, the majority of scelionid species (Platygastroidea) parasitize the 

egg stage of their hosts; while the majority of species found in Platygastridae (Platygastroidea) 

parasitize the larval and nymphal stages (Austin et al. 2005). 

Evanioidea comprised less than one percent of all the parasitoid wasps collected in this 

study. The biology and ecology of Evanioidea found in North America and Europe might limit 

the group to relatively low abundance. For example, North American Aulacidae (Evanioidea) 

parasitize larvae of woodwasps (Xiphydriidae) (Carlson 1979; Gauld & Bolton 1996); a 

host-type with long larval stages that can last years. An evanioid female lays a single egg into an 

egg of the woodwasp and when the host larva hatches so does the parasitoid. The larval 

parasitoid causes delays in host larval development, often causing the host larva to feed for years 

before the parasitoid eats its way out of the host to pupate (Thompson 1960; Smith 1996). 

Xiphydriidae (Evanioidea) larvae commonly feed on tree species in Acer, Quercus, Betula, 

Fagus, and Rhus (Townes 1951; Smith 1996; 2001);  all species that were found among the two 

study sites. The majority of Evanioidea were caught in the meadow habitat, which is not 

surprising because many adult Aulacidae and Gasteruptiidae feed on the nectar or pollen of 

herbaceous plants (Jennings & Austin 2004). The large early summer spike in collection is 

consistent with evidence that suggests many North American Evaniodea metamorphose into 

adulthood from May-July (Smith 1996).  These long generation times and patterns of solitary 

oviposition may be associated with the small numbers of Evanioidea caught while trapping and a 

multi-year trapping effort may be required to collect a more accurate abundance estimate of 

Evanioidea.  
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Trigonalidea are known to be very diverse and cosmopolitan, but not particularly 

abundant (Carmean & Kimsey 1998). This lack of abundance was observed in the present study, 

with Trigonalidea specimens representing only 0.53% of all parasitoid wasps collected; and only 

45 individuals were captured during the 170 day study period. The rarity of the superfamily in 

this study could potentially be due to the very specialist life history many northern hemisphere 

species exhibit. Although some species parasitise the larvae of sawflies and yellow jackets 

directly (Carmean et al. 1981), many require two hosts to complete one generation. The female 

deposits hundreds or sometimes thousands of eggs on a leaf, after which a phytophagous sawfly 

larvae may consume them. Once the eggs are consumed, the Trigonalidae larvae hatch into the 

host gut. When an ichneumonid wasp subsequently super parasitizes the host larva, or a yellow 

jacket preys on the sawfly larva (Carmean et al. 1981; Clausen 1940), the Trigonalidea larva will 

either attack the eggs of the Ichneumonoidea, or travel with the yellow jacket female as it 

transports the host back to its nest. The Trigonalidea larva will then attack the larvae of the 

yellow jacket (Carmean 1991). Remarkably, while many Trigonalidea eggs will hatch in a host, 

only one Trigonalidea adult has ever been recorded to emerge from the host (Carmean 1991). 

This “two hosts, one offspring” extreme specialist life history is possibly associated with the 

small number of Trigonalidea collected in the present study. The effectiveness of MOPPT 

relative to the other traps for collection of Trigonalidea could potentially be due to the large 

number of ichneumonids and braconids collected in that trap, and the large number of yellow 

jackets caught in MOPPT (observational data).  

Mymarommatidea are some of the smallest hymenoptera, with adult body length usually 

between 0.3-0.8 mm (Gibson et al. 2007). While considered rare, micro hymenopterans are 
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generally difficult to collect, often requiring small mesh size in traps for success (Darling & 

Packer 1988). The small mesh aperture of the malaise traps used in this study seemed to aid in 

the collection of Mymarommatidea, with the malaise traps capturing 71% of mymarommatid 

specimens. However 94.4% of the Mymarommatidea in this study were collected in the meadow 

habitat, even though most Mymarommatidea are known to inhabit deciduous forest, especially 

amongst the leaf litter (Clouatre et al. 1989). Conversely, Mymarommatiodea have also been 

associated with low vegetation in earlier studies (Bakkendorf 1948). Clearly more field studies of 

Mymarommatoidea are needed, especially because approximately half of all known species are 

extinct and their biology only theorized from amber and fossils (Engel & Grimaldi 2007). 

Also uncommon in the present study were the Stephanoidea, which are known to be 

extremely rare and considered the most basal superfamily of Apocrita, being ichneumonid-like in 

appearance ( Sharkey et al. 2012).  Stephanoids are most common in the subtropics (Hong et al. 

2011). The superfamily primarily parasitizes the larvae of xylophagous Hymenopterans and 

Coleopterans (Goulet & Huber 1993). Interestingly, in this study the meadow habitat yielded 

more Stephanoidea than the woodland habitat. Other than phylogeny, little is known about the 

biology of Stephanoidea, save for the North American species Schlettererius cinctipes, which has 

been used as successful biological control against xylophagous hymenopterans in Tasmania 

(Hong et al. 2011). It is unclear the effect ecological factors play on the abundance of 

Stephanoidea and research into the ecology of this superfamily is needed. 

Ceraphronoidea is one of the least speciose superfamilies and little is known about the 

biology of the group. Interestingly, however, Ceraphronoidea are known to parasitize a wide 

range of hosts that are not usually hosts for most families of parasitoid wasps, such as the 
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Neuroptera and Mecoptera, and can also be hyperparasitoids of parasitoids of the braconid 

family of wasps (Ichneumonoidea) ( Goulet & Huber 1993; Johnson & Musetti 2004). A wide 

range of hosts could potentially be a factor in why habitat type was not significantly associated 

with collection of Ceraphronoidea in the present study.  

Interestingly, there were no notable negative relationships among the superfamilies in the 

present study. The lack of negative relationships might seemingly be explained by a lack of 

competitive exclusion among adults; and while this was once a favored hypothesis (Price 1972), 

it was most likely due to the difficulty of diagnosing competitive behavior in adults. More recent 

studies indicate that in the presence of competitors, ichneumonid and platygastroid wasps alter 

niche sizes to minimize competition (Baur & Yeargan 1995; Bogran et al. 2002) or directly 

engage in competitive exclusion (Sorribus et al. 2010). Furthermore, there is evidence that 

parasitoids of different species that attack the same host have evolved life history traits that 

minimize antagonistic behaviour (Harvey et al. 2013). These include changes in egg load, 

searching strategies, ability to differentiate if a host is already parasitised, and ability to utilize 

different host developmental stages (Elzinga et al. 2013; Hawkins 1994). These strategies, 

compounded by temporal factors that can have effects on community dynamics such as habitat 

size (Pedersen & Mills 2004), are all variables that a  relationship would not convey. 

The low specimen yield of the FI traps could possibly have been due to the aperture of 

the mesh used in the present study. Evanioidea was the only superfamily with the highest 

(although not significant) yield in the flight intercept traps. A count-based study performed in 

Pinery Provincial Park in southern Ontario suggested that while larger mesh sizes in malaise trap 

might be efficient in collecting Aculeata and Ichneumonidae, smaller mesh aperture collected 
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more micro hymenopterans (Darling & Packer 1988). The low yield was also surprising because 

the bottom of the trap implemented blue pan traps, which have been successful in collecting 

hymenopterans in South Carolinian woodlands (Campbell & Hanula 2007). While there was a 

statistically significant difference in the number of parasitoid wasps collected in malaise traps 

versus yellow pan traps, there was no statistical significance between the Maureen Ogden 

Preserve yellow pan trap (MOPPT) and the Hill & Dale Preserve malaise trap (HDMT). Both 

trap types were located in the meadow habitat, which yielded more total parasitoid wasps. This 

could potentially indicate there is no trapping bias in the meadow habitat in terms of 

implementing a yellow pan trap or a malaise trap. 
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CONCLUSION  

The yellow pan traps overall were most effective for collection of parasitoids, although 

the malaise trap in the meadow habitat yielded the most parasitoid wasps of all individual traps. 

The meadow habitat yielded a larger number of specimens than the woodland. The summer 

seasons were the most successful time to collect. Ichneumonoidea and chalcidoidea were the 

most abundant superfamilies of parasitoid wasps collected. Surprisingly more chalcidoidea were 

collected than Ichneumonoidea. There may be two reasons for this. Ichneumonoidea sampling 

was incomplete without traps in the canopy of the woodland and the large dispersal area that 

some families in Chalcidoidea exhibit could suggest some of the Chalcidoidea collected were not 

resident and were dispersing to another area. Therefore, it is possible that Ichneumonoidea were 

undersampled and Chalcidoidea over-sampled. The rare occurrences of Evanioidea and 

Trigonaloidea were likely products of the life histories of some species; namely that Evanoidea 

parasitizes host species with multi-year larval stages and the extreme specialist nature of many 

Trigonaloidea families. The lack of habitat preference exhibited by Ceraphronoidea could 

potentially be attributed the diverse array of hosts the group parasitises. The larger 

Ichneumonoidea and Chalcidoidea superfamilies exhibit a similarly diverse host list; however, 

both superfamilies were found in the meadow more than the woodland habitat with statistical 

significance.  

The results of this study can be used to formulate a protocol for successful trapping of all, 

or any, of the 11 parasitoid wasp superfamilies in a mixed-oak, fragmented forest with 

transitional fields (Table 7). Interestingly some trap types seem to have similar trapping efficacy 

for certain families, especially malaise and yellow pan traps. Flight intercept traps were clearly 
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less effective than the other trap types and the mesh size used here to construct the traps is not 

recommended. The success of the malaise and yellow pan traps indicates that a combination of 

the two trap types be implemented; either by placing pans below the netting of the malaise traps 

or to deploy the two in tandem. It would be helpful to replicate these recommendations at 

different latitudes of the USA to better understand the community composition of parasitoid 

wasp superfamilies and to determine if community structure changes across latitudinal gradients. 

These trapping protocols could further be employed to examine variation in abundance and 

community composition associated with urbanization and habitat fragmentation at more local 

scales. 

Table (7): Trapping protocol based on the results and design of this study. P-values marked with 
an * indicate there was no statistical significant difference between the means of the malaise trap 
and yellow pan trap. P-values marked with a ^ indicate the opposite. 

SF  Season/P-value  Habitat/P-value  Trap Type/P-value 

Parasitoid Wasps  Mid Summer/ 
<0.0001 

Meadow/ 
<0.0001 

Yellow Pan Trap 
<0.0001 

Ichneumonoidea  Mid Summer/ 
0.5549 

Meadow/ 
0.0094 

Malaise Trap/ 
<0.0001* 

Chalcidoidea  Mid Summer/ 
0.1889 

Meadow/ 
<0.0001 

Yellow Pan Trap/ 
<0.0001^ 

Diaprioidea  Late Summer/ 
0.3204 

Woodland/ 
0.9671 

Yellow Pan Trap/ 
<0.0001 

Proctotrupoidea  Late Summer/ 
0.5010 

Woodland/ 
0.9217 

Yellow Pan Trap/ 
0.0001 

Cynipoidea  Mid Summer/ 
0.0786 

Meadow/ 
<0.0001 

Yellow Pan Trap/ 
<0.0001^ 

Platygastroidea  Mid Summer/ 
0.5579 

Meadow/ 
<0.0001 

Yellow Pan Trap/ 
<0.0001^ 

Ceraphronoidea  Early Summer/  Meadow/  Yellow Pan Trap/ 
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0.0088  0.1748  0.0001 

Evanioidea  Early Summer/ 
0.0061 

Meadow/ 
<0.0001 

Flight Intercept/ 
0.9395 

Mymarommatoidea  Mid Summer/ 
0.7006 

Meadow/ 
<0.0001 

Malaise Trap/ 
0.0098* 

Stephanoidea  Early Summer/ 
0. 1963 

Meadow/ 
0.0020 

Yellow Pan Trap/ 
0.0133^ 

Trigonalidea  Mid Summer/ 
0.2644 

Meadow/ 
0.0030 

Yellow Pan Trap/ 
<0.0001 
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FIGURES 
 

 

Figure 1: Map of New Jersey indicating the two study sites: Maureen Ogden Preserve 
(Northernmost) & Hill & Dale/ Hell Mountain Preserve 
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Figure 2: (top left) A flight intercept trap set up in the Hill & Dale Preserve. (top right)The same 
make and model as the malaise traps used in this study. (bottom right) A 16 square meter grid of 
yellow pan traps. (bottom left) Illustration of how the yellow bowls were secured to the ground 
with bamboo skewers. 
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Figure 3: (left) Satellite image of the Hill & Dale/ Hell Mountain Preserve and the placements of 
the three traps HDPT, HDFI, and HDMT. (right) Satellite image of the Maureen Ogden Preserve 
and the placements of the three traps MOPMT, MOPFI, MOPPT.  
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Figure 4: Mean number of individual parasitoid wasps collected per day in all six traps during 
the 170 day sampling period. Each population peak is labeled with the Month in which the peak 
occurred.  
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Figure 5: Mean number of individuals from Ichneumonoidea, Chalcidoidea, Diaprioidea, 
Proctotrupoidea, Cynipoidea, and Platygastroidea collected per day throughout the months. 
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Figure 6: Mean number of individuals from Ceraphronoidea, Evanioidea, Mymarommatoidea, 
Stephanoidea, and Trigonaloidea collected per day throughout the months. 
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Figure 7: Abundance curve of average number of parasitoid wasps caught per trap per day in 
respects to month, bootstrapped. Means and standard deviations (in parenthesis) are included for 
each month. 
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Figure 8: Abundance curve containing average number of parasitoid wasps caught per trap per day 
(bootstrapped). Different letters denote that the means were significantly different from each other. 
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Figure 9: Percentages and sums for the total number of parasitoid wasps collected in each trap 
type. 
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Figure 10:  Average number of parasitoid wasps caught per trap per day in respects to habitat. 
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APPENDICES 
 

Please Note: Late Spring=May, Early Summer=June, Mid Summer=July, Late Summer=August, 
Early Fall=September, and Mid Fall=October. 
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