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ABSTRACT 

             In this paper we consider a mathematical model of mosquito and insecticide. The aim 

of this model is to reduce the amount of mosquitoes in the ponds and swamps. Mosquitos are 

the main cause of malaria disease. We used the optimal spray strategies to minimize the amount 

of mosquito, we work optimal control framework by applying the Pontryagin's Maximum 

Principle. A characterization of the optimal control via adjoint variables was established. We 

obtained an optimality system that we sought to solve numerically by using MATLAB. 

 

1-INTRODUCTION 

1.1 GENERAL INTRODUCTION 

                Mosquito- borne diseases, the best known of which is malaria, are among the leading 

causes of human deaths worldwide. Vector control is a very important part of the global strategy 

for management of mosquito-associated diseases, and insecticide application is the most 

important component in this effort. However, mosquito-borne diseases are now resurgent, 
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largely because of the insecticide resistance that has developed in mosquito vectors and the drug 

resistance of pathogens. 

Insecticides are a quick, powerful way to get rid of mosquitoes around the yard, but, 

unfortunately, they are only temporary. The effect usually lasts only as long as the insecticide 

is present, so as soon as it drifts away or dries out, the mosquitoes are back. Mosquito control 

officials use insecticides only when mosquitoes are especially thick and only in combination 

with other form of mosquito control. The same should apply to use around the house. By itself, 

insecticide is not a long-term solution. Two popular insecticides are: 

Malathion: an organophosphate often used to treat crops against a wide array of insects. It can 

be sprayed directly onto vegetation, such as the bushes where mosquitoes like to rest, or used 

in a 5 percent solution to fog the yard. In the small amounts used for mosquito control it poses 

no threat to humans or wildlife. In fact, malathion is also used to kill head lice. 

Permethrin: one of a group of chemicals called pyrethroids, it is a synthetic form of a natural 

insecticide found in chrysanthemum flowers. It usually is mixed with oil or water and applied 

as a mist, about 1/100th of a pound per acre. Like malathion, permethrin kills mosquitoes by 

disrupting their central nervous systems. Not harmful to people and animals in small amounts, 

but it is toxic to fish and bees. There are three types of mosquito spraying with insecticides. 

Home and fog spraying, sprinkling ponds and swamps. In this paper, the lesson will focus on 

sprinkling ponds and swamps. 

1.2 THE MATHEMATICAL MODEL 

In our basic optimal control problem for ordinary differential equations, we use u(t) for the 

control and x(t) for the state. The state variable satisfies a differential equation which depends 

on the control variable: 

𝑥′(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 

As the control function is changed, the solution to the differential equation will change. Thus, 

we can view the control-to-state relationship as a map 𝑢(𝑡) → 𝑥 = 𝑥(𝑢) (of course, x is really a 

function of the independent variable t, we write x (u) simply to remind us of the dependence on 

u). Our basic optimal control problem consists of finding a piecewise continuous control u(t) 

and the associated state variable x(t) to maximize the given objective functional, i.e. 
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∫ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡

𝑡1

𝑡0

 

                                   Subject to     𝑥′(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 
 

                                                     𝑥(𝑡0) = 𝑥0 ∧ 𝑥(𝑡1)    𝑓𝑟𝑒𝑒. 
 

Such a maximizing control is called an optimal control. By 𝑥(𝑡1) free, it ismeant that the value 

of 𝑥(𝑡1) is unrestricted. For our purposes, f and g will always be continuously differentiable 

functions in all three arguments. Thus, as the control(s) will always be piecewise continuous, 

the associated states will always be piecewise differentiable. 

 

1.3 PONTRYAGIN'S MAXIMUM PRINCIPLE 

𝐻(𝑡, 𝑥, 𝑢, 𝜆) = 𝑓(𝑡, 𝑥, 𝑢) + 𝜆𝑔(𝑡, 𝑥, 𝑢) 

                                                                    = integrand + adjoint * RHS of DE: 

 

We are maximizing H with respect to u at u*, and the above conditions can be written in terms 

of the Hamiltonian: 

 

𝜕𝐻

𝜕𝑢
= 0   𝑎𝑡   𝑢∗ ⇛ 𝑓𝑢 + 𝜆𝑔𝑢                                  (𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛). 

 

𝜆′ =
−𝜕𝐻

𝜕𝑥
⇛ 𝜆′ = −(𝑓𝑥 + 𝜆𝑔𝑥)                                           (𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛). 

 

𝜆(𝑡1) = 0                                                              (𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

 

We are given the dynamics of the state equation: 

 

𝑥′ = 𝑔(𝑡, 𝑥, 𝑢) =
𝜕𝐻

𝜕𝜆
, 𝑥(𝑡0) = 𝑥0. 

THEOREM 

               Consider 

𝐽(𝑢) = ∫ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡

𝑡1

𝑡0
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                                   Subject to  𝑥′(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡)), 𝑥(𝑡0) = 𝑥0 

 

Suppose that 𝑓(𝑡, 𝑥, 𝑢) ∧ 𝑔(𝑡, 𝑥, 𝑢) are both continuously differentiable functions in their three 

arguments and concave in x and u. suppose u* is a control, with associated state x*, and λ a 

piecewise differentiable function, such that u*, x*, and λ together satisfy on𝑡0 ≤ 𝑡 ≤ 𝑡1: 

 

𝑓𝑢 + 𝜆𝑔𝑢 = 0 , 

𝜆′ = −(𝑓𝑥 + 𝜆𝑔𝑥) , 

𝜆(𝑡1) = 0 

 

𝜆(𝑡) ≥ 0. 

Then for all controls u, we have 

𝐽(𝑢∗) ≥ 𝐽(𝑢). 

 

PROOF 

                Let u be any control, and x its associated state. Note, as 𝑓(𝑡, 𝑥, 𝑢) is concave in both 

the x and u variable, we have by the tangent line property 
 

𝑓(𝑡, 𝑥∗, 𝑢∗) − 𝑓(𝑡, 𝑥, 𝑢) ≥ (𝑥∗ − 𝑥)𝑓𝑥(𝑡, 𝑥∗, 𝑢∗) + (𝑢∗ − 𝑢)𝑓𝑢(𝑡, 𝑥∗, 𝑢∗) 

This gives 

𝐽(𝑢∗) − 𝐽(𝑢) = ∫ 𝑓(𝑡, 𝑥∗, 𝑢∗) − 𝑓(𝑡, 𝑥, 𝑢)

𝑡1

𝑡0

 

≥ ∫ (𝑥∗(𝑡) − 𝑥(𝑡))𝑓𝑥(𝑡, 𝑥∗, 𝑢∗) + (𝑢∗(𝑡) − 𝑢(𝑡))𝑓𝑢(𝑡, 𝑥∗, 𝑢∗)𝑑𝑡 … … … . (1)

𝑡1

𝑡0

 

Substituting 

𝑓𝑥(𝑡, 𝑥∗, 𝑢∗) = −𝜆′(𝑡) − 𝜆(𝑡)𝑔𝑥(𝑡, 𝑥∗, 𝑢∗)   𝑎𝑛𝑑  𝑓𝑢(𝑡, 𝑥∗, 𝑢∗) = −𝜆(𝑡)𝑔𝑢(𝑡, 𝑥∗, 𝑢∗) 

as given by the hypothesis, the last term in (1) becomes 

∫ (𝑥∗(𝑡) − 𝑥(𝑡))(−𝜆′(𝑡) − 𝜆(𝑡)𝑔𝑥(𝑡, 𝑥∗, 𝑢∗))𝑑𝑡 + (𝑢∗(𝑡) − 𝑢(𝑡))(−𝜆(𝑡)𝑔𝑢(𝑡, 𝑥∗, 𝑢∗))𝑑𝑡.

𝑡1

𝑡0

 

Using integration by parts, and recalling   𝜆(𝑡1) = 0  and  𝑥(𝑡0) = 𝑥∗(𝑡0),  we see 
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∫ −𝜆′(𝑡)(𝑥∗(𝑡) − 𝑥(𝑡))𝑑𝑡 = ∫ 𝜆(𝑡)(𝑥∗(𝑡) − 𝑥(𝑡))′𝑑𝑡

𝑡1

𝑡0

𝑡1

𝑡0

 

= ∫ 𝜆(𝑡)

𝑡1

𝑡0

(𝑔(𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡)) − 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡 

Making this substitution, 

𝐽(𝑢∗) − 𝐽(𝑢) ≥ ∫ 𝜆(𝑡)[𝑔(𝑡, 𝑥∗, 𝑢∗) − 𝑔(𝑡, 𝑥, 𝑢) − (𝑥∗ − 𝑥)𝑔𝑥(𝑡, 𝑥∗, 𝑢∗) + (𝑢∗ − 𝑢)𝑔𝑢(𝑡, 𝑥∗, 𝑢∗)]𝑑𝑡

𝑡1

𝑡0

 

Taking into account 𝜆(𝑡) ≥ 0 and that g is concave in both x and u, this gives the desired result          

𝐽(𝑢∗) − 𝐽(𝑢) ≥ 0. 

 

2-RESULTS AND DISCUSSION 

2.1 THE OPTIMAL CONTROL PROBLEM 

                Let x (t) be a population concentration at time t, and suppose we wish to reduce the 

population over a fixed time period. We will assume x has a growth rate r and carrying capacity 

M. The application of a substance is known to decrease the rate of change of x, by decreasing 

the rate in proportion to the amount of u and x. Let u(t) be the amount of this substance added 

at time t. For example, the population could be an infestation of an insect, or a harmful microbe 

in the body. Here we view x(t) as the concentration of a mosquito and u(t) an insecticide known 

to kill it. The differential equation representing the mold is given by 

 

𝑥′(𝑡) = 𝑟(𝑀 − 𝑥(𝑡)) − 𝑢(𝑡)𝑥(𝑡), 𝑥(0) = 𝑥0 

Where  𝑥0 > 0 is the given initial population size. Note the term u(t)x(t) pulls down the rate of 

growth of the mosquitoes. The effects of both the mosquitoes and insecticide are negative for 

individuals around them, so we wish to minimize both. Further, while a small amount of either 

is acceptable, we wish to penalize for amounts too large. Hence, our problem is as follows 

∫ 𝐴𝑥 + 𝑢(𝑡)2𝑑𝑡

𝑇

0

 

  Subject to   𝑥′(𝑡) = 𝑟(𝑀 − 𝑥(𝑡)) − 𝑢(𝑡)𝑥(𝑡) , 𝑥(0) = 𝑥0 

 

The coefficient A is the weight parameter, balancing the relative importance of the two terms in 

the objective functional. 
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2.2 NUMERICAL SOLUTION 

        Before writing the code we develop the optimality of this problem by first noting the 

Hamiltonian is 

𝐻 = 𝐴𝑥 + 𝑢2 + 𝜆𝑟(𝑀 − 𝑥) − 𝜆𝑥𝑢 

Using the optimality condition 

 

0 =
𝜕𝐻

𝜕𝑢
= 2𝑢 − 𝜆𝑥     𝑎𝑡      𝑢∗ ⇒ 𝑢∗ =

𝜆𝑥

2
 

 

The adjoint equation is 

𝜆′(𝑡) =
−𝜕𝐻

𝜕𝑥
= −𝐴 + 𝜆𝑟 + 𝜆𝑢 

= −𝐴 + 𝜆𝑟 + 0.5𝜆2𝑥 

𝑥′(𝑡) = 𝑀𝑟 − 𝑥(𝑟 + 𝑢)   ,       𝑥(0) = 𝑥0 

𝜆′(𝑡) = −𝐴 + 𝜆𝑟 + 0.5𝜆2𝑥  , 𝜆(𝑇) = 0 

 

Using these two differential equations and the representation of u*, we generate the numerical 

code as described above, written in MATLAB [5]. 

Using the Runge- kutta sweep method solving 𝑥→ forward in time 

 

   For i = 1:N 

   k1 = M*r - x(i)*(r + u(i)); 

   k2 = M*r-(x(i) + h2*k1)*(r + 0.5*(u(i) + u(i+1))); 

   k3 =  M*r-(x(i) + h2*k2)*(r + 0.5*(u(i) + u(i+1))); 

   k4 = M*r - (x(i) + h*k3)*(r + u(i+1)); 

   x(i+1) = x(i) + (h/6)*(k1 + 2*k2 + 2*k3 + k4); 

Using the Runge- kutta sweep method solving 𝑢→ backward in time 

   for i = 1:N 

   j = N + 2 - i; 

   k1 = -A - lambda (j)*r +0.5*(lambda (j))^2 * x(j); 

   k2=-A - (lambda (j)-h2*k1)*r + 0.5*(lambda (j) - h2*k1)^2*0.5*(x(j)+x(j-1)) ; 

   k3=-A-(lambda(j)-h2*k2)*r + 0.5*(lambda(j)- h2*k2)^2 * 0.5*(x(j)+x(j-1)) ; 

   k4 = (lambda (j)-h*k3)*r + 0.5*(lambda (j) - h*k3)^2 * x(j-1) ; 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.5, 2020 

 

70 

 

   lambda (j-1) = lambda(j) - ... 

                                      (h/6)*(k1 + 2*k2 + 2*k3 + k4); 

 

2.3 NUMERICAL RESULTS 

    Here we consider a general mosquito and insecticide model and all the parameter values are 

chosen hypothetically. Enter the values 

                          r = 0.4,    M =10,    A = 6,    X0 = 1 ,  C = 7. 

The state never decreases, with growth at the beginning and end of the interval Figure1. The 

control initially increases then decreases to zero Figure2. Enter the values 

                          r = 0.3,    M =5,    A = 10,    X0 = 1 , C = 7. 

The state decreases, since beginning and constant in the middle with growth at the end Figure3. 

The control initially increases, and then levels off to become constant. The control eventually 

begins decreasing again, going all the way to 0 Figure4. 
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3-Conclusions 

In this paper, we cannot completely get rid of mosquitoes and their different phases in ponds 

and swamps, but by optimal control, we reduced it to a large extent with respect to our model 

in seven days, and therefore we have reduced the spread of disease malaria. 
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