
University of Business and Technology in Kosovo University of Business and Technology in Kosovo

UBT Knowledge Center UBT Knowledge Center

UBT International Conference 2020 UBT International Conference

Oct 31st, 9:00 AM - 10:30 AM

Performance Evaluation of Non-Relational Data on Big Data Performance Evaluation of Non-Relational Data on Big Data

Environments Environments

Edmond Jajaga
University for Business and Technology, edmond.jajaga@ubt-uni.net

Edi Hasaj
University for Business and Technology - UBT, eh46604@ubt-uni.net

Follow this and additional works at: https://knowledgecenter.ubt-uni.net/conference

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Jajaga, Edmond and Hasaj, Edi, "Performance Evaluation of Non-Relational Data on Big Data
Environments" (2020). UBT International Conference. 313.
https://knowledgecenter.ubt-uni.net/conference/2020/all_events/313

This Event is brought to you for free and open access by the Publication and Journals at UBT Knowledge Center. It
has been accepted for inclusion in UBT International Conference by an authorized administrator of UBT Knowledge
Center. For more information, please contact knowledge.center@ubt-uni.net.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Business and Technology in Kosovo: UBT Knowledge Center Collections

https://core.ac.uk/display/352161099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://knowledgecenter.ubt-uni.net/
https://knowledgecenter.ubt-uni.net/conference
https://knowledgecenter.ubt-uni.net/conference/2020
https://knowledgecenter.ubt-uni.net/conference?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2020%2Fall_events%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2020%2Fall_events%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledgecenter.ubt-uni.net/conference/2020/all_events/313?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2020%2Fall_events%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:knowledge.center@ubt-uni.net

Performance Evaluation of Non-Relational Data on Big Data
Environments

Edmond Jajaga, Assist. Prof. Dr
Department of Computer Science and

Technology
University for Business and Technology

Prishtina, Kosovo
edmond.jajaga@ubt-uni.net

Edi Hasaj
Department of Computer Science and

Technology
University for Business and Technology

Prishtina, Kosovo
eh46604@ubt-uni.net

Abstract—Big data management is a real challenge
for traditional systems. The experimental evaluation is
performed on measurement of performance of five
different databases with an open non-relational dataset.
It was structured and tested separately in each store,
giving some advantages and limitations to them from a
practical point of view. The results are drawn based on
the throughput per number of users executed
respectively. It was loaded and executed more than a
million of records in each and every database. Following
its semi-persistent model, Redis performed better than
other databases.

Index terms—Non-relational data, Big Data,
Cassandra, Couchbase, HBase, MongoDB, Redis.

I. INTRODUCTION

The relational database has revolutionized data
management by structuring data since its appearance fifty
years ago. In addition, and thanks to the SQL language, the
relational model has remained the predominant choice for
storing and retrieving structured data [1]. However, the
phenomenon of large data is changing this situation [2]. Due
to the advent of social networks, IoT and telephones, spatial
data becomes easy to collect and has acquired the
characteristics of large data such as volume, speed and
variety. This is where the so called NoSQL databases come
into play, that basically in structure are non-relational stores.

The growing demand for higher and faster data storage is
transforming the database market. The number of
applications releasing a high volume of data is increasing and
data-intensive implications are increasingly being used to
support decisions [3]. The non-relational database is
designed to solve many of the problems encountered when
dealing with specific applications such as multi-data. So the
storage of textual as well as spatial data has received
considerable attention over the last few years due to the
accumulation of large amounts of data (very unstructured)
over the years. These types of data storage systems are
commonly used to provide flexibility and availability for
handling Big Data. However, their architectural variety
produces different scalable performance. Our main challenge
remained testing each database with exactly the same data
format, size, load, latency and other characteristics that
would not indicate unfair results. Thus having unified
workload to be run upon each database was really a

challenge because each database contains different
architectural style in itself.

In this paper it was used a tool called YCSB (Yahoo!
Cloud Serving Benchmark)1 to evaluate the performance of
NoSQL databases when put under different workloads. This
tool can also be extended to use any kind of data depending
on the use case. That data is refined and evaluated and
conclusions have been drawn.

The paper is organized as follows. Chapter 2 the different
NoSQL systems and the methodology used to evaluate them
in Big Data environments. The results are analyzed in
chapter 3. Chapter 4 discusses our approach against state-of-
the-art works on our hypothesis. Finally, the paper ends with
conclusion notes.

II. METHODOLOGY

The term NoSql was used by Carlo Strozzi in 1998 who
named it Strozzi NoSQL open-source database that did not
expose any SQL interface, but was strill relational [11].
Basically NoSQL sacrifices strong consistency in exchange
for high availability. There are different classifications of
NoSQL although a more widely used way is to seperate
NoSQL in the following four categories [15, 16]:

A) Key-value store: Where the data is stored in the
form of key-value pairs, which is also called hash table
where the value can be obtained quickly by using the key.

B) Document store: Just as the name suggests, it’s
designed to store documents or information that is semi-
structured, and data also is stored and managed as a
document style (like XML) [17] or as JSON [18], which can
be used in a broad range of applications [19].

C) Column family store: The data is stored as columns
and rows while the similar columns are stored together in
what is called column family. This kind of storing is easier
in extension and distribution and also is well suited for
storing large data.

D) Graph database: This database is used to store data
which is similar to the graph structure data, such as social
networking or in recommendation systems.

E) Multi-model: supports more than one data model in
the same database.

1 https://github.com/brianfrankcooper/YCSB Last
accessed 29.02.2020

Copyright © 2020 Edmond Jajaga, Assist. Prof. Dr et. al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://creativecommons.org/licenses/by/3.0/
https://github.com/brianfrankcooper/YCSB

Distributed Database: Is the database in which not all
storage devices are attached to a common processor. It may
be stored in multiple computers, located in the same
physical location, or it may be distributed over a network of
interconnected computers [20].

This paper evaluates five NoSQL databases: Cassandra,
Couch-Base, HBase, MongoDB and Redis.

• Cassandra Apache Cassandra is column-based
family store and a distributed system where each
node acts as both master and slave, where the
system performs all the critical functions in a
decentralized manner. The nodes communicate with
each other through a peer-to-peer communication
protocol in which nodes periodically exchange state
information about themselves and about other nodes
they know about [1 0].

• Couch-Base is document-oriented database, is an
open-source multi-model NoSQL document-based
database software [12].

• Hbase is a distributed database, column family
store. It was developed out of a need to process
massive amounts of data for the purposes of natural-
language search [13]. The architecture of HBase is
composed of a commonly used master-slave type of
architecture and it uses ZooKeeper as a distributed
configuration and synchronization service to
maintain the server state [14].

• MongoDB is a document-oriented database where
tuples or records are stored as documents in BSON
(Binary JSON) syntax. Auto-sharding is a feature in
MongoDB that facilitates scaling horizontally by
splitting data across multiple nodes [21].

• Redis lays in the family of key-value stores. It is
open-source, networked, in memory database
system which is very flexible and promises very fast
performance. A value in Redis can be stored as a
string, a list of strings with intersections either at the
head or tail of the list. Redis database is replicated
using common master-slave approach.

Yahoo under YCSB project has developed a framework with
a set of common workloads to evaluate the performance of
databases [22]. It is an open-source specification and
program suite for evaluating retrieval and maintenance
capabilities of computer programs. Often it is used to
compare relative performance of NoSQL database
management systems. This program has two key
components. First, the client that is an expandable workload
generator. Second, the core workloads that are a set of
workload scenarios to be executed by the generator [22].
There are 6 core workloads built in YCSB but here were
used only 3 of them as depicted in Table 1.

TABLE 1

YCSB WORKLOAD

Workload Operations

Workload A Update heavy, 50/50 of read/update

Workload C Read only, 100% read operation

Workload F Read-modify-write.

In the starting phase, data gets loaded into the database
where each record has 10 columns and each column has 100
bytes of data, approximately 1kb in total per record. These
are generated randomly and are uniquely identified by a key
which is a combo of a string “user” and has some other
random digits [15].
All the tests were executed in a personal PC with Ubuntu
OS machine installed. The machine has 12GB RAM, 256GB
SSD, and a quad-core CPU clocking 2.3GHZ processor. It
was tested out each database equally in the same machine
with the same workloads each.

• Cassandra version: 3.112

• Couch-Base version used: 6.03

• HBase version used: 2.2.34

• MongoDB version used: 4.2.25

• Redis version used: 4.0.96

• YCSB version used: 0.17.07

• Ubuntu version used: 18.02 LTS8

We highlight research directions and challenges in
relation to Big Data processing and storage management
system by NoSQL which is emerging impact of Big Data
analysis. In NoSQL databases, transactional issue into
NoSQL database and structural gap between cloud
infrastructures can be more improved. Here, we describe
major databases features that require further research in
terms of Big Data management.

III. IMPLEMENTATION

The framework tool YCSB comes with ready to run
commands and with easy to use tools. In the implementation
phase, databases were properly configured as described in the
previous chapter. Thus, the environment supported data
storage and querying through the use of YCSB tool. This tool
has all the necessary drivers that are needed to connect and
exchange the data between the database and the tool itself.
The drivers are developed by the community developers and
are implemented in Java.

2 https://cassandra.apache.org/ Last accessed 29.02.2020
3 https://www.couchbase.com/ Last accessed 29.02.2020
4 https://hbase.apache.org/ Last accessed 29.02.2020
5 https://www.mongodb.org/ Last accessed 29.02.2020
6 https://redis.io/ Last accessed 29.02.2020
7 https://github.com/brianfrankcooper/YCSB/wiki Last
accessed 29.02.2020
8 https://ubuntu.com/ Last accessed 29.02.2020

https://ubuntu.com/
https://github.com/brianfrankcooper/YCSB/wiki
https://redis.io/
https://www.mongodb.org/
https://hbase.apache.org/
https://www.couchbase.com/
https://cassandra.apache.org/

Fig.1. Benchmarking tool YCSB.

In the figure 1 we can observe the simple architecture of the
YCSB tool. It is the YCSB client as the main actor that
accepts inputs and executes based on the given inputs. As we
will se later we pass parameters through the command line
and in the parameters we describe and set the workload to be
used, the throughput target, number of threads, data set, etc.
The tool will execute the specified workloads uppon
databases which can be in the cloud connecting through the
HTTP9 protocol or served locally as servers.

We will skip the store installation for all of the databases as
these steps can be found in the corresponding site’s of each
database.

Since there is no unified standard for setting up the
configuration between the stores and the YCSB tool, we are
going to briefly describe the configuration of each database
used.

Configuring the Apache Cassandra store was as easy as
creating a keyspace10 with the name called ‘ycsb’ and a new
table in that keyspace with the name ‘usertable’ (as the
default data to be saved are user related data).

Configuring Couch-Base store for the YCSB is not necessary
because once the database node or cluster is created and
pointed to the client, the tool will create the schema and store
data accordingly.

For HBase it would be beter if used the pre-splitting strategy
for gaining the best performance results. This means creating
a new table for testing porposes otherwise all the writes will
target a single region server11.

hbase(main):001:0> n_splits = 200 # HBase
recommends (10 * number of regionservers)

hbase(main):002:0> create 'usertable',
'family', {SPLITS => (1..n_splits).map {|i|
"user#{1000+i*(9999-1000)/n_splits}"}

Basically these two commands will split the number of
region servers to be used for data storage this for the purpose
of really high value input output to the store specifically for
interaction with the YCSB tool.

9 Hypertext Transfer Protocol (HTTP) is an application-
layer protocol for transmitting hypermedia documents, such
as HTML.
10 A keyspace in Cassandra is a namespace that defines data
replication on nodes.
11 https://issues.apache.org/jira/browse/HBASE-4163 Last

accessed 07.05.2020

Configuring MongoDb is very simple, default platform
installation is only needed. And the connection string
parameters will be passed when we run the workloads.

Configuring Redis is the same procedure as configuring
Mongo, no additional creation or specific step is needed.
Except when runing the workloads.

YCSB tool is runnable only through the Terminal/Command
Line Interface commands, and it can be downloaded as open
source project in the internet and is free under Apache-2.0
License. The tool is available only for Linux, Windows and
macOS at the time of writing, and the commands to run
workloads are almost the same in both platforms. There is no
configuration needed for the tool tu function properly, the
only requirements needed as a dependency to run the tool are
Java and Apache Maven12. To build the full distribution of
the tool will all database bindings with Maven we run:

mvn clean package

To build a single database for example MongoDb
bindings we run:

 mvn -pl site.ycsb:mongodb-binding -am
clean package

We can set the framework(tool) binaries folder to point in the
operating system path variables, or we can head over to the /
bin directory in the downloaded file folder.
We described some of the workloads we will be using in our
experiment, but there some other customised workloads that
can be used depending on the use case scenario. Tool
extensibility helps in adding new customised workloads that
can be created and used to execute specific queries uppon
database/s for benchmarking purposes.
The procedure to test a specific workload in a specific
database is firstly loading the workload data into the database
and the runing the same workload type loaded into the
database.
Loading and runing the workloads is as simple as runing one
line command, e.g. in Cassandra we first load a workload by
runing:

/bin/ycsb load cassandra-cql -P
workloads/workloada

/bin/ycsb run cassandra-cql -P
workloads/workloada

this means that in the bin directory of ycsb folder find the
ycsb binary file and run it with the parameters being ‘load’
which means load the workload data into the database data,
then is ‘cassandra-cql’ the database client to be used, we can
also specify the threads to be used ‘-threads 4’ for the
maximum threads to be used concurrently when
benchmarking, and -p is for inline parameter vs -P for file
type parameter, and after the -P parameter we pass the
workloads/workloada which basically means in the
workloads directory find the workloada (Workload A) file
and execute it. This command will insert default 1000 rows x
10 columns with random user data, and we can insert a
specific number of rows by specifying it with additional

12 Apache Maven is a software project management and
comprehension tool. Maven can manage a project's build,
reporting and documentation from a central piece of
information.

https://issues.apache.org/jira/browse/HBASE-4163

parameter like ‘-p recordcount=100000000’ number of rows.
The above command will output:

$./bin/ycsb load basic -P workloads/workloada
-P large.dat -s > load.txt
“Loading workload... (might take a few
minutes in some cases for large data
sets)
Starting test.
0 sec: 0 operations
10 sec: 61731 operations; 6170.6317473010795

operations/sec
20 sec: 129054 operations; 6450.76477056883

operations/sec
...”

To execute the added workload we run the following
command:

$./bin/ycsb run basic -P workloads/workloada
-p recordcount=100000000 -s > results.txt

This will save the results of the transaction in an output file
called results.txt and can be read as a text file outputing
similar text:

“[OVERALL],RunTime(ms), 10110
[OVERALL],Throughput(ops/sec),

98.91196834817013
[UPDATE], Operations, 491
[UPDATE], AverageLatency(ms),

0.054989816700611
[UPDATE], MinLatency(ms), 0
[UPDATE], MaxLatency(ms), 1
[UPDATE], 95thPercentileLatency(ms), 1
[UPDATE], 99thPercentileLatency(ms), 1
[UPDATE], Return=0, 491
[UPDATE], 0, 464
[UPDATE], 1, 27
[UPDATE], 2, 0
[UPDATE], 3, 0
[UPDATE], 4, 0
...”

This output indicates:

• The total execution time was 10.11 seconds

• The average throughput was 98.9 operations/sec
(across all threads)

• There were 491 update operations, with associated
average, min, max, 95th and 99th percentile
latencies

• All 491 update operations had a return code of zero
(success in this case)

• 464 operations completed in less than 1 ms, while
27 completed between 1 and 2 ms.

Similar statistics are available for the read operations.

We did load and run the same workloads as mentioned above
i.e. loading and running workloads as below:

Loading the data into Couch-Base store:

bin/ycsb load couchbase -s -P
workloads/workloada

Runing the loaded data in Couch-Base store:

bin/ycsb run couchbase -s -P
workloads/workloada

Loading the data into HBase store:

bin/ycsb load hbase2 -P workloads/workloada -
cp /HBASE-HOME-DIR/conf -p table=usertable -p

columnfamily=family

Runing the loaded data in HBase store:

bin/ycsb run hbase2 -P workloads/workloada -
cp /HBASE-HOME-DIR/conf -p table=usertable -p

columnfamily=family

Loading the data into MongoDb store:

./bin/ycsb load mongodb-async -s -P
workloads/workloada > outputLoad.txt

Runing the loaded data in MongoDb store:

./bin/ycsb run mongodb-async -s -P workloads/
workloada > outputRun.txt

Loading the data into Redis store:

./bin/ycsb load redis -s -P
workloads/workloada -p "redis.host=127.0.0.1"

-p "redis.port=6379" > outputLoad.txt

Runing the loaded data in Redis store:

./bin/ycsb run redis -s -P
workloads/workloada > outputRun.txt

Similar commands were executed for every database and for
every workload naming workload A, C and F, of which
resulted in many lines of logs in output files.
The data from files was extracted as mean value, and that
data was compared with other stores data from the same
workload. Simple data was compared statistically and that
data is shown in graphs. See the experimental section below
for more information.

Fig. 2. Component diagram of the YCSB and other databases
used.

Figure above can be conceptualised in a way of how the
framework and databases interact with each other, we see a
more modular way of connection between them This
connection is available through drivers that behave like a
communication protocol written in Java or as mentioned
before they can communicate through HTTP protocols.

IV. EXPERIMENTAL RESULTS

Let’s observe the performance of the NoSQL systems
individually. More than 30 benchmark tests were ran to find
out the performance of the NoSQL systems across a variety
of custom workloads. We varied the read, update, insert, and
read-modify-write proportions of the workload. We also
changed the number of operation counts and the record
length and reported the performance of each NoSQL
systems. This section will present a detailed report of the
performance expectations of each database system. Here we
do a comparative study of the benchmarking tests and present
an experimental evaluation of the five NoSQL Systems using
the various custom workloads. We compare the runtime and
throughput of the NoSQL systems by changing the
proportion of Insert-Read, Read-Update, Read-Read Modify-
Write and Read-Modify-Write operations. The proportion of
these operations were varied at 50 percent and 100 percent.
The observations are reported below.

Overall Redis has the best performance, followed by
MongoDB, Couch-Base, Cassandra and Hbase respectively
based on the time they take to perform different operations.
Redis is obviously optimized for writes and can perform
them faster than reads even when the database is not heavily
contended. Operations in Redis are fast enough because of its
in-memory nature.

Based on the YCSB standard process, firstly, it was needed
to load the data into the database, so they were inserted
1200000 records into the database and the databases stored
the data automatically according to the storage configuration.
Because it is difficult for us to focus on different aspects of
NoSQL performance, in the loading phase only the total time
of loading data into the database was taken. It was presented
the outcomes and analysis of relevant experiments that were
made. In this experiment were used the throughput metrics
and the number of users to operate on. Throughput metric
represents the operations per second that a database
completes the workloads. In other words, throughput is the
rate of successful execution or the successful number of
operations executed per second towards the number of users
(in this case), i.e. 3000 throughput or (ops/sec) means that
3000 operations (users) has been successfully
executed/completed per second.

Every workload was executed separately with predefined
records (10K to 1M 200K records), then data was refined and
collected from the results.

Fig.3. Loading time for 1200000 records in 5 databases.

Results were sorted out the databases from fast to slow
according to the loading speed. Figure 3 shows loading of
1M and 200K of records into the databases, which results
Redis getting the best performance of inserting operation
among all other databases, with a loading time of 1.82
minutes which is 1.24 times faster than the second place
MongoDB. This performance comes from Redis because of
semi-persistent model, which means all the data is stored in
memory and then asynchronously saved to disk on a regular
basis for long lasting storage. The two column-based
databases, HBase and Cassandra were 2.25 times and 3.14
times slower than Redis. And the other document-based
database Couch-Base which is 3.02 times slower than Redis.
The worst performance in making insertions in this case was
Cassandra.

The test was executed on three different workloads and five
chosen databases. The execution led to the performance in
different scenarios seeing which database performed better.
Our testing scenarios were focused only on comparing the
throughput of five databases. Thus, it was compared the
speed and efficiency of workload execution between
different workloads.

It is important to note that Redis and MongoDb loading time
is the fastest because of the way these two stores manage the
data especially when inserting new data.

In all the figures, the x-axis represents the number of
records and the y-axis represents throughput. All charts are
grouped based on the workloads. Furthermore, each chart
shows the metric measurement for each operation. For
example, if a workload has both read and insert operations,
then, there exists the chart showing these operations.

Fig.4. Executing time for 1200000 records in workload A.

1M 200K Users

0

1

2

3

4

5

6

1.82
2.26

4.09

5.5
5.71

Load time

Redis

MongoDB

HBase

CouchBase

Cassandra

Lo
ad

in
g

tim
e

(m
in

)

10K 100K 200K 500K 1M 200K

0

5000

10000

15000

20000

25000

30000
Workload A

Cassandra

CouchBase

HBase

Mongodb

Redis

Users

T
hr

ou
gh

pu
t

(o
ps

/s
ec

)

Figure 4 shows the results, in seconds, obtained while
executing workload A that consists of 50% reads and 50%
updates, over 1,200,000 records. It was observed the
execution of five tested databases executing workload A with
heavy read and update (50/50), as records were increasing in
size. It turned out again that Redis showed the best
performance in throughput when the records were under
100K. Then, we see a slight falling after 100K, but again it
increases after 200K records are read and updated. Thus, in
the overall average, it was 3.33 times better than MongoDB
in the second place, 4.9 times better than Couch-Base.
Furthermore, HBase and Cassandra presented a similar trend
in this execution phase. HBase was 6.22 times slower in
execution than Redis, and Cassandra performed worst again
as in the loading phase being 7.03 times slower than Redis.

Fig.5. Executing time for 1200000 records in workload C.

Figure 5 shows the results obtained while executing
workload C that consists of execution of 1,200,000 read
operations over 1,200,000 records. It was observed testing
the same databases, but executed with a different workload,
which included 100% read on the databases as records
increased. Again the Redis store obviously is better in
performance compared to other stores when running
workload C that corresponds to 100% reading. Redis led with
an average of 20600 operations/second, on average being
2.87 times faster than MongoDB, and 3.35 faster than
Couch-Base. In this workload Cassandra performed 7.28
times slower than Redis, but is performed better than HBase,
which comes in the last place and was 8.45 times slower than
the first place.

Fig.6. Executing time for 1200000 records in workload F.

Figure 6 shows the results obtained while executing
workload F that consists of execution of 1,200,000 read-

modify-write records. The figure describes the results about
the last workload being executed against our databases. In
this workload, a record was read, modified, and wrote back
changes to the database. This was applied to every record
(user) respectively. As in the previous scenarios, the same
databases performed better, while also having a considerable
gap in performance from other databases. Namely, Redis
performed 3.23 times faster than MongoDB on average, 5.29
times faster than Couch-Base, 7.22 times faster than
Cassandra and 7.36 times faster than HBase. It is obvious
that Redis performance slightly started decreasing when
reading-modifying-writing 500K records, but it went up
again increasing linearly up to the 1M 200K records of data.
We observe other stores having a moderate execution time
with Mongo having the best performance after Redis.

Over previous paragraphs we presented results obtained
over different workloads and data loading. In order to show
more clearly the overall performance of these evaluated
databases regardless of the type of performed operations,
graph figures are generated. The figures show the total
execution time, values in seconds, for each of the number of
records tested in databases. These values were obtained by
summing the execution times of all the same workloads for
each database, and sorted in ascending order, from lowest
number of records to highest.

V. RELATED WORK

In their study Md. Razu Ahmed, et al., provided
evaluation of four NoSQL databases, including document-
based databases (MongoDB, Couch-Base), column-based
(Cassandra, HBase), value-key (Redis) and graph based
(Neoj4), where they compared, evaluated and categorized
strengths, weaknesses, etc. They pointed out that their
research would be useful to the business leaders in order to
select appropriate NoSQL database for storage and
management of Big Data [4].

Chandranil in their study presented an evaluation of the
performance of four different NoSQL database systems
MongoDB, Cassandra, Redis and OrientDB executing a
series of custom loads by modeling different real-world
scenarios. Their report can be useful to find out the
performance of databases they use under different scenarios
[5].

Abramova and others in their study evaluate the five most
popular NoSQL databases: Cassandra, HBase, MongoDB,
OrientDB, and Redis. They compare the performance
databases of queries based on readings and updates, taking
into account workloads. The measurement was done by the
YCSB (Yahoo! Cloud Serving Benchmark) tool [6].

In their study Kamal et al, provided a qualitative
comparison between three known databases of different types
(Redis, Neo4j, and MongoDB) using a real-time use case of
each type, translated to others. Thus it highlights the inherent
differences between them, and which data structures each fit
the most [7].

Tang et al in their study evaluated the performance of
five NoSQL databases (Redis, MongoDB, Couchbase,
Cassandra, HBase) using the measuring tool YCSB,
explaining the experimental results by analyzing the model
and mechanism of data of any database and provide advice to
NoSQL developers and users. Their conclusions are that
Redis is particularly suitable for loading and executing

10K 100K 200K 500K 1M 200K

0

5000

10000

15000

20000

25000

30000
Workload C

Cassandra

CouchBase

HBase

Mongodb

Redis

Users

T
hr

ou
gh

pu
t

(o
ps

/s
ec

)

10K 100K 200K 500K 1M 200K

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
Workload F

Cassandra

CouchBase

HBase

Mongodb

Redis

Users

T
hr

ou
gh

pu
t

(o
ps

/s
ec

)

workloads. Although showing the best efficiency, Redis
lacks performance when facing extremely large data;
Document databases. According to them the results of
comparing runtime and throughput under four node cluster
case are not a thorough evaluation of NoSQL databases [8].

Oussous et al in their study article have provided an
accurate overview about the evolution and mechanisms of
NoSQL, as well as the advantages and disadvantages of key
NoSQL data models and frameworks [9].

E. H. Nassif et al., in their study about assesing NoSQL
approaches for managing spatial big data, they did an
experimental comparison of Accumulo vs Elasticsearch, and
concluded that based on their results Accumulo is better than
Elasticsearch on ingesting the data. And they concluded that
the same can be applied when it comes to spatial queries like
bounding box, polygons, distance, etc [23].

As it was seen in their findings Md. Razu Ahmed, et al.,
offered a theoretical comparison for pros and cons between
different NoSQL stores for big data [4]. Instead we were
focused on the aspect of how each database executes queries
successfully (the throughput), and also the specified load
quantity of data to test, thus getting a different perspective of
how different stores react at different times.

We also looked at a more technical document from
Kamal et al., where they qualified architecture level of the
NoSQL stores in finding the best structure for storing big
data [7]. On the other side we were more focused on the
aspect of how each database executes queries successfully
(the throughput), and also the specified load quantity of data
to test, thus getting a different perspective of how different
stores react at different times.

We took a step further from Abramova, et al., when it
comes to records, where we doubled up records and took a
different aspect from the results [6], so we were focused on
the aspect of how each database executes queries
successfully (the throughput), and also the specified load
quantity of data to test, thus getting a different perspective of
how different stores react at different times.

There were also differences in stores when it comes to the
types of data being saved in Chakraborttii’s findings, where
we found that mixed types of data does not matter in what
environment are being saved. The testing was done for 100K
of records and they were based on the overall time of
execution which in that case cannot be very accurate [5], and
we were more focused on the aspect of how each database
executes queries successfully (the throughput), and also the
specified load quantity of data to test, thus getting a different
perspective of how different stores react at different times.

Tang et al., took 100K of records to test the databases but
in the execution time they only did a comparison with 1K of
records which was not sufficient enough for big data [8]. We
were more focused on the aspect of how each database
executes queries successfully (the throughput), and also the
specified load quantity of data to test, thus getting a different
perspective of how different stores react at different times.

We were also overall more focused on having a practical
point of view when developers have to choose between
databases based on the type of data they will be saving.

VI. CONCLUSION AND FUTURE WORK

Big data applications require that the database be
optimized for the workloads they have to handle. Good
performance is crucial to almost every aforementioned
system. IT professionals need to do their best to ensure that
the database they select is appropriate and targeted for their
application use cases as fast performance is important for
nearly every data-driven system. One of the ways to do this
is to conduct a Benchmark test in the environment in which
the database will run and under the expected data and
concurrent user workloads. Benchmarks such as those
contained in this paper can be useful as well in that they give
database users a good idea of what the core strengths and
weaknesses of the database they intend to use possesses.

This paper can be used to describe that no matter the kind
of data being put in non-relational databases when there are
large amounts of data the focus is on how the database will
perform when making operations on the database, it may
have impact if the data is only spatial, otherwise as long as
data is saved in different classifications (document-based,
column-based, etc) there is no significant impact in the
performance.

We concluded that Redis is specifically suitable for
loading and executing workloads overall in specific kind of
environments and with specific kind of data. Based on
different observations Redis has limitations when it faces
extremely large amounts of data, this is theoretically
acceptable when judged from the architecture perspective,
and based on how much it is used today is used as cache or
short time. This is more as a niche for Redis. If this is to be
proven that Redis is not very performant at large amount of
data (true in theory), then, at that level comes document-
based and column-based databases, which have a good
performance since they own efficiency and scalability. It is
important to note that the results extracted for the throughput
and the number of records under a random personal
computer are not a comprehensive evaluation of NoSQL
databases. Thus, in some specific applications, often it is
needed to optimize configuration of NoSQL databases to the
actual needs accordingly, and then compare the performance,
which in turn is more commonsense and significant in
NoSQL selection.

The study can be further extended for comparison of
NoSQL stores in other aspects, such as operating delay,
bigger datasets, the efficiency of horizontal scaling and
sharding, etc, which remains as per future works.

REFERENCES

[1] D. Chamberlin, and R. Boyce: 1974. “SEQUEL: A structured
English query language”. In Proceedings of the 1974 ACM
SIGFIDET (now SIGMOD) workshop on Data description,
access and control (SIGFIDET ’74). Association for
Computing Machinery, New York, NY, USA, 249–264.

[2] A. De Mauro, M. Greco, and M. Grimaldi: “A formal
definition of Big Data based on its essential features”. Libr.
Rev. 65(3), 122–135 (2016).

[3] D.A. Pereira, W.O. Moraism and E.P. Freitas (2018). “NoSQL
real-time database performance comparison”, International
Journal of Parallel, Emergent and Distributed Systems, 33:2,
144-156.

[4] R. Ahmed, A. Khatun, A. Ali, and K. Sundaraj, (2018). “A
literature review on NoSQL database for big data processing”.
International Journal of Engineering & Technology. 7. 902-
906.

[5] Ch. Chandranil, (2015). “Performance Evaluation of NoSQL
Systems Using Yahoo Cloud Serving Benchmarking Tool”.

[6] V. Abramova, J. Bernardino, and P. Furtado, (2014). “Which
NoSQL Database? A Performance Overview”. Open Journal
of Databases (OJDB). 1.

[7] S. Kamal, H. Elazhary, and E. Hassanein, (2019). “A
Qualitative Comparison of NoSQL Data Stores”. International
Journal of Advanced Computer Science and Applications. 10.

[8] E. Tang, and Y. Fan, (2016). “Performance Comparison
between Five NoSQL Databases”. 105-109.

[9] A. Oussous, F.Z. Benjelloun, A.A. Lahcen, and S.Belfkih,
(2015). “Comparison and Classification of NoSQL Databases
for Big Data”.

[10] A. Lakshman and P. Malik. “Cassandra: a decentralized
structured storage system”. ACM SIGOPS Operating Systems
Review, 44(2):35–40, 2010.

[11] A. Lith, J. Mattson, (2010). “Investigating storage solutions for
large data: A comparison of well performing and scalable data storage
solutions for real time extraction and batch insertion of data”.
Göteborg: Department of Computer Science and Engineering,
Chalmers University of Technology. p. 70. Retrieved 12 May
2011.

[12] MC. Brown, (June 22, 2012). “Getting Started with
Couchbase Server (1st edition)”. O'Reilly Media. p. 88.

[13] N. Dimiduk, A. Khurana, (28 November 2012). “HBase in
Action (1st ed.)”. Manning Publications. p. 350.

[14] A. Dey, A. Fekete, R. Nambiar, and U. Rohm. “Ycsb+ t:
Benchmarking web-scale transactional databases”. In Data
Engineering Workshops (ICDEW), 2014 IEEE 30th
International Conference on, pages 223-230. IEEE, 2014.

[15] V. Abramova, J. Bernardino, and P. Furtado. "Experimental
evaluation of NoSQL databases." International Journal of
Database Management Systems 6.3 (2014): 1.

[16] K. Orend, "Analysis and classification of NoSQL databases
and evaluation of their ability to replace an object-relational
Persistence Layer." Architecture (2010): 1

[17] D. Crockford. “JavaScript: The Good Parts: The Good Parts”.
O'Reilly Media, Inc., 2008.

[18] M. Carro, "NoSQL Databases." arXiv preprint
arXiv:1401.2101 (2014).

[19] "Document Store." https://en.wikipedia.org/wiki/Document-
oriented_database Last accessed 29.02.2020

[20] “Distributed database.”
https://www.its.bldrdoc.gov/fs-1037/dir-012/_1750.htm Last
accessed 29.02.2020.

[21] “MongoDB Database”
https://en.wikipedia.org/wiki/MongoDB Last accessed
29.02.2020.

[22] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears. “Benchmarking cloud serving systems with YCSB”. In
Proceedings of the 1st ACM symposium on Cloud computing,
pages 143–154. ACM, 2010.

[23] E.H. Nassif, H. H. Hicham, R. Yaagoubi, H. Badir. (2020)
“Assessing NoSql Approaches for Spatial Big Data
Management”. In: Ezziyyani M. (eds) Advanced Intelligent
Systems for Sustainable Development (AI2SD’2019). AI2SD
2019. Lecture Notes in Networks and Systems, vol 92.
Springer, Cham.

https://en.wikipedia.org/wiki/MongoDB
https://www.its.bldrdoc.gov/fs-1037/dir-012/_1750.htm
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Document-oriented_database
http://publications.lib.chalmers.se/records/fulltext/123839.pdf
http://publications.lib.chalmers.se/records/fulltext/123839.pdf
http://publications.lib.chalmers.se/records/fulltext/123839.pdf

	Performance Evaluation of Non-Relational Data on Big Data Environments
	Recommended Citation

	I. Introduction
	II. Methodology
	Table 1
	YCSB Workload
	III. Implementation
	IV. Experimental results
	V. Related Work
	VI. Conclusion and future work
	References

