
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66, NO. 3, PP. 545–553
Manuscript received March 2, 2020; revised July, 2020. DOI: 10.24425/ijet.2020.134011

Fixed-latency System for High-speed Serial
Transmission Between FPGA Devices

with Forward Error Correction
Michał Kruszewski, and Wojciech Marek Zabołotny

Abstract—This paper presents the design of a compact pro-
tocol for fixed-latency, high-speed, reliable, serial transmission
between simple field-programmable gate arrays (FPGA) devices.
Implementation of the project aims to delineate word boundaries,
provide randomness to the electromagnetic interference (EMI)
generated by the electrical transitions, allow for clock recov-
ery and maintain direct current (DC) balance. An orthogonal
concatenated coding scheme is used for correcting transmission
errors using modified Bose–Chaudhuri–Hocquenghem (BCH)
code capable of correcting all single bit errors and most of
the double-adjacent errors. As a result all burst errors of a
length up to 31 bits, and some of the longer group errors,
are corrected within 256 bits long packet. The efficiency of the
proposed solution equals 46.48%, as 119 out of 256 bits are
fully available to the user. The design has been implemented
and tested on Xilinx Kintex UltraScale+ KCU116 Evaluation Kit
with a data rate of 28.2 Gbps. Sample latency analysis has also
been performed so that user could easily carry out calculations
for different transmission speed. The main advancement of the
work is the use of modified BCH(15, 11) code that leads to high
error correction capabilities for burst errors and user friendly
packet length.

Keywords—data transmission, fixed-latency transmission, for-
ward error correction, orthogonal concatenated coding, FPGA

I. INTRODUCTION

IN modern, complex electronic systems inter-chip and inter-
board communication are often trivialized. However, it is

one of the fundamental modules of advanced FPGA based
solutions, which can potentially be the bottleneck for data
processing. As a proof, one can look at the area of application
that includes: artificial intelligence, machine learning, image
processing, 5G mobile network, advanced driver assistance
systems (ADAS), radar communication, high energy physics
experiments (HEP). The most challenging applications that
work in a harsh environment, are space explorations, satellite
communications, and HEP experiments. Due to omnipresent,
high volume radiation, the probability of transmission errors
and data corruption is at an unacceptable level, especially in
case of high-speed transmission. In order to achieve reliable
and efficient communication it is necessary to merge multiple
protection mechanisms.

A typical solution providing the reliable data transfer is
the acknowledgment and retransmission system, where the

The work has been partially supported by the statutory funds of the
Warsaw University of Technology the Institute of Electronic Systems.

M. Kruszewski and W.M. Zabołotny are with Warsaw University of
Technology, the Institute of Electronic Systems, Warsaw, Poland (e-mail:
mkruszew@elektron.elka.pw.edu.pl, wzab@ise.pw.edu.pl).

receiver must acknowledge each data frame transmitted by
the sender after a successful and error-free reception. If the
receiver receives a corrupted frame, it sends the negative
acknowledgment, triggering immediate retransmission. If the
frame is corrupted so badly that it is lost, the acknowledgment
is never sent. Therefore the transmitter must retransmit all
not acknowledged frames after a certain timeout. To avoid
stalling the transmission before a frame is acknowledged,
usually, a certain amount of next frames is transmitted without
waiting for the acknowledgment [1], [2]. The described mode
of operation increases the complexity of the transmission and
has following disadvantages:

• The transmission requires bidirectional communication
link.

• The transmission is not time-deterministic, because re-
transmission of the particular frame (especially after the
timeout) results in a significant delay.

• The transmitter must buffer all the frames that are
transmitted and not yet acknowledged. That increases
the memory consumption, which in FPGA is a scarce
resource.

• The receiver may obtain the frames out of order. There-
fore, if the data should be further processed as an ordered
data stream, it is necessary to buffer the received frames at
the receiver side, until all previous frames are successfully
delivered.

The above properties of the reliable data transfer based on
acknowledgment and retransmission may be unacceptable in
certain applications. If we need “almost reliable” data transport
with time-deterministic latency and a possibility to operate via
a unidirectional link, then the forward error correction based
system is the right solution.

A. State of the art

FPGA vendors offer intellectual property (IP) blocks for the
forward error correction as well as high-speed transmission
protocols. While error correction IP blocks can be used as
building blocks, protocol IP blocks are theoretically ready to
use. One of the most popular is the Interlaken protocol [3],
which is based on SPI4.2 and XAUI. It utilizes simple but
very efficient ways for delineating word boundaries, providing
randomness to the EMI, maintaining DC balance and clock
recovery. The most important are synchronous scrambler and
64b/67b encoding. Xilinx Interlaken IP core enables transmis-
sion speeds from 10 Gbps up to 150 Gbps when multiple

c© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Electronics and Telecommunications (Warsaw University of...

https://core.ac.uk/display/352161916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

546 M. KRUSZEWSKI, W.M. ZABOŁOTNY

serial lanes are used. The main drawback of the Interlaken
protocol is lack of the forward error correction mechanism.
It is also not so easy to add any because these IP blocks are
tightly integrated with GT (Gigabit Transceiver) blocks and
any modifications (improvements) require interference into IP
blocks.

Probably the most popular solution in HEP experiments is
the GBTX link interface [4]. It offers three different frame
formats for data transmission. Only the default one (the so-
called “GBT frame format”) uses the forward error correction.
The frame is 120-bits long with 84 bits for user data. Error
correction scheme is built by interleaving two Reed-Solomon
encoded words with 4-bit symbols, each capable of correcting
a double symbol error. This in practice means that a sequence
of up to 16 consecutive corrupted bits can be corrected. This
correction technique consumes 32 bits out of 120-bits long
frame.

Authors in [5] propose high-speed error resilient commu-
nication protocol intended to be used in HEP experiments.
They use orthogonal concatenation of error correcting codes
to protect from transmission errors and CRC sum in order to
detect invalid packets. Two very simple error correction codes
are used: BCH(15, 11) and Hamming(7, 4). Unfortunately,
the result of such a choice is a non-standard length of a
single data packet, which equals 44 bits before encoding
and 93 bits after encoding (only user data is orthogonally
encoded that is why encoded block length is 93 bits, not
15 × 7 = 105). Size of the frame was adjusted to the
size of the data generated for single collision detection (i.e.
energy, timestamp and the position at which the particle hit
the detector). Use of dedicated gigabit transceivers, available
in Xilinx chips, required the addition of 3 bits so that the final
block length equals 96 bits. The efficiency of error correcting
scheme equals 44

96 · 100% = 45, 83%. Synchronous scrambler
is used for minimizing the probability of long sequences of
’0’ or ’1’ value bits. From the point of view of general use,
the main drawback is quite short, non-standard block size.
Authors have achieved the maximum data rate of 5 Gbps.
The publication lacks complete analysis of error correcting
capabilities, especially for group errors.

In paper [6] authors propose serial link with forward error
correction for JESD204B standard. This solution is customized
for 16 bits words returned by analog-to-digital converters
(ADC) and is not able to correct long burst errors. However,
it is very efficient in case of frequent short burst errors (up to
4 bits but not more often than every 24 bits).

[7] introduces unified communication framework that uses
8/10-b encoding without any error correction. It also describes
the network layer, while it is sometimes desired to leave user
with full choice in terms of network layer architecture.

Paper [8] proposes an optical link between two computing
nodes with peripheral component interconnect express (PCIe)
interface. Authors have achieved a data rate of 8.5 Gbps with
hard PCIe IP block available in Stratix IV FPGA board. The
solution does not introduce any error correction scheme.

In [9] author introduces a simple and interesting solution
for error multiplication problem in synchronous scramblers on
64/66 bit encoded links. The method is based on a calculation
of four CRC16 sums, each of them is calculated for two
adjacent 64-bit blocks. The syndrome table is then used to

correct a single error, even if the error gets multiplied in
the next data block. Unfortunately, the proposed scheme is
weak for handling group errors. What is more, the algorithm
is protected by the patents.

Authors in [10] propose a flexible FPGA-to-FPGA commu-
nication system capable of transmitting different bus protocols
(PICe, Ethernet and SRIO). Although such additional trans-
mission layer is useful and provides unified physical layer, it
leads to increase FPGA resource utilization. It also does not
introduce any extra error correction mechanisms.

Authors of paper [11] suggest to use Aurora protocol with
DDR3 SDRAM. The RAM memory serves as a large FIFO,
that prevents data loss if the user data rate is larger than
the Aurora transmission rate. Authors do not mention how
transmission errors should be handled.

Paper [12] analyzes high-speed serial communication phys-
ical layer protocols that could be used for high-performance
computing clusters (HPCC) based on FPGAs. Authors have
choosen ten-gigabit attachment unit interface (XAUI) as the
most appropriate in terms of latency. The main drawback is
that XAUI does not offer error correction.

II. PROPOSED DESIGN

This section describes in detail different levels of imple-
mentation and explains all taken design decisions.

A general block diagram of the proposed design is shown
in Fig.1. It shows only crucial modules that are necessary for
achieving link synchronization and user data transfer. It lacks
cyclic redundancy check (CRC16) and delay blocks for control
signals. RX FIFO can be placed at the input (as shown in the
figure) or at the output of the receiver block, depending on
the desired system behavior on flow control signals. When
RX FIFO is at the input, the actual stop of data reception is
delayed because flow control information needs to be delivered
to the opposite node. Placing RX FIFO at the output leads
to immediate suspension of the reception at the expense of
incomplete FIFO emptying.

The basic data block in the physical transmission channel
is a frame with a length of 256 bits. This decision was
motivated by two factors. The first one is the width of user data
accepted by serializer/deserializer (SerDes) modules available
in FPGA chips. In case of encoding implemented outside
of the dedicated blocks, these modules accept data of width
being multiples of 8 bits (32, 40, 64, 80, 128, 160), the
adopted length does not lead to an artificial reduction in the
coding efficiency. There is no empty padding of data blocks.
If there is no hardware SerDes module available in FPGA,
user can implement custom one using VHDL or SystemVerilog
language, utilizing SERDES primitives [13]–[15] or native I/O
interfaces [16]. The second factor is the trade-off between
the efficiency of the forward error correction and demand for
resources (encoders and decoders complexity). The applied
orthogonal concatenation uses the same correction code in
the horizontal and vertical direction so the length of a single
data block needs to be a square of a natural number. The
efficiency of orthogonal concatenation decreases as the block
length decreases. On the other hand, long data blocks lead
to a rapid increase in resource utilization, especially for error
correction decoders. The drawback of the 256 bits long frame
is a nondivisibility of the user message content length by

FIXED-LATENCY SYSTEM FOR HIGH-SPEED SERIAL TRANSMISSION BETWEEN FPGA DEVICES WITH FORWARD ERROR CORRECTION 547

Fig. 1. General block diagram of proposed design

8. However, it is not a significant shortcoming because bits
remaining after splitting the message into 8 bit bytes can be
easily used in data flow control mechanisms (for example for
communication channels that enable directing data to specific
application modules).

A. Scrambler
The role of the scrambler as a component of transmitter and

receiver is to increase the accuracy of clock recovery, maintain
the DC balance and provide randomness to the EMI generated
by output drivers.

Synchronous scrambler is used in the design, which in
contrast to the self-synchronous scrambler does not multipli-
cate errors (because of no feedback loop). Scrambler can be
implemented as parallel or serial. Parallel architecture has been
used in the implementation in order to reduce the datapath
latency. Theoretically, once the synchronous scrambler has
synchronized, it should never become unsynchronized, even
if there are transmission errors. Two possible scenarios when
synchronous scrambler is not synchronized are the invalid
initialization of the internal state or ions/electromagnetic ra-
diation causing a change of the state in scrambler flip-flops.
1

The disadvantage of the synchronous scrambler is the need
for explicit initialization. The opposite node has to send its
internal scrambler state at the beginning of the transmission,
right after locking to word boundary and before user data
transmission. It is not a big excess though.
x16 + x12 + x3 + x1 + 1 has been chosen as a primary

polynomial. Results of synthesis with different polynomials
have shown, that longer polynomials lead to higher resource
utilization as shown in Table I.

There is no unequivocal answer to the question if the
chosen polynomial length is sufficient for 119 bits long user
data block. The shorter polynomial has a shorter repetition

1Of course such unexpected change of the state would lead to massive
error propagation. However, protecting chips and boards against the radiation
is a different topic, and it is outside the scope of this paper (one of the possible
solutions is a redundancy of modules [17]–[19]).

TABLE I
RESOURCE UTILIZATION FOR PARALLEL SYNCHRONOUS SCRAMBLER FOR
64 BITS LONG WORD AS A FUNCTION OF PRIME POLYNOMIAL (RESULTS

FOR XILINX KINTEX ULTRASCALE+ FAMILY).

Polynomial Slice LUTs Number of flip-flops
x9 + x4 + 1 45 74

x16 + x12 + x3 + x1 + 1 94 81
x31 + x3 + 1 107 96
x58 + x39 + 1 125 123

period, however, much depends on the data sent by the
user. If the application data also shows periodicity, and that
period is close to the period of applied polynomial, then
the efficiency of the scrambling process might significantly
decrease (this is not always the truth because it also depends
on the phase difference between the scrambler and the data).
For example, in Interlaken protocol, the x58 + x39 + 1 prime
polynomial is applied to 64 bits long data block, whereas the
x16+x15+x13+x4+1 polynomial is used in SATA technology
for data blocks that might be up to 8 kB long [20]. It also
facilitates the implementation when the scrambler state is short
enough to be sent within a single framing layer packet.

B. 119b/121b Encoding
119b/121b encoding is required to delineate word bound-

aries and distinguish framing layer control packets from user
data packets. The applied encoding scheme is just a simple
modification of a 64b/66b encoding used in the IEEE 802.3ae
standard for 10 Gigabit Ethernet over fiber [21]. Each 119 bits
long data block, after randomization in the scrambler module,
gets extended by 2 bits, the so-called synchronization bits.
Value ”01” indicates user data packet, while value ”10” is used
for framing layer control packets. Both values ”00” and ”11”
are invalid what allows achieving correct link synchronization
and failures detection, especially the loss of synchronization.
The process of locking to word boundary is greatly inspired
by the 64b/67b word boundary lock in the Interlaken protocol.
The synchronization is achieved after correct detection of 64
consecutive suffix patterns. The flow diagram for achieving

548 M. KRUSZEWSKI, W.M. ZABOŁOTNY

and maintaining 119b/121b encoding synchronization is shown
in Fig.2. Rx slide mechanism, example shown in Figure 3 for
packets of length 2, must be supported by the SerDes module
that the design interact with. Rx slide allows shifting parallel
data by one bit. Maximum synchronization time for 119b/121b
boundary lock (assuming no errors after FEC decodings)
depends on the hardware platform and used SerDes block,
as such blocks have different timings for rx slide mechanism.
The overhead associated with the 119b/121b encoding equals
1.65%.

Fig. 2. 119b/121b word boundary lock

An important part of the 119b/121b encoding is the ability
to define and distinguish framing layer control packets, which

Fig. 3. Rx slide mechanism

are used for monitoring and managing the transmission. The
format of the applied control packet is presented in Table II.

Control words of framing layer are recognized on the basis
of ’Framing layer control packet’ flag value. Having such
a separate flag allows utilizing 119b/121b encoding control
packets also by upper layers protocols.

There are 2 types of framing layer control packets: idle
and control. One of the functions of the control packet is to
allow descrambler synchronization. The current state of the
scrambler is of course sent without any extra randomization.
Framing layer control packet of type control is sent peri-
odically every 8192 blocks. However, there are 3 following
exceptions to this rule:

• The control packet is always sent, with ’Framing layer
control packet request’ flag set, after locking to the
119b/121b word boundaries in order to achieve descram-
bler synchronization as soon as possible.

• The control packet is sent after each change of the flow
control flag.

• The control packet is sent when the node receives a con-
trol packet with ’Framing layer control packet request’
flag set.

An idle frame is sent when there is no user data in TX
FIFO. The main purpose of the idle frame is to keep the
link constantly synchronized. The only difference between idle
and control frame is that in the case of the control frame
the scrambler block is suspended for a single clock tick,
which makes it possible to synchronize the descrambler in
the opposite node. Suspending the scrambler module for idle
frames would lead to no randomization of the packets. If there
were no user data packets in the TX FIFO for a longer period
of time, this could increase the probability of the DC wander.

C. Forward Error Correction

Forward error correction algorithm utilizes orthogonal con-
catenation, which is shown in Fig.4. First, input data is
encoded in the horizontal direction (green squares symbolizes
redundancy bits of this coding). Then input data is encoded
in the vertical direction (red squares). Vertical encoding also
applies to redundant bits from horizontal coding (yellow
squares).

The base for the forward error correction, both in rows and
columns, is modified BCH(15, 11) with x4+x+1 as a prime
polynomial, which got extended by 1 parity bit.

256 bits long data frames imply a 16 bits codeword. That
is not a standard length for commonly used error correction
codes so the decision has been taken to extend ideal code such
as BCH(15, 11).

FIXED-LATENCY SYSTEM FOR HIGH-SPEED SERIAL TRANSMISSION BETWEEN FPGA DEVICES WITH FORWARD ERROR CORRECTION 549

TABLE II
FRAMING LAYER CONTROL PACKET FORMAT

Bits Start
value Function Description

120 ’1’ Framing layer
control packet

Flag used to distinguish between framing layer control packets and user layer control packets. Value ’1’
indicates control packet of framing layer. Value ’0’ can be used by user for upper layers control packets.

119 ’1’ Idle/Control
frame Flag indicating if the packet of framing layer is idle or control packet. Value ’1’ indicates idle packets.

118 ’0’
Framing layer
control packet

request
Request to the opposite node for framing layer control packet.

117 ’0’ Flow control Flow control information. Value ’1’ indicates that the node is capable of data reception.
116:101 Variable CRC16 Checksum of the received packet. It includes all the fields except the 2-bits suffix from 119b/121b encoding.

100:19 Variable Unused/
For future use Not used in current implementation. For framing layer packets its value is generated by the scrambler.

18:2 Variable Current
scrambler state Current scrambler state of the transmitting node. In case of idle frame the value is pseudo-random.

1:0 ’10’
Control/User
data frame

(119b/121b)

The suffix from the 119b/121b encoding. Value ’01’ indicates user data frame. Value ’10’ is used for
control packet of framing layer or control packet of upper user layers (depending on the value of

’Framing layer control packet’ field).

Fig. 4. Orthogonal concatenation of forward error correction codes

The domination of extrinsic noises in the work environment
usually results in the occurrence of groups errors. Therefore,
it seems reasonable to improve the code so that it is capable of
correcting double-adjacent errors. By analyzing recent publi-
cations in the field of error correcting codes, one can see a gain
in popularity of codes capable of correcting double-adjacent
errors or even triple-adjacent errors [22]–[26]. In 1959 N. M.
Abramson in [27] has proposed a simple and effective method
for constructing error correction codes capable of correcting
all single errors and all double-adjacent errors. However, the
so-called Abramson codes are characterized by the fact that
the number of available syndrome values is greater than the
number of possible single errors and double-adjacent errors,
so they should not be considered as perfect codes. This fact
results from the assumption that an error on the first and last
position of the codeword is considered by Abramson as a
double-adjacent error.

The code with parameters (16, 11) provides 25−1 = 31 non-
zero values of syndromes. Theoretically, such code should be
capable of correcting all single errors (there are 16 single-bit

errors in 16 bits long codeword) and all double-adjacent errors
(there are 15 double-adjacent errors in 16 bits long codeword).
If a code with required properties exists, then its parity test
matrix (H) must meet the following conditions [23]:

• All columns in H are different and non-zero.
• The sums of two adjacent columns in H are all different

and also different from all columns and non-zero.

An analytic proof that there exists 5x16 matrix that meets
above conditions is not so trivial. Applying a numerical
method to search all matrices with such dimensions would
be too time-consuming. Therefore, a Python script has been
implemented to check if there are any 3x4 or 4x8 matrices
meeting the necessary conditions, which could be parity test
matrices for error correction codes with a similar structure
but a shorter codeword. Checking the whole sets of 3x4 and
4x8 matrices showed that there are none that would meet the
required conditions. Based on this it can be assumed, with
very high probability, that there is also no 5x16 matrix that
would meet these conditions.

In the tested set, there were matrices, that indicate the
existence of error correction codes with given parameters
capable of correcting all single errors and all double-adjacent
errors except one. Analogical matrix has been found for
5x16 dimensions. The uncorrectable configuration of double-
adjacent error spans on one parity bit and one message bit. It
means that after decoding there is only a single bit error (bit
number 10). This scenario is shown in Fig.5, the green square
represents an extra parity bit added to standard BCH(15, 11)
code.

Fig. 5. Codeword for modified BCH(15, 11) code

550 M. KRUSZEWSKI, W.M. ZABOŁOTNY

The generator matrix for applied error correction code has
the following form:

G11,16 =

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

(1)

BCH codes have one more advantage in terms of hardware
design. They are very simple for implementation in the hard-
ware description languages. Both encoding and decoding of
single message requires zero clock cycles. Listing 1 shows
implementation for the modified BCH(15, 11) code.

Listing 1. Modified BCH(15, 11) encoder implementation in VHDL.
l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

e n t i t y bch 16 11 enc i s
port (

msg : in s t d u l o g i c v e c t o r (10 downto 0) ;
code word : out s t d u l o g i c v e c t o r (15 downto 0)

) ;
end ;

a r c h i t e c t u r e r t l of bch 16 11 enc i s

begin
code word (10 downto 0) <= msg (10 downto 0) ;

code word (1 1) <= msg (0) xor msg (3) xor msg (4)
xor msg (6) xor msg (8) xor msg (9)
xor msg (1 0) ;

code word (1 2) <= msg (0) xor msg (1) xor msg (3)
xor msg (5) xor msg (6) xor msg (7)
xor msg (8) ;

code word (1 3) <= msg (1) xor msg (2) xor msg (4)
xor msg (6) xor msg (7) xor msg (8)
xor msg (9) ;

code word (1 4) <= msg (2) xor msg (3) xor msg (5)
xor msg (7) xor msg (8) xor msg (9)
xor msg (1 0) ;

code word (1 5) <= msg (0) xor msg (1) xor msg (2)
xor msg (4) xor msg (5) xor msg (8)
xor msg (1 0) ;

end r t l ;

D. Interleaver
Interleaving is an operation of data reordering before trans-

mission, performed in order to reduce the effect of burst errors.
The most common solutions are the block interleaving and
the helical interleaving [28]. In the proposed design, helical
interleaving is used as it works very well with orthogonal
concatenation. Due to specific properties of applied error cor-
rection code (no correction for double adjacent error spanned
on one parity bit and one message bit), two implementations
of helical interleaving have been checked. The first one with
the vertical axis of the helix (data column direction) and the
second one with the horizontal axis (data row direction). Both
variants are shown in Fig.6. The numbers inside the squares
indicate the order of bit sending. The performance against
burst errors handling is presented in Table III.

Helical interleaving greatly improves the efficiency of or-
thogonal concatenation with modified BCH(15, 11) up to a
certain length of a burst error. After exceeding this length,

Fig. 6. Orthogonal implementations of helical interleaving

TABLE III
NUMBER OF UNCORRECTABLE POSITIONS OF GROUP ERRORS FOR

DIFFERENT IMPLEMENTATIONS OF INTERLEAVING.

Burst
error
length

Number
of possible
positions

Number of uncorrectable positions
No

interleaving
Interleaving
vertical axis

Interleaving
horizontal axis

16 241 0 0 0
18 239 1 0 0
24 233 19 0 0
30 227 25 0 0
31 226 26 15 0
32 225 27 45 1
33 224 28 155 43
34 223 50 168 92
38 219 219 219 202
39 218 218 218 218

the efficiency decreases. The crossing point is close to the
length of two single codewords, 31 for helical interleaving
with the vertical axis and 32 for the one with the horizontal
axis. This result was expected since the base error correcting
code is capable of correcting all single errors and almost all
double-adjacent errors except one. In case of no interleaving,
correction problems begin already for burst error with the
length of 18 bits. That is because of the error concentration
in the area where modified BCH(15, 11) is not able to correct
double-adjacent errors (borders where squares change color).

Different results obtained for vertical and horizontal axes
might seem surprising at first. The inconsistency starts from
the burst error of 31 bits length. This can be easily explained
when one looks in Fig.6. Assume that 31 bits long error spans
on the squares with numbers from 2 to 32. In case of the
vertical axis, such scenario leads to a triple-adjacent error in
the single codeword in one of the columns (squares 2, 17,
32). For implementation with the horizontal axis, the situation
is similar, but a triple error occurs in one of the rows. As
the decoding of orthogonal concatenation starts with columns
decoding, the implementation with the horizontal axis handles
this scenario because it does not see any triple error. This error
occurs in the rows direction but is corrected in the first stage
of columns decoding. Of course, the final implementation of
the design uses helical interleaving with the horizontal axis.

III. RESULTS AND PERFORMANCE ANALYSIS

A widely accepted quality indicator of transmission systems
is bit error rate (BER), which represents the probability of
receiving wrong bit value. Common requirements for serial
links are generally in the range of 10−15 to 10−6 [29]. For
example, for 10 Gigabit Ethernet, it was recommended that
BER ≤ 10−13 [30].

The error correcting capabilities have been estimated for
both random errors and burst errors. Matlab software has been
used for simulations. Note that both encoding and decoding

FIXED-LATENCY SYSTEM FOR HIGH-SPEED SERIAL TRANSMISSION BETWEEN FPGA DEVICES WITH FORWARD ERROR CORRECTION 551

Fig. 7. System BER characteristic as a function of communication channel
BER.

algorithms are fully deterministic, so the probabilities obtained
from the simulations are not estimations but the exact values.

A. Random errors

Usually, the system BER characteristic as a function of SNR
(Signal Noise Ratio) is used to present system performance
against random errors. However, this characteristic depends
also on applied signal modulation in a physical transmission
channel. If modulation is not defined, it is more useful and
convenient to present the system BER as a function of the
communication channel BER. Then, having both characteris-
tics, it is easy to determine the system BER characteristic as
a function of SNR.

Fig.7 shows the performance of the proposed design against
random errors. It has been created with BinarySymmetric-
Channel model from Communications System Toolbox Ver-
sion 6.3 (R2016b) 25-Aug-2016. This model assumes that
the error probability for both ’0’ and ’1’ value bits is the
same. Simulations have been carried out only for the range
of two decades of communication channel BER due to long
simulation times for values less than 10−3. In real links, the
communication channel BER is much smaller. For example,
in the telecom optical link applications the maximum physical
BER requirement is around 10−9, whereas in the datacom
applications, it is in the range of 10−15 to 10−12 [31].

Fig.8 shows how helical interleaving impacts on random
error correction capabilities. The number of errors in a single
data frame refers to the number of errors in 256 bits long
frame transmitted in a physical channel. As one can see, helical
interleaving does not play any role in case of random errors.

B. Burst errors

Some of the results for burst error correction capabilities can
be found in Table III. Fig.9 presents the probability of invalid
data reception as a function of burst error length. To obtain
the points for the figure, simulations have been carried out in
Matlab. Burst errors of diferent length have been injected into
the encoded packet on all possible positions. For example,

Fig. 8. Impact of helical interleaving on random errors correction capabilities.

Fig. 9. Probability of invalid data reception as a function of burst error length.

there are 256 possible positions for burst error of length 1,
and 255 possible positions for burst error of length 2. For
each burst error length, the probability is the ratio of the
number of incorrectly decoded packets to the number of all
possible positions for this particular burst error length. It also
shows the influence of the helical interleaving. A significant
improvement of burst error correction capabilities is achieved
with the helical interleaving, especially with the horizontal
axis.

Fig.10 sums up the performance of the proposed error
correction scheme. It presents the probability of invalid user
data reception (119 bits long block) as a function of the
number of errors in the 256 bits long frame transmitted in
a physical channel for both random and burst errors.

C. Latency analysis

Table IV sums up latency achieved during tests with 28.2
Gbps data rate. Xilinx GTY IP block was configured with 128
bits user data width and 64 bits internal data width. GTY TX
and GTY RX are not shown in Fig.1. If they were, they should

552 M. KRUSZEWSKI, W.M. ZABOŁOTNY

Fig. 10. Summary of error correction capabilities.

be respectively placed after the interleaver and before RX
FIFO. 28.2 Gbps data rate and 256 bits packet length results
with data path being clocked with 110.15625 MHz (approx
9.078 ns clock period). As GTY was configured to work with
the widest possible internal data width (64), this frequency was
synthesized by dividing TXUSRCLK and RXUSRCLK by 4
in BUFG GT buffers [32]. GTY wrappers are necessary for
splitting 256 bits long blocks into 2 128 bits blocks as Xilinx
GTY transceiver does not support 256 bits user data width.
Latency of the GTY TX and RX has been estimated based on
[33]. The overall latency (from the time user data is sampled
on the rising edge at the TX FIFO input, to the time user data
is available at the descrambler output) is around 176.2460 ns.
Final latency of course depends on the adopted transmission
speed and length of a physical connection.

Further optimization could be applied to the solution to
decrease overall latency. For example, if flow control is not
necessary both TX FIFO and RX FIFO could be removed
(minus 4 data path clock cycles). One can even try to clock
data path several times faster than the minimum for the applied
data rate, as long as timings are still met.

IV. CONCLUSION

In this paper, the protocol for high-speed serial transmission
between FPGA devices has been proposed and evaluated.
It can be used in a harsh environment as it is capable of
correcting long burst errors. The basis for communication are
the encoded 256 bits long data blocks, that can contain up
to 119 bits of user data. The total efficiency of the solution
equals 46.48%.

Thanks to the orthogonal concatenation of the modified
BCH(15, 11) code and the helical interleaving, the design is
capable of correcting all group errors of length up to 31 bits.

The solution has also been implemented and verified on
the Xilinx KCU116 evaluation board with a data rate of 28.2
Gbps, which is the upper limit for GT blocks provided on this
board. Tables V and VI summarize resource utilization for
a single instance synthesized with strategy Vivado Synthesis
Defaults (Vivado Synthesis 2017). Utilization of resources not
mentioned in the table equals 0. Both tables refer to the

TABLE IV
SUMMARY OF OVERALL TRANSMISSION LATENCY.

Module Number of
clock cycles

Clock
period [ns]

Module
latency [ns]

TX FIFO 2 9.0780 18.1560
Scrambler 1 9.0780 9.0780

Packet multiplexer 1 9.0780 9.0780
119b/121b encoder 1 9.0780 9.0780

BCH encoder 2 9.0780 18.1560
Interleaver 0 0 0

GTY TX wrapper 1 9.0780 9.0780
GTY TX 407.2 0.0355 14.4556
Total TX - - 87.0796
GTY RX 721.7 0.0355 25.6204

GTY RX wrapper 1 9.0780 9.0780
RX FIFO 2 9.0780 18.1560

Deinterleaver 0 0 0
BCH decoder 2 9.0780 18.1560

119b/121b decoder 1 9.0780 9.0780
Descrambler 1 9.0780 9.0780

Total RX - - 89.1664
Total - - 176.2460

Xilinx Kintex UltraScale+ family - xcku5p-ffvb676-2-e part.
Total On-Chip Power, with a single GTY transceiver working,
equals 1.294 W, wherein 0.739 W (57%) is dynamic power
and 0.555 W (43%) is static power.

TABLE V
RESOURCE UTILIZATION FOR A SINGLE INSTANCE OF PROPOSED DESIGN.

CLB
LUTs

CLB
Registers CLB Block

RAM Tile
1278(0.59%) 1338(0.31%) 252(0.01%) 6(1.25%)

TABLE VI
RESOURCE UTILIZATION FOR A SINGLE INSTANCE OF PROPOSED DESIGN

PLUS A SINGLE GTY TRANSCEIVER.

CLB
LUTs

CLB
Registers CLB Block

RAM Tile
1485(0.68%) 2016(0.46%) 315(0.01%) 6(1.25%)

The proposed protocol can be easily modified and extended,
for instance by utilizing the 82 unused bits in the framing layer
control packet. Among the particularly interesting directions
of development one can distinguish:

• Enabling the performance scaling with increasing the
number of transmission lanes.

• Addition of clock compensation mechanism for a repeater
function, so that the protocol may be electrically relayed
across an intermediary device between two clock do-
mains.

• Extending the protocol with the functionality of com-
munication channels (the answer to the question which
layer is suitable for such a mechanism is not obvious and
depends on the application).

REFERENCES

[1] J. Postel, “Transmission Control Protocol,” Tech. Rep., 1981. [Online].
Available: https://www.rfc-editor.org/info/rfc0793

[2] G. Fairhurst and L. Wood, “Advice to link designers on link Automatic
Repeat reQuest (ARQ),” RFC Editor, Tech. Rep. RFC3366, Aug. 2002.
[Online]. Available: https://www.rfc-editor.org/info/rfc3366

[3] C. Systems and C. Systems, “Interlaken Protocol Definition,” Tech. Rep.,
2008.

https://www.rfc-editor.org/info/rfc0793
https://www.rfc-editor.org/info/rfc3366

FIXED-LATENCY SYSTEM FOR HIGH-SPEED SERIAL TRANSMISSION BETWEEN FPGA DEVICES WITH FORWARD ERROR CORRECTION 553

[4] G. specifications group, “GBTX Manual,” Tech. Rep., Oct. 2016.
[5] S. Mandal, J. Saini, W. M. Zabołotny, S. Sau, A. Chakrabarti, and

S. Chattopadhyay, “An FPGA-Based High-Speed Error Resilient Data
Aggregation and Control for High Energy Physics Experiment,” IEEE
Transactions on Nuclear Science, vol. 64, no. 3, pp. 933–944, Mar. 2017.

[6] R. Giordano, V. Izzo, S. Perrella, and A. Aloisio, “A JESD204b-
Compliant Architecture for Remote and Deterministic-Latency Oper-
ation,” IEEE Transactions on Nuclear Science, vol. 64, no. 6, pp. 1225–
1231, Jun. 2017.

[7] D. Gaisbauer, Y. Bai, S. Huber, I. Konorov, D. Levit, S. Paul, and
D. Steffen, “Unified Communication Framework,” IEEE Transactions
on Nuclear Science, vol. 64, no. 10, pp. 2761–2764, Oct. 2017.

[8] E. Kadric, N. Manjikian, and Z. Zilic, “An FPGA implementation
for a high-speed optical link with a PCIe interface,” in 2012 IEEE
International SOC Conference, Sep. 2012, pp. 83–87.

[9] B. Raahemi, “Error correction on 64/66 bit encoded links,” in Canadian
Conference on Electrical and Computer Engineering, 2005., May 2005,
pp. 412–416.

[10] A. Wu, X. Jin, X. Du, and S. Guo, “A flexible FPGA-to-FPGA commu-
nication system,” in 2017 19th International Conference on Advanced
Communication Technology (ICACT), Feb. 2017, pp. 836–843.

[11] J. Zhang, Q. Lin, Y. Zhang, and Z. Chen, “Design and Implementation of
High-Speed Data Transmission Scheme Between FPGA Boards Based
on Virtex -7 Series,” in 2018 2nd IEEE Advanced Information Man-
agement,Communicates,Electronic and Automation Control Conference
(IMCEC), May 2018, pp. 444–448.

[12] R. Sanchez Correa and J. P. David, “Ultra-low latency communication
channels for FPGA-based HPC cluster,” Integration, vol. 63, pp. 41–55,
Sep. 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167926017303966

[13] Xilinx, “Source-Synchronous Serialization and Deserialization (up to
1050 Mb/s),” Tech. Rep., 2013.

[14] ——, “LVDS Source Synchronous 7:1 Serialization and Deserialization
Using Clock Multiplication,” Tech. Rep., 2018.

[15] I. Corporation, “Intel R© Stratix R© 10 High-Speed LVDS I/O User
Guide,” Tech. Rep., 2019.

[16] Xilinx, “Native High-Speed I/O Interfaces,” Tech. Rep., 2017. [Online].
Available: https://www.xilinx.com/support/documentation/application
notes/xapp1274-native-high-speed-io-interfaces.pdf

[17] P. Samudrala, J. Ramos, and S. Katkoori, “Selective triple Modular
redundancy (STMR) based single-event upset (SEU) tolerant synthesis
for FPGAs,” IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp.
2957–2969, Oct. 2004.

[18] K. S. Morgan, D. L. McMurtrey, B. H. Pratt, and M. J. Wirthlin, “A
Comparison of TMR With Alternative Fault-Tolerant Design Techniques
for FPGAs,” IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp.
2065–2072, Dec. 2007.

[19] W. M. Zabolotny, I. M. Kudla, K. T. Pozniak, K. Bunkowski,
K. Kierzkowski, G. Wrochna, and J. Krolikowski, “Radiation
tolerant design of RLBCS system for RPC detector in LHC
experiment,” in Photonics Applications in Industry and Research

IV, vol. 5948. International Society for Optics and Photonics,
Oct. 2005, p. 59481E. [Online]. Available: https://www.
spiedigitallibrary.org/conference-proceedings-of-spie/5948/59481E/
Radiation-tolerant-design-of-RLBCS-system-for-RPC-detector-in/10.
1117/12.622864.short

[20] I. APT Technologies, D. C. Corporation, I. Corporation, I. Corporation,
M. Corporation, and S. Technology, “Serial ATA: High Speed Serialized
AT Attachment,” Aug. 2001.

[21] S. Minami, J. Hoffmann, N. Kurz, and W. Ott, “Design and
implementation of a data transfer protocol via optical fiber - IEEE
Conference Publication.” [Online]. Available: https://ieeexplore.ieee.
org/document/5750447/

[22] S. Cha and H. Yoon, “Single-Error-Correction and Double-Adjacent-
Error-Correction Code for Simultaneous Testing of Data Bit and Check
Bit Arrays in Memories,” IEEE Transactions on Device and Materials
Reliability, vol. 14, no. 1, pp. 529–535, Mar. 2014.

[23] P. Reviriego, J. Martı́nez, S. Pontarelli, and J. A. Maestro, “A Method
to Design SEC-DED-DAEC Codes With Optimized Decoding,” IEEE
Transactions on Device and Materials Reliability, vol. 14, no. 3, pp.
884–889, Sep. 2014.

[24] C. Badack, T. Kern, and M. Gössel, “Modified DEC BCH codes for
parallel correction of 3-bit errors comprising a pair of adjacent errors,”
in 2014 IEEE 20th International On-Line Testing Symposium (IOLTS),
Jul. 2014, pp. 116–121.

[25] X. She, N. Li, and D. W. Jensen, “SEU Tolerant Memory Using Error
Correction Code,” IEEE Transactions on Nuclear Science, vol. 59, no. 1,
pp. 205–210, Feb. 2012.

[26] P. Reviriego, S. Pontarelli, A. Evans, and J. A. Maestro, “A Class
of SEC-DED-DAEC Codes Derived From Orthogonal Latin Square
Codes,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 23, no. 5, pp. 968–972, May 2015.

[27] N. Abramson, “A class of systematic codes for non-independent errors,”
IRE Transactions on Information Theory, vol. 5, no. 4, pp. 150–157,
Dec. 1959.

[28] K.-M. Cheung and L. Swanson, “A performance comparison between
block interleaved and helically interleaved concatenated coding
systems,” Aug. 1989. [Online]. Available: http://adsabs.harvard.edu/abs/
1989tdar.nasa...95C

[29] S. Cypress, “AN1047 - Understanding Bit-Error-Rate with HOTLink R©,”
Aug. 2017. [Online]. Available: http://www.cypress.com/documentation/
application-notes/an1047-understanding-bit-error-rate-hotlinkr

[30] E. S. Chang and R. Taborek, “Recommendation of 10 ˆ-13 Bit Error
Rate for 10 Gigabit Ethernet,” Tech. Rep., Jul. 1999.

[31] R. Dahlgren and B. Dahlgren, “NOISE IN FIBER OPTIC COMMUNI-
CATION LINKS,” Tech. Rep.

[32] Xilinx, “UltraScale Architecture GTY Transceivers User Guide
(UG578),” Tech. Rep., 2017.

[33] ——, “AR# 69011: UltraScale+ GTY Transceiver: TX and RX Latency
Values.” [Online]. Available: https://www.xilinx.com/support/answers/
69011.html

http://www.sciencedirect.com/science/article/pii/S0167926017303966
http://www.sciencedirect.com/science/article/pii/S0167926017303966
https://www.xilinx.com/support/documentation/application_notes/xapp1274-native-high-speed-io-interfaces.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1274-native-high-speed-io-interfaces.pdf
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5948/59481E/Radiation-tolerant-design-of-RLBCS-system-for-RPC-detector-in/10.1117/12.622864.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5948/59481E/Radiation-tolerant-design-of-RLBCS-system-for-RPC-detector-in/10.1117/12.622864.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5948/59481E/Radiation-tolerant-design-of-RLBCS-system-for-RPC-detector-in/10.1117/12.622864.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5948/59481E/Radiation-tolerant-design-of-RLBCS-system-for-RPC-detector-in/10.1117/12.622864.short
https://ieeexplore.ieee.org/document/5750447/
https://ieeexplore.ieee.org/document/5750447/
http://adsabs.harvard.edu/abs/1989tdar.nasa...95C
http://adsabs.harvard.edu/abs/1989tdar.nasa...95C
http://www.cypress.com/documentation/application-notes/an1047-understanding-bit-error-rate-hotlinkr
http://www.cypress.com/documentation/application-notes/an1047-understanding-bit-error-rate-hotlinkr
https://www.xilinx.com/support/answers/69011.html
https://www.xilinx.com/support/answers/69011.html

	Introduction
	State of the art

	Proposed design
	Scrambler
	119b/121b Encoding
	Forward Error Correction
	Interleaver

	Results and performance analysis
	Random errors
	Burst errors
	Latency analysis

	Conclusion
	References

