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MINLP optimization of structures 

Abstract. The paper discusses the mixed-integer non-linear programming 

(MINLP) approach to the optimization of structures. MINLP is an optimization 

technique capable of solving non-linear and discrete optimization problems. It 

calculates continuous variables (loads, dimensions, stresses, deflections, costs) 

and discrete variables (topology, standard sections, material grades). The 

MINLP optimization model of a structure should be developed. In the model, 

an objective function is subjected to structural analysis and dimensioning 

constraints to meet ultimate and serviceability limit states according to 

Eurocodes. Suitable MINLP algorithms and strategies are used to solve the 

defined MINLP problem. Three numerical examples are presented at the end of 

the paper. 

 

Keywords: Structural Optimization, Discrete optimization, Mixed-Integer Non-

Linear Programming, MINLP 

1   Introduction 

The paper discusses the mixed-integer non-linear programming (MINLP) approach to 

the optimization of structures in civil engineering. Since the MINLP performs 

continuous and discrete optimization simultaneously, it deals with continuous and 

discrete variables. While the continuous variables are defined for the continuous 

optimization of parameters (loads, stresses, deflections, weights, costs, etc.), the 

discrete variables are used to express discrete decisions, i.e. the existence or non-

existence of structural elements within the defined structure. Extra discrete binary 0-1 

variable y is assigned to each structural element. The element is selected by the 

optimization process to construct the structure if its binary variable takes the value 

one (y=1), otherwise it is removed from the structure (y=0). Different discrete 

material grades, standard cross-sections and rounded dimensions can also be defined 

as discrete alternatives. 

The MINLP optimization approach requires that a structure is generated as an 

MINLP superstructure, which is composed of different structure/topology and design 

alternatives, all of which are candidates for a feasible and optimal solution. While the 

topology alternatives represent different selections and interconnections of the 

corresponding structural elements, the design alternatives include different material 

grades, standard sections and rounded dimensions. The main goal of the optimization 

is to find a feasible structure within the given superstructure that is optimal with 

respect of manufacturing cost (or structural mass), topology, material, standard 

dimensions and rounded dimensions. 

For MINLP optimization, the MINLP optimization model of a structure must be 

developed in which the cost or mass objective function of a structure is subjected to 



design, structural analysis and dimensioning constraints in order to fulfill the ultimate 

and serviceability limit state conditions. While structural analysis constraints are used 

to calculate internal forces and deflections, dimensioning constraints are defined 

according to Eurocode specifications or other standards. 

Many different methods to solve MINLP problems have been developed in the 

near past. This paper reports on the experience gained in MINLP problems using the 

Modified Outer-Approximation /Equality-Relaxation (Modified OA/ER) algorithm by 

Kravanja & Grossman [1]. The algorithm was adapted by Kravanja et al. [2-5] and 

applied in structural optimization. The Linked Multi-level Hierarchical Strategy 

(LMHS) was developed to accelerate the convergence of the mentioned algorithm. 

2   MINLP model formulation 

The optimization problems in the field of structural optimization are usually non-

linear, non-convex, continuous and discrete. The MINLP is therefore selected for the 

optimization. A general MINLP model formulation can be formulated as follows: 

min   z = f(x,y) (1) 

subjected to:     g(x,y) ≤ 0 (2) 

x  X = {x  Rn:  xLO ≤ x ≤ xUP} (3) 

y  Y ={0,1}m (4) 

where x is a vector of continuous variables and y is a vector of discrete binary (0,1) 

variables. The function f(x,y) is the objective function subjected to the (in)equality 

constraints g(x,y). At least one function must be non-linear. All functions must be 

continuous and differentiable. 

In structural optimization, the continuous variables x define dimensions, strains, 

stresses, costs, etc., and the binary variables y represent the potential existence of 

structural elements within the defined superstructure and the choice of discrete 

material grades, standard sections and rounded dimensions (continuous dimensions 

are rounded up to whole values in cm or mm). Non-linear equality and inequality 

constraints and the bounds of continuous variables represent the strict system of 

design, loading, resistance and deflection constraints known from structural analysis 

and dimensioning. 

3   Solution of the MINLP optimization problem 

Once the MINLP model of a structure is developed, the defined MINLP problem is 

solved by using an appropriate MINLP algorithm and strategy. In principle, a general 

class of MINLP optimization problems can be solved by the following algorithms and 

their extensions: 



• Generalized Benders Decomposition (GBD), presented by Benders [6] and 

Geoffrion [7], 

• Non-linear Branch and Bound (NBB), proposed and used by many authors, 

e.g. Beale [8], and Gupta and Ravindran [9], 

• Outer-Approximation (OA), presented by Duran and Grossmann [10], 

• Feasibility Technique (FT) by Mawengkang and Murtagh [11], 

• Sequential Linear Discrete Programming (SLDP), presented by Olsen and 

Vanderplaats [12], Bremicker et al. [13], 

• LP/NLP based Branch and Bound (LP/NLP BB), presented by Quesada and 

Grossmann [14], 

• Extended Cutting Plane (ECP) by Westerlund and Pettersson [15]. 

The extension of the OA, the Outer-Approximation /Equality Relaxation (OA/ER) 

algorithm, developed by Kocis and Grossmann [16] to handle equality constraints, 

seems to be one of the most efficient algorithms for solving large MINLP problems 

when NLP sub-problems are expensive and difficult to solve. The OA/ER algorithm 

consists of the solution of an alternative sequence of optimization sub-problems of 

Non-linear Programming (NLP) and Mixed-Integer Linear Programming (MILP) 

main problems, see Kravanja et al. [3]. The former corresponds to a continuous 

optimization of parameters for a mechanical structure with a fixed topology, material 

grades and standard sections, and results in an upper bound to the objective to be 

minimized. The latter involves a global linear approximation to the superstructure of 

alternatives where a new topology, material grades and standard sections are 

identified so that its lower bound does not exceed the current best upper bound. The 

search for a convex problem is terminated if the predicted lower bound exceeds the 

upper bound, otherwise it is terminated if the NLP solution cannot be improved. 

The OA/ER algorithm and all other MINLP algorithms mentioned do not generally 

guarantee that the solution found represents the global optimum. This is due to the 

presence of nonconvex functions in the models that can cut off the global optimum. 

To reduce the undesirable effects of non-convexity, the Modified OA/ER algorithm of 

Kravanja and Grossmann [1] was proposed. 

The optimal solution of a comprehensive, non-convex and non-linear MINLP 

problem with a high number of discrete decisions is generally very difficult to 

achieve. For this purpose, the MINLP Linked Multi-level Hierarchical Strategy 

(LMHS) was developed to accelerate the convergence of the Modified OA/ER 

algorithm. With the LMHS strategy we hierarchically decompose the original integer 

space and the original MINLP problem into several subspaces and corresponding 

MINLP levels, which significantly improves search efficiency. Decision levels are 

hierarchically classified as: 

• Level of discrete topology and material alternatives (the highest level), 

• Level of discrete standard dimension decisions (the middle level), 

• Level of rounded dimension decisions (the lower level). 

Higher levels give lower bounds to the original objective function to be minimized, 

while lower levels give upper bounds. The MINLP sub-problems are iterated at each 



level until the NLP solution has no more improvements. For more on the multi-level 

strategies see [17, 18]. 

5   Numerical examples 

To demonstrate the applicability of the MINLP optimization approach, three 

numerical examples are presented. The optimizations are performed with the MINLP 

computer package MIPSYN [19]. The Modified OA/ER algorithm and the LMHS 

strategy are applied, using CONOPT4 (Generalized reduced-gradient method) [20] 

for the solution of NLP sub-problems and CPLEX 12.7 (Branch and Bound method) 

[21] for MILP main problems. GAMS (General Algebraic Modelling System) [22] is 

used for modelling. 

5.1   Composite floor system 

The first example shows the simultaneous cost, material and standard dimension 

optimization of an I-beam composite floor system with a span of 30 m, which is 

exposed to its own weight and the uniformly distributed imposed load of 6 kN/m2. 

The composite floor system consists of a reinforced concrete slab and 

symmetrically welded steel I-beams. A complete shear connection between the 

concrete slab and the steel profiles is taken into account. The optimization model 

COMBOPT is developed in the environment GAMS, see [23-24]. The material and 

labour production costs for the composite beams are considered in the economical 

type of the objective function, subjected to the given design, material, resistance and 

deflection constraints defined in accordance with Eurocode 4 [25]. The design plastic 

moment resistance of the composite section is considered. 

The superstructure comprises 7 different concrete strengths (C20/25, C25/30, 

C30/37, C35/45, C40/50, C45/55, C50/60), 3 different structural steel grades (S 235, 

S 275, S 355), 9 different standard iron sheet thicknesses (from 8 mm to 40 mm) for 

webs and flanges separately, 25 different standard reinforcing meshes and 27 different 

rounded dimensional alternatives in a whole cm for slab depth (from 4 to 30 cm). The 

combination between the above-mentioned discrete alternatives results in 1.148·106 

different structural alternatives. One of these is the optimum variant. 

The optimal result of 112.08 EUR/m2 is achieved, see Figure 1. In addition to the 

optimal self-production costs, the optimal concrete strength C50/60, steel grade S 

355, the concrete slab depth, standard reinforcing wire mesh and the optimal standard 

thicknesses of steel webs and flanges are achieved. 
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Fig. 1. Optimal composite I beam floor system. 

5.2   High-pressure steel penstock Kozjak 

The second example deals with the mass optimization of a high-pressure steel 

penstock, planned to be manufactured for the Kozjak pumped storage hydroelectric 

power plant in Slovenia, 15 km from the city of Maribor. The Kozjak power plant 

consists of an already constructed water reservoir of 3 million m3, a gross water head 

of 743 m and a net capacity of 2 x 220 MW of 2 Francis-reversible turbines. 

The company IBE from Ljubljana prepared the design for the Kozjak power plant 

and carried out a dimensioning of the penstock. Different variants were planned, 

including the alternatives of the inclined and vertical penstock. The variants of the 

inclined penstock were designed in 2011 [26]. The optimization of the penstock 

variants was then performed at the Faculty of Civil Engineering, University of 

Maribor. 

The optimization model PIPEOPT was developed and applied, see Kravanja [27]. 

The model includes the mass objective function of the longitudinal pipe sections. The 

constraints for the dimensioning of the penstock are defined according to the C.E.C.T. 

recommendations [28]. Two load cases on the pipe are considered. The first case is 

the internal water pressure caused by filling the penstock with water. The dynamic 

effect of water hammer is also taken into account. The second load case represents the 

external water pressure, which is calculated so that it is equal to the height of the 

external groundwater. 

The optimization of the longest penstock variant, variant 1, with the length of 

2471.03 m is shown in the paper, see Figure 2. This variant consists of the steel lining 

without stiffening rings, designed from the high-strength steel S 690Q. 

The inner diameter of the pipe varied from 3.9 m to 4.3 m, the various defined pipe 

length sections are from 144.10 m to 619.78 m long, the corrosion allowance taken 

into account is 2 mm, the maximum defined internal water pressure is 102.83 bar and 

the maximum external water pressure taken into account is 46.38 bar. While the 

safety factor in relation to the internal water pressure is 1.50, the safety factor in 

relation to the external water pressure is 1.80. 



 

Fig. 2. Longitudinal section of the steel penstock Kozjak. 

The superstructure of the treated penstock variant comprises 70 different rounded 

wall thickness alternatives in mm (from 10 to 80 mm) for all 6 longitudinal penstock 

sections separately, resulting in 420 different structural alternatives. One of them is 

the optimal one. 

Six different pipe longitudinal sections of different diameters and lengths are 

optimized. The optimal result is the minimal mass of the obtained steel penstock of 

9967.40 tons and the calculated wall thicknesses of 20 mm to 63 mm. 

5.3   Underground gas storage Senovo 

The third example shows the MINLP optimization of the investment costs of the 

underground gas storage facility (UGS) in Senovo, Slovenia. The project comprises 

four equal lined rock caverns (LRC) for the storage of 4x5.56=22.24 million m3 of 

natural gas, see Žlender and Kravanja [29]. 

The optimization model UGSOPT was developed. The cost items and prices 

defined in the objective function are the same as those used in the project. The 

optimization model includes geotechnical boundary conditions that ensure that the 

strength of the rock mass is sufficient, that the lifting of the rock over the cavern is 

prevented, that the collapse of the rock between the caverns is prevented and that the 

deformations of the concrete wall and the steel lining are limited. 

The LRC superstructure comprises 201 different alternatives with rounded 

dimensions for the internal diameter of the cavern, 2001 alternatives for the depth of 

the cavern, 301 alternatives for the height of the cavern tube, 31 alternatives for the 

thickness of the concrete cavern wall and 201 discrete alternatives for the internal gas 

pressure. 2735 binary variables are defined. In this way, the combination between the 

given discrete alternatives for the gas storage gives 7.543·1011 different LRC 

structural alternatives. One of them is the optimum variant. 



 

Fig. 3. The optimized lined rock cavern. 

The DICOPT program from Grossmann and Viswanathan [30] was selected for 

optimization. The optimal result is the achieved minimum investment costs of 72.88 

million EUR. Figure 3 shows the vertical cross-section of the optimized lined rock 

cavern with the calculated optimal dimensions and the internal gas pressure. 

6   Conclusion 

The paper handles with the MINLP approach (Mixed-Integer Non-linear 

Programming) for structural optimization. MINLP is a combined discrete and 

continuous optimization technique. It requires that a structure is generated as a 

MINLP superstructure, consisting of different topology and design alternatives that 

can be considered for an optimal solution. For each structure an MINLP optimization 

model is modelled. This model defines the cost or mass objective function of a 

structure that is subject to design, structural analysis and dimensioning constraints. 

The Modified Outer-Approximation/Equality-Relaxation algorithm, the Linked Multi-

level Hierarchical Strategy and the MINLP computer packages MIPSYN or DICOPT 

are used for the optimization. MINLP has proven to be a successful optimization 

technique for solving large-scale, non-linear and discrete optimization problems of 

structures in civil engineering. 
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