
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66,  NO. 4, PP. 695-700 

Manuscript received August 25, 2019; revised October, 2020.                             DOI: 10.24425/ijet.2020.134029 

 

 

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0, 

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited. 

 

  

Abstract—The zero attraction affine projection algorithm 

(ZA-APA) achieves better performance in terms of 

convergence rate and steady state error than standard APA 

when the system is sparse. It uses l1 norm penalty to exploit 

sparsity of the channel. The performance of ZA-APA depends 

on the value of zero attractor controller. Moreover a fixed 

attractor controller is not suitable for varying sparsity 

environment. This paper proposes an optimal adaptive zero 

attractor controller based on Mean Square Deviation (MSD) 

error to work in variable sparsity environment. Experiments 

were conducted to prove the suitability of the proposed 

algorithm for identification of unknown variable sparse 

system. 

Keywords— Zero Attraction APA, sparse channel, 

convergence, steady state mean square error,variable zero 

attraction controller 

I.INTRODUCTION 

SYSTEM is said to be sparse when the number of zero 

coefficients is more than the number of non-zero 

coefficients [1]. Some of the areas where sparsity can occur 

includes underwater acoustics [2], wireless multipath 

channel [3], hands free communication channel [4] etc. Not 

only sparse, in many of the real time systems, the level of 

sparsity also varies with time. Adaptive filters are type of 

filter with adjustable filter coefficients. They find application 

in various fields such as system identification, echo 

cancellation etc., The Least Mean Square (LMS), 

Normalized LMS and Affine Projection Algorithm (APA) 

are the famous type of adaptive algorithms. The LMS and 

NLMS are widely used because of their simplicity. APA is 

used because of the property of faster convergence and lower 

steady state error even though they have more complexity. 

Conventional adaptive filter do not have sparsity awareness 

term in them and hence their performance does not improve 

with increase in sparsity. Nowadays due to development in 

compression sensing, several sparsity aware norm penalized 

adaptive filters has gained more importance due to their 

improved performance for sparse channel [5]. The 

prominent ones are Zero attraction (ZA) type and reweighted 
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ZA algorithms. ZA algorithms work by including l1 norm 

penalty term into the original update equation of adaptive 

algorithm. The work of the zero attractor term is to attract the 

near to zero coefficients so that the convergence speed is 

accelerated. RZA algorithms selectively induces filter taps 

with small magnitude to zero rather than uniformly attract all 

filter taps to zero. This results in RZA to have better 

performance than ZA algorithm.  

 But selection of the parameters to obtain uniform 

shrinkage is a difficult task in RZA algorithm especially if 

the system is time varying. The common major drawback of 

these ZA sparsity aware adaptive filters is that they work 

well only when the level of sparsity is more and their 

performance detoriates with lesser sparsity, much lower than 

conventional algorithm. The ZA-APA which belong to this 

family has improved performance than conventional APA 

and LMS and ZA-LMS when the system is sparse [6,7]. One 

common problem seen in the ZA-APA is that they work well 

only for sparse environment and their performance decreases 

when the sparsity level is decreased. From the theoretical 

analysis [8] it is found that the zero attractor controller plays 

a key role in the final steady state error which need to be 

changed based on the sparsity level. The problem of time 

varying sparsity is solved in [9] using combinational 

approach .The major drawback of combinational approach is 

that the complexity is more. Variable zero attractor controller 

is proposed in [10, 16] for time varying sparse system. An 

adaptive zero Attractor for l0 based LMS Algorithm is 

proposed [12] . The updation of zero attractor controller is 

obtained by maximizing the decrease in transient MSD. 

Simulations indicate the suitability of the algorithm for time 

varying environments. This is the motivation behind the 

proposed approach. 

Hence in this paper, we resolve this variable sparsity 

environment problem by proposing an optimal adaptive zero 

attractor controller which is based on increasing the decrease 

in transient MSD. Firstly an optimal zero attractor controller 

is derived based on MSD error. Then an update rule is 

proposed which tend to vary the zero attractor controller 

based on the level of sparsity. A practical update rule is also 

proposed. It can be found that the proposed algorithm, during 

the sparse environment works similar to optimal ZA-APA 

and it works better than ZA-APA during semi sparse and 

non-sparse environments   and thus makes the algorithm as a 

suitable candidate for variable sparsity environments.  

Finally the simulation in the context of sparse system 

identification verifies the performance of the proposed 

algorithm. 
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This paper is organized as follows .Review of ZA-APA 

is provided in section 2.In section 3, optimal adaptive zero 

attractor controller is proposed. Simulations results are 

provided in section 4.Finally conclusions are discussed in 

section 5. 

II.REVIEW OF ZA-APA 

Consider an unknown system with impulse response 𝑤𝑜. 

The input signal is given by 

 𝒙(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) 𝑥(𝑛 − 2)𝑥(𝑛 − 𝑁 + 1)]𝑇. 

The input is passed through the system with impulse 

response 𝑤𝑜 to obtain the desired signal 𝑑(𝑛), which is 

modeled as a linear regression model given by 

 𝒅(𝑛) = 𝒙(𝑛)𝒘𝑜 + 𝑣(𝑛)  

Here 𝐰o is the unknown weight vector which is needed 

to be estimated. v(n) is the measurement noise taken as a 

white Gaussian noise with zero mean and variance σv
2. n is 

the time index and N is the length of the input.The 

conventional APA with regularization (δ) computes the 

weight vector at each iteration given as  

𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇𝐴𝑇(𝑛)(𝛿𝐼 + 𝐴(𝑛)𝐴𝑇(𝑛))−1𝒆(𝑛)   (1)      (1) 

Here I is the identity matrix of order N Х N , μ is the step 

size and  𝒆(𝑛) is the error vector given by 

 𝒆(𝑛) = 𝒅(𝑛) − 𝒚(𝑛)  

where 𝒚(𝑛) = 𝐴(𝑛)𝒘(𝑛) is the estimated output. The 

desired response is given by  

𝒅(𝑛)  = [𝑑(𝑛) 𝑑(𝑛 − 1) … … … … … 𝑑(𝑛 − 𝑃 + 1)]𝑇  

and𝐴(𝑛) = [𝒙(𝑛)𝒙(𝑛 − 1)𝒙(𝑛 − 2) … . 𝒙(𝑛 − 𝑃 + 1)]𝑇 is 

the projection vector obtained by taking the delayed version 

of input vector .Here P is projection order. Usually P is less 

than or equal to N. If l1 norm penalty is included and if 

Lagrange’s multiplier is used, the update equation of ZA-

APA [7] is given by (2) as 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝐴𝑇(𝑛)(𝛿𝐼 + 𝐴(𝑛)𝐴𝑇(𝑛))
−1

𝑒(𝑛) +
 𝛼 (𝐴𝑇(𝑛)(𝛿𝐼 + 𝐴(𝑛)𝐴𝑇(𝑛))

−1
𝐴(𝑛)) 𝑠𝑔𝑛(𝑤(𝑛))  −

𝛼𝑠𝑔𝑛(𝑤(𝑛))                                                                        (2) 

Equation (2) consists of four terms .The first two terms 

are same as traditional APA whereas the third and the fourth 

terms are called as the zero attraction terms .They are 

responsible for the attraction of filter coefficients to zero 

when their magnitude is close to zero. It should be noted that 

the magnitude of attraction is controlled by the parameter 𝛼 

called as the zero attractor controller and 𝑠𝑔𝑛(𝒘(𝑛)) is the 

component wise sign function defined as  

𝑠𝑔𝑛(𝑤(𝑛) ) = {

𝑤(𝑛)

|𝑤(𝑛)|
  𝑖𝑓  𝑤(𝑛)  ≠ 0

0    𝑖𝑓   𝑤(𝑛)  = 0

} 

The literatures related to ZA-APA shows that the steady 

state performance of ZA-APA depends on the zero attractor 

controller [11]. Also it is found that ZA-APA cannot 

outperform APA when the system is  non-sparse[8] .As the 

work of zero attractor controller is to attract the zero 

coefficients to zero and the application of attraction strength 

evenly to all filter taps, it is required to change the value of 

zero attractor controller based on the level of sparsity. Thus 

in order to make ZA-APA capable of working in all 

environmental conditions, we propose an optimal zero 

attractor controller which is also adaptive .The optimal value 

is based on the largest decrease in transient MSD error. 

III.ADAPTIVE OPTIMAL ZERO ATTRACTOR CONTROLLER 

In this section we first obtain an optimal zero attractor 

controller by maximizing the decrease in transient MSD 

from one iteration to the next. Thus the new update recursion 

of ZA-APA with adaptive zero attractor controller is given 

by  

𝒘(𝑛 + 1) =  𝒘(𝑛) + 𝜇𝐴𝑇(𝑛)(𝛿𝐼 + 𝐴(𝑛)𝐴𝑇(𝑛))
−1

𝒆(𝑛) +
 𝛼(𝑛 + 1) (𝐴𝑇(𝑛)(𝛿𝐼 + 𝐴(𝑛)𝐴𝑇(𝑛))

−1
𝐴(𝑛)) 𝑠𝑔𝑛(𝒘(𝑛)) −

𝛼(𝑛 + 1)𝑠𝑔𝑛(𝒘(𝑛))                           (3) 

If the weight error vector is given by 

 �̃�(𝑛) = 𝒘𝑜 − 𝒘(𝑛) ,then (2) in terms of weight error vector 

in recursive form can be written as  

�̃�(𝑛 + 1) �̃�(𝑛) − 𝜇𝐴𝑇(𝑛)(𝛿𝐼 + 𝐴(𝑛)𝐴𝑇(𝑛))
−1

𝑒(𝑛) −
𝛼𝐴𝑇(𝑛)(𝛿𝐼 + 𝐴(𝑛)𝐴𝑇(𝑛))

−1
𝐴(𝑛)𝑠𝑔𝑛(𝑤(𝑛)) +

 𝛼𝑠𝑔𝑛(𝑤(𝑛))                                                                       (4) 

If 𝑒(𝑛)  is written in terms of weight error vector as (𝑛) =
𝑒𝑎(𝑛) + 𝑣(𝑛) = 𝐴(𝑛) �̃�(𝑛) + 𝑣(𝑛) , we get 

�̃�(𝑛 + 1) =      [I − 𝜇𝐴𝑇(𝑛)(𝛿𝐼 +
𝐴(𝑛)𝐴𝑇(𝑛))

−1
𝐴(𝑛)] �̃�(𝑛) − 𝜇𝐴𝑇(𝑛)(𝛿𝐼 +

𝐴(𝑛)𝐴𝑇(𝑛))
−1

𝒗(𝑛) − 𝛼𝐴𝑇(𝑛)(𝛿𝐼 +
𝐴(𝑛)𝐴𝑇(𝑛))

−1
𝐴(𝑛)𝑠𝑔𝑛(𝒘(𝑛)) + 𝛼𝐸[𝑠𝑔𝑛(𝒘(𝑛))]       (5) 

In order to simplify the analysis ,we make use of the 

following assumptions 

A.1.The input is independent and identically distributed 

(i.i.d) with zero mean and covariance 𝑅𝑥. 

A.2. The noise is i.i.d with zero mean and variance  σv
2 and is 

assumed to be independent of regressor (𝑛) . 

 The system impulse response contains unknown 

coefficients and since the nature of these coefficients have 

different effect on the performance of the algorithm, it is 

necessary to classify the filter coefficients into two 

categories[17] so that these can be analyzed individually. 

Therefore the entire filter coefficients are classified as  

Non zero coefficients (𝑤𝑁𝑍):𝑤 =  𝑤𝑁𝑍  𝑖𝑓 |𝑤(𝑛)| > 0 

Zero coefficients (𝑤𝑍):𝑤 =  𝑤𝑍  𝑖𝑓 𝑤(𝑛) = 0 

where 0 < n < N ,𝑤𝑁𝑍 ⋃ 𝑤𝑍 = 𝑁 and 𝑤𝑁𝑍 ⋂ 𝑤𝑍 = ∅.If Q is 

the number of non zero filter coefficients ,then the number of 

zero filter coefficients is N-Q .The sparsity level is given by 

Q/N. Lesser value of Q / N gives higher level of sparsity 
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In order to obtain the transient MSD, we make use of 

IWV method. In [12], individual weight error variance 

vector (IWV) method is used to analyse the transient 

performance of ZA-NLMS algorithm. The advantage of 

IWV analysis is that it replaces the weight error covariance 

matrix by a column vector which separates the input terms 

without any approximations. Thus it relieves the dependency 

of the performance model on the metric matrix ∑.   

If equation (3) is multiplied by its transpose, and taking 

expectation on both sides and using Kronecter product on 

both sides and by using Vec (abc) = (cT ⊗ a) Vec (b), we 

get the following  

𝑉𝑒𝑐(𝐸(�̃�(𝑛 + 1)�̃�𝑇(𝑛 + 1))) = 𝑉𝑒𝑐(𝐸(�̃�(𝑛)�̃�𝑇(𝑛))) +

𝜇2(𝐸(𝑌 ⊗ 𝑌))𝑉𝑒𝑐(𝐸(�̃�(𝑛)�̃�𝑇(𝑛))) + 𝜇2𝜎𝑣
2Vec(E(𝑍)) +

𝛼2(𝐸(𝑌 ⊗ 𝑌))𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))𝑠𝑔𝑛(𝒘(𝑛))𝑇)) +

𝛼2𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))𝑠𝑔𝑛(𝒘(𝑛))𝑇)) − 𝜇(𝐼 ⊗

𝐸(𝑌))𝑉𝑒𝑐(𝐸(�̃�(𝑛)�̃�𝑇(𝑛))) − 𝛼(𝐼 ⊗

 𝐸(𝑌))𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))�̃�𝑇(𝑛))) +

𝛼𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))�̃�𝑇(𝑛))) − 𝜇(𝐸(𝑌) ⊗

𝐼)𝑉𝑒𝑐(𝐸(�̃�(𝑛)�̃�𝑇(𝑛))) + 𝜇𝛼𝐸(𝑌 ⊗

𝑌)𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))�̃�𝑇(𝑛))) − 𝜇𝛼(𝐸(𝑌) ⊗

𝐼)𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))�̃�𝑇(𝑛))) − 𝛼(𝐸(𝑌) ⊗

𝐼)𝑉𝑒𝑐(𝐸(�̃�(𝑛)𝑠𝑔𝑛(𝒘(𝑛))𝑇)) + 𝜇𝛼(𝐸(𝑌 ⊗

𝑌))𝑉𝑒𝑐(𝐸(�̃�(𝑛)𝑠𝑔𝑛(𝒘(𝑛))𝑇)) − 𝛼2(𝐸(𝑌) ⊗

𝐼)𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))𝑠𝑔𝑛(𝒘(𝑛))𝑇)) +

𝛼𝑉𝑒𝑐(𝐸(�̃�(𝑛)𝑠𝑔𝑛(𝒘(𝑛))𝑇)) − 𝜇𝛼(𝐼 ⊗

𝐸(𝑌))𝑉𝑒𝑐(𝐸(�̃�(𝑛)𝑠𝑔𝑛(𝒘(𝑛))𝑇)) − 𝛼2(𝐼 ⊗

E(𝑌))𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))𝑠𝑔𝑛(𝒘(𝑛))𝑇)                              (6)   (6) 

Where = 𝐴𝑇(𝑛)(𝐴(𝑛)𝐴𝑇(𝑛))
−1

𝐴(𝑛) , 𝑍 =

𝐴𝑇(𝑛)(𝐴(𝑛)𝐴𝑇(𝑛))
−2

𝐴(𝑛)  and I is the identity matrix of 

appropriate dimension. If  P = (𝐼 ⊗ E(𝑌)) +  (E(𝑌) ⊗

𝐼), Q = E(𝑌 ⊗ 𝑌) ,R = E(Z) then 

𝑉𝑒𝑐(𝐸(�̃�(𝑛 + 1)�̃�𝑇(𝑛 + 1)))  = [𝐼 − 𝜇𝑃 +

𝜇2𝑄]  𝑉𝑒𝑐(𝐸(�̃�(𝑛)�̃�𝑇(𝑛)))  + 𝜇2𝜎𝑣
2𝑉𝑒𝑐(𝑅) + 𝛼[(𝐼 −

𝜇(E(𝑌) ⊗ 𝐼) − (𝐼 ⊗ E(𝑌)) + 𝜇 E(𝑌 ⊗

𝑌)𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))�̃�𝑇(𝑛))) + (𝐼 − 𝜇(𝐼 ⊗ E(𝑌)) −

(E(𝑌) ⊗ 𝐼) + 𝜇 E(𝑌 ⊗

𝑌)𝑉𝑒𝑐(𝐸(�̃�(𝑛)𝑠𝑔𝑛(𝒘(𝑛))𝑇))] + 𝛼2[𝐼 − 𝑃 +

𝑄]𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))𝑠𝑔𝑛(𝒘(𝑛))𝑇)) (7) 

If trace is taken on both sides of (7), we get the MSD of 

ZA-APA after some taking 𝑉𝑒𝑐−1 on both sides. As done 

in [12] if 𝑇𝑟(𝑋𝑌) = (𝑉𝑒𝑐(𝑋))
𝑇

𝑉𝑒𝑐(𝑌) and   𝑋 = 𝐼, we 

obtain  

𝑇𝑟 (𝐸(�̃�(𝑛 + 1)�̃�𝑇(𝑛 + 1)))   =

𝑇𝑟 (𝐸(�̃�(𝑛)�̃�𝑇(𝑛))) + 𝑉𝑒𝑐(𝐼)𝑇[−𝜇𝑃 −

𝜇2𝑄]𝑉𝑒𝑐 (𝐸(�̃�(𝑛)�̃�𝑇(𝑛))) + 𝑉𝑒𝑐(𝐼)𝑇 𝜇2𝜎𝑣
2𝑉𝑒𝑐(𝑅)     +

 𝛼𝑉𝑒𝑐(𝐼)𝑇[𝑋1𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))�̃�𝑇(𝑛))) +

𝑋2𝑉𝑒𝑐(𝐸(�̃�(𝑛)𝑠𝑔𝑛(𝒘(𝑛))𝑇))] + 𝛼2𝑉𝑒𝑐(𝐼)𝑇[𝐼 − 𝑃 +

𝑄]𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))𝑠𝑔𝑛(𝒘(𝑛))𝑇))        (8) 

where 𝑋1 = [(𝐼 − 𝜇(E(𝑌) ⊗ 𝐼) − (𝐼 ⊗ E(𝑌)) + 𝜇 E(𝑌 ⊗

𝑌)) and 𝑋2 = (𝐼 − 𝜇(𝐼 ⊗ E(𝑌)) − (E(𝑌) ⊗ 𝐼) + 𝜇 E(𝑌 ⊗

𝑌).If  𝛼 is zero, then (8) reduces to conventional APA. If the 

step size is chosen to be as per [8], which is assumed to be a 

constant, then (7) is a second order quadratic equation with 𝛼 

as the polynomial. It order to get minimum MSD , the 

optimal value of α is obtained by differentiating (7) with 

respect α and equating it to zero. Thus we get 

αo =

− 
(𝑉𝑒𝑐(𝐼))𝑇(𝑋1𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))�̃�𝑇(𝑛)))+𝑋2𝑉𝑒𝑐(𝐸(�̃�(𝑛)𝑠𝑔𝑛(𝒘(𝑛))

𝑇
)

𝑉𝑒𝑐(𝐼)𝑇(2[𝐼−𝑃+𝑄]𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝒘(𝑛))𝑠𝑔𝑛(𝒘(𝑛))𝑇)))
                  

                 (9) 

In order to find optimal value αo we need to eliminate the 

nonlinear terms. The optimal value is applicable for sparse 

system only because any value of α is not applicable for ZA-

APA when the system is non-sparse [8] and ZA-APA cannot 

outperform APA when the system is non-sparse. Thus we 

make use of the assumption that the ith component of the 

weight deviation is assumed to follow Gaussian distribution 

[12]. Let 𝛾1(n) = E(sgn(𝐰(n)sgn(𝐰(n))T). If the 

approximation 1 of [12] is used, then 

 γ1(n) = (E(sgn(𝐰(n)sgn(𝐰(n)T)))i,k =

{
1 𝑖𝑓 𝑖 = 𝑘

𝐸(𝑠𝑔𝑛(𝑤𝑖(𝑛)))𝐸(𝑠𝑔𝑛(𝑤𝑘(𝑛)𝑇)) 𝑖𝑓 𝑖 ≠ 𝑘
}         

Let 𝛾2(n)  be defined as 𝛾2(n) =

𝐸(�̃�(𝑛)𝑠𝑔𝑛(𝒘(𝑛))𝑇 = 𝒘0𝐸(𝑠𝑔𝑛(𝒘(𝑛)𝑇)) −

𝐸(𝒘(𝑛)𝑠𝑔𝑛(𝒘(𝑛)𝑇))) 

Using approximation 1 of [12],  𝐸(𝒘(𝑛)𝑠𝑔𝑛(𝒘(𝑛)𝑇)) 

can be written as 

𝐸(𝒘(𝑛)𝑠𝑔𝑛(𝒘(𝑛)𝑇))𝑖,𝑘  =

{
𝐸(𝒘(𝑛)𝑖𝐸(𝑠𝑔𝑛(𝒘(𝑛)𝑇))𝑘 𝑖𝑓 𝑖 ≠ 𝑘

                 𝐸(‖𝒘(𝑛)𝑖‖            𝑖𝑓 𝑖 = 𝑘
}                             (10) 
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If the weights are assumed to follow Gaussian 

distribution [9,12] with zero mean and variance σw,j
2  and if it 

is assumed that 𝐸(|𝒘𝑗(𝑛)𝑖| = 𝒘𝑗
0,then using folded normal 

distribution we can write as  

𝐸(‖𝒘(𝑛)𝑖‖                                   = 𝑤0[1 −

2 𝑒𝑟𝑓 (−
𝒘0

𝜎𝑤
)     + √

2𝜎𝒘,𝑗
2

𝜋
 𝑒𝑥𝑝 (−

𝑤02

2𝜎𝒘
2 )    (11) 

where the error function and sign function are defined as  

erf(z) = ∫
1

√2π
 exp (

x2

2
) dx

z

−∞
 and E(sgn(w(n))) =

−erf (−
𝑤0

σw
). As the system is made of zero and non zero 

filter coefficients we can write  as γ2(n)ii =

 ∑ E(‖wj(n)i‖) − |𝑤𝑗
0|j∈Z  +  ∑ E(‖wj(n)i‖) − |𝑤𝑗

0|j∈NZ .If 

the weight j ∈ NZ and if σw,j is small then we can write as 

follows , If  wo,j > 0   then  erf (−
w0

σw,i
) ≅ 0.If  wo,j < 0   

then  erf (−
w0

σw,i
) ≅ 1 and for both positive and negative 

wo,j then exp (−
wo,j

2

2σw,j
2 ) ≅ 0 [15].Thus for 𝑗 ∈ NZ 

E(‖wj(n)i‖) = |𝑤𝑗
0|. For ∈ Z , 𝑤𝑗

0 = 0. Thus γ2(n)ii =

∑ √
2σw,j

2

πj∈Z .In orders to get a feasible solution, only diagonal 

elements are taken. Moreover if the input is Gaussian, then 

we the optimal zero attractor controller as 

αo

= − 
𝑉𝑒𝑐(𝐼)𝑇𝑋1𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝑤(𝑛))�̃�𝑇(𝑛))) + 𝑋2𝑉𝑒𝑐(𝐸(�̃�(𝑛)𝑠𝑔𝑛(𝑤(𝑛))

𝑇

𝑉𝑒𝑐(𝐼)𝑇2[𝐼 − 𝑃 + 𝑄]𝑉𝑒𝑐(𝐸(𝑠𝑔𝑛(𝑤(𝑛))𝑠𝑔𝑛(𝑤(𝑛))𝑇))
 

=
(X1+X2)ii

√
2σw,j

2

π

2[I−P+Q]ii
                             (12) 

Since the variance of the weights is not known, moving 

average method is adopted to obtain the variance of the 

weights. Thus 

αo(n + 1) = βαo + (1 − β) ||
(X1+X2)ii

√
2σw,j

2

π

2[I−P+Q]ii
||     (13) 

Where 0 ≤ β < 1  is the smoothing factor. Thus if the 

variance σw,j
2  is changed then accordingly α is changed 

thereby the algorithm is suitable for variable sparsity 

environment. 

IV.SIMULATIONS 

Simulations are performed in the system identification 
scenario. For this purpose an unknown channel of 16 taps is 
randomly generated. All the experimentation is tested for 
colored input. The colored signal is obtained by passing 
white noise through a first order system with pole at 0.9 (H 
(z) =1/ (1-0.9z-1)).The noise is assumed to be Gaussian with 
zero mean and unity variance. The SNR is maintained as 30 
dB throughout the experiment which is calculated as 10 
log 𝐸[𝑦(𝑛)2] 𝐸[𝑣(𝑛)2⁄ ]. It is assumed that both the filter 
and system has the same number of taps. The initial values of 
all the filter coefficients are zero. The regularization is 
chosen to be 0.001 and the projection order is chosen to be 4. 
The length of the sample is chosen to be 1000 and the results 
are averaged over 200 independent runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Steady state MSE  of ZA-APA with different zero attractor 
controller 

To illustrate the selection of α on the performance of 
ZA-APA, the steady state MSE of ZA-APA is plotted for 
different values of α. The value of α is changed between 10-6 
to 10-2. For this purpose, the weights of sparse system are 
assumed to follow Gaussian distribution with the zero mean 
and the variance 0.5 with sparseness of 0.9375. From (12) 
the value of α obtained is around 10-3.The graph also shows 
steady state MSE of conventional APA with the same step 
size and projection order. It is seen that around 1×10-3 the 
MSE of ZA-APA is lowest which proves the effectiveness of 
(12) for the selection of 𝛼. Also from Fig 1 it should be 
noted that very small value of 𝛼 reduces the zero attraction 
strength which makes it to perform like conventional APA. 

The second experiment is conducted to demonstrate the 
effect of 𝛼 on non-sparse and sparse system. For this 
purpose, the weights of non-sparse system are assumed to 
follow Gaussian distribution with the zero mean and the 
variance 0.5 and the sparse system is same as experiment 
one. The non-sparse system has the sparseness of 0.0625. As 
expected, the value of 𝛼 in sparse environment makes ZA-
APA with lesser steady state error and in non sparse 
environment the value of 𝛼 makes the ZA-APA to perform 
worse than APA. Thus we can conclude that ZA-APA 
provides better performance than conventional APA only 
when the system is sparse. When the sparsity level is 
decreased, any value of  𝛼 tend to only increase the steady 
state error. 
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Fig. 2. Steady state MSE analysis of ZA-APA for sparse and non sparse 

system with different zero attractor controller 

Fig 3 is used to illustrate the stability of ZA-APA based 

on the step size. For this, five different step sizes were 

chosen as 𝜇 = 0.01, 𝜇 = 0.1, 𝜇 = 1, 𝜇 = 1.6, 𝜇 =
2.05and the performance is analysed .Again the system 

under consideration is a sparse system with number of 

non zero coefficients equal to 1 with  the input is same as 

first experiment. The value of 𝜌 set as 1× 10−4 .From the 

results it is proved that the algorithm is stable only if the 

step size is chosen to be 0 <  𝜇 < 2 which is same as the 

conventional ZA-APA [7]. 
 

 

Fig. 3.Stability analysis of ZA-APA with different step size values with 

SNR=30 db. 

Finally in Figure 5 the feasibility of (13) for the variable 

sparsity environment is proved by simulation under sparse, 

semi sparse and non-sparse conditions as shown in Fig. 4. 

The system is taken as the one with 16 coefficients. Initially 

the system was sparse with 15 zero coefficients and one non 

zero coefficient. After 5000 time steps, system was made 

semi sparse with equal number of zero and non-zero filter 

coefficients. Finally after 10,000 time steps the system was 

non sparse with no zero filter coefficient. For comparison, 

the ZA-APA with fixed step size is also plotted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.Impulse response of sparse, semi sparse and non-sparse system 

 Several interesting findings can be obtained for Fig.5. 
Firstly the plot confirms that the variable zero attractor 
controller outperform other fixed ZA-APA in all 
environments. Secondly the plot verifies whether the variable 
zero attractor controller ZA-APA can outperform ZA-APA. 
As per the analysis in previous section and simulations in Fig 
2, it is found that variable zero attractor controller ZA-APA 
cannot outperform ZA-APA when the system is non-sparse. 
This is further verified in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 
Fig.5. Steady state MSE analysis of the proposed algorithm under variable 

sparsity environment.  

The third experiment is performed for echo cancellation 

application. Here two systems namely sparse and non-sparse 

conditions are taken with the length of the impulse response 

as 512 coefficients. As expected the proposed algorithms 

perform well at all situation with faster convergence and 

lower steady state MSE which can be seen from Figure 6. 
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Fig. 6. Steady state MSE analysis of the proposed algorithm  for echo 

cancellation application 

  

CONCLUSION 

This paper presents an adaptive zero attractor controller for 

varying  sparsity environment .It is found that any value of 

zero attractor controllers does not improve the performance 

of ZA-APA as long as the system is non sparse. Thus an 

adaptive optimal zero attractor controller based on MSD is 

proposed. It is found that the performance of the proposed 

approach is better than ZA-APA under sparse and semi 

sparse condition and under non-sparse condition also, it is 

found to be same as ZA-APA as expected. Finally the 

feasibility of optimal variable zero attractor controller for 

variable sparsity environment is also proved through 

simulations. In future , the  further extension is to vary the 

step size along with zero attractor controller and optimize the 

system. 
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