
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66, NO. 4, PP. 619–625
Manuscript received February 20, 2020; revised October, 2020. DOI: 10.24425/ijet.2020.134020

Modeling of Distributed Ledger Deployment View
Tomasz Górski, and Jakub Bednarski

Abstract—The Distributed Ledger Technology (DLT) is a peer-
to-peer model of sharing data among collaborating parties in a
decentralized manner. An example of DLT is a blockchain where
data form blocks in an append-only chain. Software architecture
description usually comprises multiple views. The paper concen-
trates on the Deployment view of the DLT solution within the 1+5
architectural views model. The authors have proposed Unified
Modeling Language (UML) extensibility mechanisms to describe
the needed additional semantic notation to model deployment
details. The paper covers both the network and node levels.
The proposed stereotypes and tagged values have enriched UML
Deployment diagram. We have gathered those modeling elements
in dedicated UML Profile for Distributed Ledger Deployment. We
have applied the profile to model Deployment view of a renewable
energy management system that uses R3 Corda framework. The
system records information about inbound and outbound energy
to/from renewable energy grid.

Keywords—Software architecture, Deployment view, Architec-
tural views model 1+5, Unified Modeling Language extensibility
mechanisms, Distributed Ledger Technology, Blockchain

I. INTRODUCTION

D ISTRIBUTED Ledger Technology (DLT) has emerged
as one of the most disruptive technologies in the last

decade. It promises to change the way people do their business,
track their products, and manage their personal data.

A distributed ledger, defined by Xu et al. [20], is an append-
only set of transactions distributed across many machines. An
append-only means that new transactions can be added but
existing ones can not be changed or deleted. A blockchain
is a distributed ledger that is structured into a linked list of
blocks. Each block has an ordered set of transactions. A block
is linked to its predecessor with using a cryptographic hash
to secure the whole chain. Many scientists have paid attention
to blockchain technology because it has potential benefits for
many industries. In other words, blockchain technology finds
its applications in many sectors. Al-Jaroodi et al. [1] explore
the advantages and challenges of incorporating blockchain
in different industrial applications. As far as smart cities
are concerned, Shen et al. [17] have observed many uses.
That technology is a natural choice when designing supply
chain solutions. Gonczol et al. [4] present the current state
of research and summarize the benefits and challenges of the
distributed organization and the management of supply chains.
The healthcare sector can benefit from blockchain technology
because of privacy and decentralization. For example, Shah-
naz et al. [16] present a framework that could be used for

T. Górski is with Department of Computer Science, Polish Naval
Academy, Gdynia, Poland (e-mail: t.gorski@amw.gdynia.pl).

J. Bednarski is with Department of Computer Science, Polish Naval
Academy, Gdynia, Poland (e-mail: j.bednarski@amw.gdynia.pl).

implementing blockchain technology for the Electronic Health
Record system. The broader view on blockchain in healthcare
present Metcalf et al. [12]. They show topics from over 50
authors, presenting the technical side of the technology and its
practical applications around the globe. For example, Xia et
al. [19] propose a blockchain-based system that addresses the
problem of medical data sharing in a trust-less environment.
Furthermore, Kaijun et al. [10] propose a public blockchain
of agricultural supply chain system. Moreover, Wang et al.
[18] describe an electronic large-scale voting scheme based
on blockchain. Furthermore, we believe that blockchain has
enormous potential in military sector. Górski et al. [9] present
a solution which persists battleship position co-ordinates in
cloud-based blockchain.

We have paid special attention to the energy sector. Next-
generation grid demands technologies that enable the inte-
gration of distributed energy resources and consumers that
both buy and sell electricity. Wang et al. [18] developed
an optimization model and blockchain-based architecture to
manage the operation of crowdsourced energy systems, with
peer-to-peer energy trading transactions. They have built a
solution on IBM Hyperledger Fabric. The authors of the paper
have proposed the software architecture of the Electricity Con-
sumption and Supply Management (ECSM) system, designed
on R3 Corda platform, [8].

We can look at software architecture as the highest level
breakdown of a software system into its parts. We think of
architecture as a structure. Software architecture comprises
software elements, relations among them, and properties of
both elements and relations. But, we can look at software
system at different angles. In other words, we have different
software architectural views. Software architecture comprises
models which represent different architectural views, e.g.: Use
case, Logical, Deployment. Unified Modeling Language is
the most commonly used graphical notation. UML helps in
describing and designing software systems. It is especially use-
ful for modeling systems designed under the object-oriented
approach, [3], [25]. In order to model distributed ledger
solutions, we propose extensions of UML modeling notation.
That enrichment of UML elements applies to Deployment
architectural view of blockchain solution.

We structure the paper as follows. The second section
locates the main area of interest of the paper within 1+5
architectural views model. The next section describes R3
Corda framework. The fourth section contains description of
UML extensibility mechanisms proposed in UML Profile for
Distributed Ledger Deployment whereas the example of De-
ployment view design of Electricity Consumption and Supply
Management system is presented in the sixth section. The

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Electronics and Telecommunications (Warsaw University of...

https://core.ac.uk/display/352161903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


620 TOMASZ GÓRSKI, JAKUB BEDNARSKI

following section presents an example of Gradle Domain
Specific Language (DSL) script for the ECSM system, which
can be used to deploy nodes of a distributed ledger network.
The last one concludes the paper and outlines the direction of
further work.

II. DEPLOYMENT VIEW

A variety of models exists, with differing sets of architec-
tural views, such as, e.g.: 4+1, RM-ODP, Siemens, SEI, [15].
Yet, those models do not allow for a complete description of
the blockchain solution architecture. The Architectural views
model 1+5 for integration solutions was designed to model
collaborating systems in the context of business processes,
[5]. As far as DLT and blockchain solutions are concerned
the 1+5 model fits perfectly, [6]. In that kind of solution, we
have collaborating parties (e.g.: seller and buyer) based on
rules defined in a smart contract. We can include aspects of
collaborating parties through smart contracts in the 1+5 model
in Contracts View and Integrated services view, [7]. The paper
concentrates on Deployment view of the model (see Fig. 1).

Fig. 1. Architectural views model 1+5.

The deployment view defines the physical environment in
which the solution is intended to run, including: hardware
environment (e.g., processing nodes, network interconnec-
tions), technical environment requirements for each node (or
node type), the mapping of software elements to the runtime
environment that will execute them. As part of deployment
view we propose to model two aspects: overall network view
and a single node configuration.

III. R3 CORDA FRAMEWORK

Many Distributed Ledger Technology platforms are avail-
able on the market. A significant number of comparative
analyses concern that kind of framework. In one of the recent
analyzes, Chowdhury et al. [2] evaluate the feasibility of the
most well-established, both private and public DLT platforms,
i.e.: Bitcoin, Ethereum, Hyperledger Fabric, Hyperledger Saw-
tooth, Hyperledger Burrow, EOS, Multichain, R3 Corda, Car-
dano, IOTA and Walton-Chain. They have selected a broad
range of quantitative evaluation criteria, e.g.: block size, block
creation time, cost, energy consumption, consensus. Because
of major limitations of public blockchain platforms, we have
concentrated on private ones. We have found that R3 Corda,
a private DLT framework, consumes almost negligible energy.
The second advantage of that framework is scalability. Corda

is among there frameworks with the shortest block creation
time (0.5 second). In addition, the block size is configurable.

The financial industry imposed requirements on Corda’s
design, but field experience has shown that Corda has broad
applicability, well beyond banking. That is why we have
used software engineering techniques to support the design of
solutions using R3 Corda framework. A Corda network is an
authenticated peer-to-peer network of nodes where each node
is a Java Virtual Machine run-time environment hosting Corda
services and executing applications known as CorDapps. It
is a permissioned network that makes up the condition that
all participants must have verifiable identities using public-
key infrastructure. In Corda network, we can distinguish the
following node types: Network Map, Notary, Oracle and
DLTNode. A Corda network is a fully connected graph.
The graph edges represent the potential to communicate, not
persistent connections (see Fig. 2).

Fig. 2. Example of Corda network graph of connections.

Network Map Node publishes a list of peers. The frame-
work uses Advanced Message Queuing Protocol (AMQP)
over Transport Layer Security (TLS) between nodes which is
implemented using Apache Artemis, an embeddable message
queue broker. Corda transactions operate using consumable
states analogous to the latest entry of a blockchain ledger
that can validate a new transaction. The consensus in Corda
is reached at transaction level by involving relevant parties
only. The framework uses services to facilitate communication
among nodes. The following services are the integral parts of
the framework: permissioning, network map, notary, oracle,
identity and support. Using nodes and services, we can make
up Corda network.

IV. STEREOTYPES

The authors have proposed modeling constructions to repre-
sent parameters of nodes configuration which can be modeled
in UML Deployment diagram. All proposed stereotypes and
tagged values, that describe the needed additional semantic
structures, have been included in UML Profile for Distributed
Ledger Deployment and modeled in Visual Paradigm Enter-
prise. We have placed the designed profile in the GitHub
repository, [22].



MODELING OF DISTRIBUTED LEDGER DEPLOYMENT VIEW 621

In the Unified Modeling Language there are three types
of mechanisms that allow on extending the language. A
stereotype is one of them. Stereotypes allow designers to create
new model elements and in that way extend the vocabulary
of UML. Stereotypes provide additional, specific semantic
meaning to existing elements.

A Corda network comprises nodes that communicate using
protocols to create and validate transactions. Nodes host and
run services. So, we have identified the following UML
stereotypes corresponding to services:

• �permissioningService� — applied to the service used
to provision TLS certificates,

• �networkMapService� — applied to the service which
enforces rules regarding the information that nodes must
provide and Know Your Customer (KYC) processes that
they must complete before being admitted to the network,

• �notaryService� — applied to the service which is used
to provide transaction ordering and time stamping,

• �oracleService� — applied to the service which signs
transactions if they state a fact and that fact is considered
to be true.

• �identityService� — controls admissions of partici-
pants into Corda Network. The service receives certificate
signing requests from prospective network participant and
reviews the information submitted. That participant can
register itself with a signed participation certificate in the
network map service.

• �supportService� — manages and resolves inquiries
and incidents relating to the identity, doorman and notary
services.

The figure (see Fig. 3) shows stereotypes declared for
services in UML Profile diagram.

Fig. 3. UML Profile diagram with stereotypes for DLT services.

Services run on specific nodes. So, we have identified the
following stereotypes for nodes:

• �NetworkMapNode� — applied to the node which runs
the network map,

• �NotaryNode� — applied to nodes running a notary
service,

• �OracleNode� — applied to nodes that link the ledger
to the outside world by providing facts that affect the
validity of transactions,

• �DLTNode� — applied to nodes have a vault and may
communicate with other nodes, notaries and oracles and
evolve their private ledger.

• �CordaNode� — abstract node which gathers common
properties for all types of nodes in Corda network.

Nodes communicate with each other using communication
protocols.

We have added the following stereotypes for connection
links, to mark communication protocols:

• �HTTPS� — Hypertext Transfer Protocol Secure
(HTTPS) extends the Hypertext Transfer Protocol en-
crypted using Transport Layer Security.

• �AMQP/TLS� — Advanced Message Queuing Proto-
col is used by nodes to send encrypted messages in peer-
to-peer communication with Transport Layer Security.

The figure (see Fig. 4) shows stereotypes declared for
communication protocols in UML Profile diagram.

Fig. 4. The profile stereotypes for communication protocols.

The table (see Table I) contains the summary of proposed
stereotypes, with extended elements, in the UML Profile for
Distributed Ledger Deployment.

TABLE I
THE SUMMARY OF STEREOTYPES IN THE PROFILE.

Stereotype Extended UML element

�CordaNode� Node

�DLTNode� Node

�OracleNode� Node

�NotaryNode� Node

�NetworkMapNode� Node

�permissioningService� Artifact

�networkMapService� Artifact

�notaryService� Artifact

�oracleService� Artifact

�identityService� Artifact

�supportService� Artifact

�HTTPS� Generic Connection

�AMQP/TLS� Generic Connection

V. TAGGED VALUES

We can set deployment parameters up for a single node
configuration. Each parameter has its name and a value. We
have used tagged values to model deployment parameters. A
tagged value is a tag value pair that can add properties to
model elements in UML. Defined tagged values describe the
parameters of distributed ledger node’s deployment configu-
ration. Starting from UML 2.0, we consider tagged values as
attributes of stereotype. The full list contains 52 tagged values
which represent configuration parameters of Corda nodes.
Subset of tagged values available for all types of nodes we
have placed in �CordaNode� stereotype. Complete set of
configuration fields for nodes of R3 Corda v.4.3 can be found
at the enclosed link, [21].



622 TOMASZ GÓRSKI, JAKUB BEDNARSKI

Deployment configuration of each node comprises required
and additional sets of parameters. We have declared tagged
values for all required parameters of deployment configuration
and placed them in �CordaNode� stereotype:

• myLegalName — the legal identity of the node,
• devMode — the flag sets the node to run in development

mode,
• p2pAddress — host and port on which the node is

available for protocol operations over ArtemisMQ,
• rpcSettings.address — host and port for the RPC server

binding,
• rpcSettings.adminAddress — host and port for the RPC

admin binding,
• rpcSettings.standAloneBroker — indicates whether the

node will connect to a standalone broker for RPC.
• rpcSettings.useSsl — indicates whether or not the node

should require clients to use Secure Sockets Layer (SSL)
for Remote Procedure Call (RPC) connections,

• rpcSettings.ssl.keyStorePath — absolute path to the key
store containing the RPC SSL certificate,

• rpcSettings.ssl.keyStorePassword — password for the key
store,

• rpcUsers — a list of users who are authorised to access
the RPC system, e.g., [[ user: ”thomas”, ”password”:
”password”, ”permissions”: [”ALL”]]],

• configFile — a file with complete list of configuration pa-
rameters for the node, e.g., ./build/nodes/thomas/Thomas
windmill.conf.

Moreover, we have proposed tagged values for additional
deployment parameters but common for all types of nodes.
We have attached them also to the �CordaNode� stereotype,
but we present only the subset of that tagged values:

• attachmentCacheBound — optionally specifies how many
attachments should be cached locally,

• detectPublicIp — flag toggles the auto IP detection be-
haviour,

• flowMonitorPeriodMillis — duration of the period sus-
pended flows waiting for IO are logged,

• flowTimeout.timeout — the initial flow timeout period,
• flowTimeout.maxRestartCount — the number of retries

the back-off time keeps growing for. For subsequent
retries, the timeout value will remain constant,

• h2Settings — sets the H2 JDBC server host and port,
• jmxReporterType — provides an option for registering an

alternative JMX reporter,
• keyStorePassword — the password to unlock the Key-

Store file containing the node certificate and private key,
• messagingServerAddress — address of the ArtemisMQ

broker instance,
• networkServices.doormanURL — root address of the

network registration service,
• trustStorePassword — the password to unlock the Trust

store file containing the Corda network root certificate.

The table (see Table II) contains declarations, with data type
and default value, of selected tagged values common for all
types of distributed ledger nodes.

TABLE II
SELECTED TAGGED VALUES FOR �CORDANODE� STEREOTYPE.

Tagged value name Type Default value

attachmentCacheBound Integer 1024

detectPublicIp Boolean false

flowMonitorPeriodMillis Integer 60

flowTimeout.timeout Integer 30

flowTimeout.maxRestartCount Integer 6

h2Settings Text NULL

jmxReporterType Text JOLOKIA

keyStorePassword Text cordacadevpass

messagingServerAddress Text Not defined

myLegalName Text Not defined

networkServices.doormanURL Text Not defined

p2pAddress Text Not defined

rpcSettings.useSsl Boolean false

trustStorePassword Text trustpass

Furthermore, we have identified the following deploy-
ment parameters for distributed ledger notary node type
(�NotaryNode�), [21]:

• notary.validating — determines if notary is validating or
non-validating one,

• notary.serviceLegalName — if the node is part of a
distributed cluster, the parameter specifies the legal name
of the cluster.

• notary.raft.nodeAddress — host and port to which to bind
the embedded Raft server,

• notary.raft.clusterAddresses — must list the addresses of
all the members in the cluster,

• notary.bftSMaRt.replicaId — index of the current replica.
All replicas must specify a unique replica id,

• notary.dftSMaRt.clusterAddresses — must list the ad-
dresses of all the members in the cluster.

The table (see Table III) contains selected tagged values that
we have identified for �NotaryNode� node.

TABLE III
TAGGED VALUES FOR �NOTARYNODE� STEREOTYPE.

Tagged value name Type Default value

notary.validating Boolean false

notary.serviceLegalName Text Not defined

notary.raft.nodeAddress Text Not defined

notary.raft.clusterAddresses Text Not defined

notary.bftSMaRt.replicaId Text Not defined

notary.dftSMaRt.clusterAddresses Text Not defined

During declaring tagged values, we have intentionally omit-
ted the deployment parameters of R3 Coda 4.3 version that
are marked as deprecated, internal options, or unsupported
configuration.

Finally, we have applied tagged values to previously de-
clared stereotypes for distributed ledger nodes. Thanks to
generalization relationship, from the object-oriented approach,
all defined stereotypes inherit common tagged values from
�CordaNode� stereotype.



MODELING OF DISTRIBUTED LEDGER DEPLOYMENT VIEW 623

The following UML Profile diagram shows inheritance
hierarchy of nodes’ stereotypes with tagged values (see Fig. 5).

Fig. 5. UML Profile diagram presents stereotypes for nodes with tagged
values.

All proposed stereotypes and tagged values we have placed
in UML Profile for Distributed Ledger Deployment.

VI. DEPLOYMENT VIEW OF ECSM
We have presented the concept of the ECSM and its

implementation during ICSEng 2018, Sydney, Australia, [8].
Electricity Consumption and Supply Management system pro-
vides the functionality to monitor and record continuously in-
formation about inbound and outbound energy to/from a node

in renewable energy grid. Information about inbound/outbound
energy is a part of a smart contract that is confirmed and
stored in every node. We have three types of nodes in such a
renewable energy grid: prosumer, energy stock exchange and
power grid. Prosumer’s node can sell energy to other nodes
or to the grid. The energy stock exchange node has two
main roles: confirms the energy price for each transaction,
provides real time energy price. Except monitoring inbound
and outbound energy, the solution will provide the possibility
to manage in automatic and manual way when energy should
be sent to the energy grid. This approach gives benefits for
both sides. It allows to maximize profits by energy farms
owners and send electricity to the grid, when price is above
the profitability ratio which can be calculated automatically
based on stored data. Moreover, it gives the possibility to
request additional energy by electricity distribution companies
during higher energy demands. This approach should make
settlements between producers and electricity sellers easier,
and should give real time view for both sides. Moreover, it
should give the possibility to connect new energy production
points to the existing grid and build distributed network of
energy suppliers. Corda DLT has been applied to manage
actions among nodes and store transactions of selling energy.
Each element in the system is actually DLT node. Proof-of-
Concept (PoC) of ECSM has been implemented in a Java
language with use of IntelliJ IDEA framework, [27]. The
source code of PoC is available at GitHub repository, [23].

Deployment view of ECSM was designed in Visual
Paradigm Enterprise. We have used UML Deployment diagram
to show Deployment view of ECSM system. The figure (see
Fig. 6) shows UML Deployment diagram for configuration of
Corda distributed ledger network for ECSM PoC.

Fig. 6. UML Deployment diagram for part of ECSM.



624 TOMASZ GÓRSKI, JAKUB BEDNARSKI

We have identified all required nodes with matching stereo-
types, e.g., �NetworkMapNode� node that will run network
map service. We have modeled artifacts that represent services
required by Corda platform. So, we have mark those artifacts
with corresponding stereotypes, e.g., �oracleService�. We
have placed artifacts on suitable nodes, e.g., component with
�notaryService� stereotype on node with �NotaryNode�
stereotype. Moreover, we have identified DLT nodes that
can exchange energy. We have marked those nodes with
�DLTNode� stereotype. All DLT nodes have been con-
nected in peer-to-peer manner. Connections among DLT nodes
have been marked with �AMPQ/TLS� stereotype. Each of
distributed ledger nodes (�DLTNode�) communicates over
HTTPS with �NetworkMapNode� node and for that rea-
son those connections have been marked with corresponding
stereotype. Distributed ledger nodes communicates with oracle
service over HTTPS and with notary service over AMPQ/TLS.
So, �HTTPS� stereotype has been applied to connectors
with oracle service and connectors with notary service have
been enriched with �AMPQ/TLS� stereotype.

Furthermore, we can specify deployment configuration of
each node. In order to do that, we have used tagged values
available for each node type. Fist of all, we have specified
deployment parameters for each of �DLTNode� nodes.
Those nodes take part in transactions.

The figure (see Fig. 7) shows Node Specification window of
Visual Paradigm with tagged values for �DLTNode� that are
available in UML Profile for Distributed Ledger Deployment.

Fig. 7. Selected tagged values available for DLT node deployment configu-
ration.

We can set values for all tagged values which have been
declared for �CordaNode�. We can do that, thanks to the
generalization relationship applied between �CordaNode�
and �DLTNode� stereotypes in design of the profile. Default
values are available for some deployment parameters in R3
Corda framework. The corresponding tagged values in the
profile received the same default values, e.g.: attachment-
CacheBound has default value 1024.

For �NotaryNode� node we have the same set of tagged
values as for �DLTNode� node. But, in �NotaryNode�
node there is an additional section of tagged values devoted
for configuration of notary service. In our example we have
one node with �NotaryNode� stereotype called Notary.

The figure shows Node Specification window of Visual
Paradigm with tagged values for �NotaryNode� (see Fig. 8).

Fig. 8. A section of tagged values for notary node deployment configuration.

The design of ECSM is available at GitHub repository, [24].
Thanks to the proposed stereotypes and tagged values,

we can model the Deployment view of Distributed Ledger
solution. Furthermore, we can model it with the application
of standard modeling notation, Unified Modeling Language,
but extended with a dedicated profile. In software engineer-
ing, we usually have several environments that organize the
development process, e.g.: development, tests, integration,
preproduction, and production. Using UML packages we can
model and manage different deployment environments, i.e.:
dev, test, and prod.

VII. DEPLOYMENT SCRIPT FOR NODE CONFIGURATION

Gradle is a general purpose build management system,
which supports the automatic download and configuration of
dependencies or other libraries. Gradle builds are described via
one or multiple build.gradle files. At least one build.gradle file
is typically located in the root folder of the project. Each of
these files defines a project and its tasks. These build files are
based on a Groovy Domain Specific Language.

Gradle uses the following files to configure and deploy
distributed ledger network: build.gradle, node.conf, refer-
ence.conf.

The build.gradle file consists of three types of elements:
• task — a Task represents a single atomic piece of work

for a build, such as compiling classes.
• block — a build script is made up of zero or more

statements and script blocks. Statements can include
method calls, property assignments, and local variable
definitions.

• property — in the node block, we set values of properties
based on corresponding values of tagged values.

We have used the deployNodes task to configure required
deployment parameters for distributed ledger nodes from UML



MODELING OF DISTRIBUTED LEDGER DEPLOYMENT VIEW 625

Deployment model for ECSM PoC. That task is used by
build.gradle to configure and deploy the DLT network. We
have used the node block and property for node configuration.

Example of deployNodes task of the script for configuration
of nodes in ECSM PoC we present in Listing 1.

Listing 1. Gradle script for configuration of distributed ledger nodes.
t a s k deployNodes ( t y p e : n e t . c o r d a . p l u g i n s . Cordform , dependsOn : [ ’ j a r ’ ] ) {

d i r e c t o r y ” . / b u i l d / nodes ”
node {

name ”O=Notary , L=London , C=GB”
n o t a r y = [ v a l i d a t i n g : f a l s e ]
devMode f a l s e
p2pAddress ” n o t a r y . c o r d a . amw . g dy n i a . p l : 10002”
r p c S e t t i n g s {

u s e S s l f a l s e
s t a n d A l o n e B r o k e r f a l s e
a d d r e s s ” n o t a r y . c o r d a . amw . gdy n i a . p l : 10003”
adminAddress ” n o t a r y . c o r d a . amw . g dyn i a . p l : : 1 0 1 0 3 ”

}
r p c U s e r s = [ [ u s e r : ” n o t a r y ” , ” password ” : ” password ” , ” p e r m i s s i o n s ” : [ ”ALL ” ] ] ]
c o n f i g F i l e = ” . / b u i l d / nodes / n o t a r y / n o t a r y . con f ”

}
node {

name ”O=Thomas windmi l l , L=Gdynia , C=PL”
devMode f a l s e
p2pAddress ” thomas . c o r d a . amw . g dy n i a . p l : 10002”
r p c S e t t i n g s {

u s e S s l f a l s e
s t a n d A l o n e B r o k e r f a l s e
a d d r e s s ” thomas . c o r d a . amw . gdy n i a . p l : 10003”
adminAddress ” thomas . c o r d a . amw . g dyn i a . p l : : 1 0 1 0 3 ”

}
r p c U s e r s = [ [ u s e r : ” thomas ” , ” password ” : ” password ” , ” p e r m i s s i o n s ” : [ ”ALL ” ] ] ]
c o n f i g F i l e = ” . / b u i l d / nodes / thomas / thomas . con f ”

}
node {

name ”O= Jacob windmi l l , L=Gdansk , C=PL”
devMode f a l s e
p2pAddress ” j a c o b . c o r d a . amw . g dy n i a . p l : 10002”
r p c S e t t i n g s {

u s e S s l f a l s e
s t a n d A l o n e B r o k e r f a l s e
a d d r e s s ” j a c o b . c o r d a . amw . gdy n i a . p l : 10003”
adminAddress ” j a c o b . c o r d a . amw . g dyn i a . p l : : 1 0 1 0 3 ”

}
r p c U s e r s = [ [ u s e r : ” j a c o b ” , ” password ” : ” password ” , ” p e r m i s s i o n s ” : [ ”ALL ” ] ] ]
c o n f i g F i l e = ” . / b u i l d / nodes / j a c o b / j a c o b . con f ”

}
node {

name ”O=Lucy windmi l l , L=Plock , C=PL”
devMode f a l s e
p2pAddress ” l u c y . c o r d a . amw . g dy n i a . p l : 10002”
r p c S e t t i n g s {

u s e S s l f a l s e
s t a n d A l o n e B r o k e r f a l s e
a d d r e s s ” l u c y . c o r d a . amw . gdy n i a . p l : 10003”
adminAddress ” l u c y . c o r d a . amw . g dyn i a . p l : : 1 0 1 0 3 ”

}
r p c U s e r s = [ [ u s e r : ” l u c y ” , ” password ” : ” password ” , ” p e r m i s s i o n s ” : [ ”ALL ” ] ] ]
c o n f i g F i l e = ” . / b u i l d / nodes / l u c y / l u c y . con f ”

}
}

We can also use node.conf files to set values for all
deployment parameters for each node.

VIII. CONCLUSION

Distributed Ledger Technology involves the application of
peer-to-peer architecture to collaborating nodes. The paper
concentrates on the Deployment view of the Architectural
views model 1+5. We have proposed an UML profile for
modeling the Deployment view of distributed ledger solution
— UML Profile for Distributed Ledger Deployment. We
have identified stereotypes for nodes, services and connectors.
Those modeling elements allow for presenting the structure
of a distributed ledger network. We took a step deeper in
modeling and proposed the manner of modeling deployment
configuration for a single node. We have used tagged values
to achieve that aim. We have designed the profile in Visual
Paradigm. We have applied the profile in designing ECSM for
a renewable energy grid.

Further studies move into the direction of applying Model-
Driven Development to design model-to-code transformation
for generating deployment scripts for distributed ledger net-
work configuration.

REFERENCES

[1] J. Al-Jaroodi and N. Mohamed: ”Blockchain in Industries: A Survey”,
IEEE Access, 7, 36500–36515 (2019)

[2] M.J.M. Chowdhury, M.S. Ferdous, K. Biswas, N. Chowdhury, A.S.M.
Kayes, M. Alazab and P. Watters: ”A Comparative Analysis of Dis-
tributed Ledger Technology Platforms”, IEEE Access, 7, 167930–
167943 (2019)

[3] M. Fowler: ”UML Distilled. A brief guide to the standards Object
oriented Language”, Boston, USA: Addison-Wesley, (2005)

[4] P. Gonczol, P. Katsikouli, L. Herskind, N. Dragoni: ”Blockchain Imple-
mentations and Use Cases for Supply Chains–A Survey”, IEEE Access,
8, 11856–11871 (2020)

[5] T. Górski: ”Architectural view model for an integration platform”,
Journal of Theoretical and Applied Computer Science, 6(1) 25–34
(2012)

[6] T. Górski: ”Verification of Architectural Views Model 1+5 Applicabil-
ity”, in Extended abstracts book of the 17th International Conference on
Computer Aided Systems Theory Las Palmas de Gran Canaria, Spain,
138–139 (2019)

[7] T. Górski and J. Bednarski: ”Modeling of Smart Contracts in Blockchain
Solution for Renewable Energy Grid”, in Extended abstracts book of the
17th International Conference on Computer Aided Systems Theory Las
Palmas de Gran Canaria, Spain, 140–141 (2019)

[8] T. Górski, J. Bednarski and Z. Chaczko: ”Blockchain-based renewable
energy exchange management system”, in Proceedings of 26th Inter-
national Conference on Systems Engineering, ICSEng 2018, Sydney,
Australia (2018)

[9] T. Górski, K. Marzantowicz and M. Szulc: ”Cloud-Enabled Warship’s
Position Monitoring with Blockchain”, in Smart Innovations in Engi-
neering and Technology, 1nd ed. vol. 1, Klempous, R. and Nikodem, J.,
Ed. Cham, Switzerland: Springer, 53–74 (2020)

[10] L. Kaijun, B. Ya, J. Linbo, F. Han-Chi and I. van Nieuwenhuyse:
”Research on agricultural supply chain system with double chain archi-
tecture based on blockchain technology”, Future Generation Computer
Systems, 86 641–649 (2018)

[11] R.C. Martin: ”Clean Architecture: A Craftsman’s Guide to Software
Structure and Design”, Prentice Hall, (2017)

[12] D. Metcalf, J. Bass, M. Hooper, A. Cahana and V. Dhillon: ”Blockchain
in Healthcare: Innovations that Empower Patients, Connect Professionals
and Improve Care”, Boca Raton, USA: CRC Press, Taylor & Francis
Group, (2019)

[13] D. Mohanty: ”R3 Corda for Architects and Developers: With Case Stud-
ies in Finance, Insurance, Healthcare, Travel, Telecom, and Agriculture”,
Noida, Uttar Pradesh, India: Apress, (2019)

[14] T. Pender: ”UML Bible”, Wiley; 1st ed., (2003)
[15] N. Rozanski and E. Woods: ”Software Systems Architecture. Working

with Stakeholders using Viewpoints and Perspectives”, Pearson India;
2nd ed., (2015)

[16] A. Shahnaz, U. Qamar and A. Khalid: ”Using Blockchain for Electronic
Health Records”, IEEE Access, 7 147782–147795 (2019)

[17] C. Shen and F. Pena-Mora: ”Blockchain for Cities — A Systematic
Literature Review”, IEEE Access, 6 76787–76819 (2018)

[18] S. Wang, A.F. Taha, J. Wang, K. Kvaternik and A. Hahn: ”Energy
Crowdsourcing and Peer-to-Peer Energy Trading in Blockchain-Enabled
Smart Grids”, IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 49(8) 1612–1623 (2019)

[19] Q. Xia, E.B. Sifah, K.O. Asamoah, J. Gao, X. Du and M. Guizani:
”MeDShare: Trust-Less Medical Data Sharing Among Cloud Service
Providers via Blockchain”, IEEE Access, 5 14757–14767 (2017)

[20] X. Xu, I. Weber, M. Staples: ”Architecture for Blockchain Applications:,
Springer, (2019)

[21] docs.corda.net/corda-configuration-file.html#configuration-file-fields.
Accessed, February, 5, 2020

[22] github.com/drGorski/UMLProfileForDLT. Updated, February, 19, 2020
[23] github.com/drGorski/renewableEnergyBlockchain. Updated, February,

8, 2019
[24] github.com/drGorski/designECSM. Updated, February, 5, 2020
[25] www.omg.org/spec/UML/2.5.1/. Accessed, February, 5, 2020
[26] www.corda.net/. Accessed, February, 5, 2020
[27] www.jetbrains.com/idea/. Accessed, February, 5, 2020
[28] www.visual-paradigm.com. Accessed, February, 5, 2020

docs.corda.net/corda-configuration-file.html#configuration-file-fields
github.com/drGorski/UMLProfileForDLT
github.com/drGorski/renewableEnergyBlockchain
github.com/drGorski/designECSM
www.omg.org/spec/UML/2.5.1/
www.corda.net/
www.jetbrains.com/idea/
www.visual-paradigm.com

	Introduction
	Deployment view
	R3 Corda Framework
	Stereotypes
	Tagged values
	Deployment view of ECSM
	Deployment script for node configuration
	Conclusion
	References

