West Chester University

Digital Commons @ West Chester University

Sustainability Research & Practice Seminar Presentations Sustainability Research & Creative Activities @ WCU

9-16-2020

Second-Best Prioritization of Environmental Cleanups

Jacob LaRiviere

Matthew J. McMahon

Justin Roush

Follow this and additional works at: https://digitalcommons.wcupa.edu/srca_sp

Part of the Environmental Health and Protection Commons, and the Sustainability Commons

Second-Best Prioritization of Environmental Cleanups

Jacob LaRiviere,¹ Matthew J. McMahon,² & Justin Roush³

September 16, 2020

¹Microsoft, The University of Washington, The University of Tennessee
 ²West Chester University
 ³Xavier University

Matt McMahon (West Chester)

Superfund Overview

- What are Superfund sites?
 - Hazardous waste sites
 - Usually caused by dumping or improper management
 - Does not include sites posing immediate risks
- How are they cleaned?
 - Cleaned by the EPA to allow for development
 - Funding comes from litigation against those who dirtied the site
 - Funding for all sites and all litigations is in one big pot
- Examples: Philadelphia Navy Yard, Havertown PCP Site, Roebling Steel (Florence, NJ)

Philadelphia Navy Yard - Girard Point

Before

After

Apache Powder Site – Benson, AZ

Covanta Coal Plant Site - Lawrence, MA

Superfund Overview

Remediation process goes beyond just cleanup

- Also includes completing a full economic development of the site
- This helps local economies!
 - Hamilton & Viscusi (1999 JPAM)
- Process for prioritizing site cleanups is vague
 - Nine total criteria
 - Not based on any economic factors!

Superfund Overview

Remediation process goes beyond just cleanup

- Also includes completing a full economic development of the site
- This helps local economies!
 - Hamilton & Viscusi (1999 JPAM)
- Process for prioritizing site cleanups is vague
 - Nine total criteria
 - Not based on any economic factors!

Research Question(s): Is the EPA leaving money on the table by not considering economic factors when prioritizing cleanup sites?

Superfund Overview

Remediation process goes beyond just cleanup

- Also includes completing a full economic development of the site
- This helps local economies!
 - Hamilton & Viscusi (1999 JPAM)
- Process for prioritizing site cleanups is vague
 - Nine total criteria
 - Not based on any economic factors!

Research Question(s): Is the EPA leaving money on the table by not considering economic factors when prioritizing cleanup sites?

How can the EPA increase overall social welfare by prioritizing sites?

Preview of Methods

- Modify a standard theoretical macroeconomic model
 - Account for local economic benefits of cleanup
 - Both short-run and long-run benefits
- Run a Monte Carlo simulation using the modified model
 - Calibrated with actual data
 - Test various new prioritization policies against the current one

Preview of Results

- Theoretical model identifies which variables play a role
- Simulation results show benefits of various prioritization policies (relative to current system)
- Resulting ordered heuristics we suggest for the EPA, with each subsequent one as a tie-breaker for the previous:
 - 1. Smallest cleanup costs
 - 2. Most productivity loss due to site waste
 - 3. Currently recessed localities
 - 4. Largest local discount rates
- ► Note: These heuristics are virtually costless to implement
 - Not doing so means leaving money on the table

Before Superfund

- Frequent environmental disasters gained national attention in the 1950s, '60s, & '70s
 - Cuyahoga River Fires (1952, 1969, etc.) Cleveland, OH area
 - ► The Valley of the Drums (1960s–1982) Brooks, KY
 - The Love Canal (1977) Niagara Falls, NY
- President Nixon created the EPA on December 12, 1970

Before Superfund

Cuyahoga River Fire

The Valley of the Drums

Establishment & Expansion of Superfund

- CERCLA (1980) Comprehensive Environmental Response, Compensation, & Liability Act
 - Provides the EPA with the federal authority and resources to secure/clean waste sites

► SARA (1986) – Superfund Amendments & Reauthorization Act

- Program expanded to include minimum cleanup requirements
- Requires consent decrees, subject to public comment, to be made in federal courts
- Mandates planning of post-cleanup commercial and public-use redevelopment prior to the start of remediation

Superfund Budget

Funding largely comes from legal payments required by polluters

- Originally from taxes on polluters
- Now from ex-post legal battles
- ► Funding is NOT site-specific
 - All funds go into one big pot

Superfund Budget

- ► Yearly Superfund expenditures average ≈\$2 billion since 2001
 - Relatively constant over time
 - ► Spread out over ≈300 ongoing sites per year
- ► Funding is not sufficient to clean all sites in a given year
 - Currently 1,338 sites on the NPL (National Priorities List)

► Funding scarcity ⇒ the EPA must choose how to prioritize sites

Remediation Timeline

- 1. A hazardous waste site is identified
- 2. Sites posing an immediate threat to human health skip this list
 - These are NOT Superfund sites forget them
- 3. EPA assigns a hazard score, $\in [0, 100]$, to each site
- 4. Sites scoring high enough are placed on the NPL
- 5. EPA uses nine criteria to decide which sites from the NPL begin remediation
 - Local economic conditions, etc. are NOT included
- Note: No laws preventing the EPA from using additional criteria
 - We test this and find that they do not consider the criteria we identify as important

Existing Literature

Superfund cleanups have lasting positive economic impacts
 Hamilton & Viscusi (1999 JPAM)

- ▶ Median home values \uparrow by 15.4% near cleanup site
 - ► Gamper-Rabindran et al. (2011 NBER)
- Case study found total benefits ↑ by roughly \$72–112 million
 Kiel & Zabel (2001 JREFE)
- Similar impact on industrial properties
 - An Atlanta-area waste site discovery caused \$56 million in total land depreciation
 - Ihlanfeldt & Taylor (2004 JEEM)

Existing Literature

- Increase in value directly correlates with site proximity
 - ► Gamper-Rabindran et al. (2011 NBER); Mastromonaco (2014 ERE)
- The effect disappears after \approx 3 km
 - Gamper-Rabindran & Timmins (2013 JEEM)

Standard Ramsey Model – Small (3 km) Open Economies

- Continuous-time framework
- Central planner balances consumption (c) and capital (k)
- Planner's Goal: Maximize the net present value of utility of all consumption, present and future
- Results in typical Brownian motion framework
 - Steady state (s.s.) levels of consumption (c^*) and capital (k^*)
 - One-time disruptions from s.s. end up converging back toward s.s.
 - Permanent changes in productivity alter the s.s. itself

Model Modification #1

We model recessions as a shock to economic productivity that imperfectly persists over time

Figure: Stylized Representation of Capital (k) and Steady-State Capital (k^*). Recession at t = 20. Site is Never Cleaned.

Matt McMahon (West Chester)

Model Modification #1

We model recessions as a shock to economic productivity that imperfectly persists over time

Figure: Stylized Representation of Consumption (c) and Steady-State Consumption (c^*). Recession at t = 20. Site is Never Cleaned.

Matt McMahon (West Chester)

Model Modification #2

- The short-run effect of cleanup is a direct injection of federal cash into the local economy
- We model this as a one-time boost in capital (k increases by k)
 This is literally the cost of cleaning up the site
- This short-run effect is transitory
 - It does not affect the steady state

Model Modification #3

- ► The long-run effect of cleanup is a permanent boost in economic productivity (1 A(w))
 - This permanently alters the steady state

Figure: Stylized Representation of Capital (k) and Steady-State Capital (k^*). No Recession. Site is Cleaned at t = 20.

Matt McMahon (West Chester)

Model Modification #3

- ► The long-run effect of cleanup is a permanent boost in economic productivity (1 A(w))
 - This permanently alters the steady state

Figure: Stylized Representation of Consumption (*c*) and Steady-State Consumption (c^*). No Recession. Site is Cleaned at t = 20.

Theoretical Predictions

- ► We simultaneously add all 3 modifications to our theoretical model
- We systematically vary each aspect of the model to study the effects on social welfare, all else equal

Theoretical Predictions:

- 1. In the absence of funding constraints, it's always better to clean sooner
- 2. Given a budget, smaller cleanup costs allow for more sites to be cleaned, increasing social welfare more
- 3. Cleaning sites that dampen productivity more increase social welfare more
- 4. Cleaning sites in recessed economies helps by ending the recessions faster
- 5. Cleaning sites in economies with higher discount rates increases social welfare more

Simulation Setup

- Monte Carlo simulation with 1,000 draws
- Each draw has 500 cleanup sites spanning 60 quarters (15 years)
- ► The budget increases every 4 quarters (1 year)
 - Budget is based on actual EPA data
- Recessions occur stochastically
 - Can occur in any quarter

Monte Carlo draws

- Monte Carlo draws are made using variation in four dimensions:
 - Local economies' probability of entering a recession (ρ)
 - Local economies' discount rates (r)
 - Site cleanup costs (\overline{k})
 - Sites' productivity dampening effects on the local economy (1 A(w))
- ► All four variable distributions are calibrated using actual data

Simulation

Simulation Cleanup Policies

► We compare 8 different cleanup ordering policies for each MC draw:

- 0. Baseline random (with respect to economic variables)
- 1. Recessed sites first, but otherwise random
- 2. Sites ranked by highest ex ante probability of entering a recession (ρ)
- 3. Sites ranked by highest local discount rate (r)
- 4. Sites ranked by smallest cleanup cost (\overline{k})
- 5. Sites ranked by largest long-run damages from waste (long-run cleanup benefit, 1 A(w))
- 6. Sites ranked by largest expected net present value (ENPV) of utility per dollar spent
- 7. Clean all sites immediately (no budget constraint)

Simulation Progression

- For a given MC draw, the 500 sites' four parameter values are drawn
 This determines the sites' initial consumption and capital values for starting time t = 1
- ► For a given policy, all 500 sites are ranked
- Each site is considered for cleaning in rank order
 - If a site's cleanup cost is less than the remaining budget, it is cleaned and that cost is removed from the budget
 - Otherwise, that site is left uncleaned for now

Simulation Progression

Quarters 2–4 follow according to the model

• Recessions may or may not happen in any quarter, in accordance with ρ

The budget increases in quarter 5

- ► All remaining uncleaned sites are re-ranked for each given policy
- Sites are again cleaned in rank order, when affordable
- This repeats through 60 quarters

Simulation Progression

- Calculate the total net present value of utility across all 60 quarters across all 500 sites
- We compare this across all 8 policies within each MC draw
 - Specifically, we calculate the percent increase for each of Policies 1–7 relative to baseline Policy 0
- Last, calculate the mean (etc.) percent increase across all 1,000 MC draws for each of those policy comparisons

Policy 7

- Policy 7: Cleaning all sites immediately i.e., removing all budget constraints
 - Social welfare ↑ by a mean of 4.18% relative to the baseline (current) policy (p < 0.001)</p>

- This is not realistically feasible
 - It serves as an upper-bound benchmark for other policies

Policy 6

- Policy 6: Prioritize sites by highest expected net present value (ENPV) of utility per dollar spent
 - Social welfare ↑ by a mean of 1.88% relative to the baseline (current) policy (p < 0.001)</p>

- Rough estimation of ENPV of utility per dollar spent is feasible for the EPA
 - ► However, there may be large administrative costs ignored by our model

Policies 1–5

Table: Mean percent increase in social welfare relative to baseline (current) policy

Policy	Mean	<i>p</i> -value
1: Recessed first, then random	0.30%	< 0.001
2: Highest prob. of recession (ρ)	-0.03%	0.497
3: Largest discount rate (r)	0.21%	< 0.001
4: Smallest cleanup cost (\overline{k})	1.85%	< 0.001
5: Largest long-run damages from waste $(1 - A(w))$	0.37%	< 0.001

Policies 1–5 utilize easily observable data (small administrative costs)

- The EPA could implement any of them nearly costlessly
 - ► (Except maybe A(w))

Policy Recommendation

▶ We recommend a "rule of thumb" approach

Rank policies, so each subsequent rule is a tie-breaker for the previous

Ordered heuristics, starting with the most important:

- 1. Smallest cleanup cost
- 2. Largest amount of long-run damage caused by waste
- 3. Recessed local economies
- 4. Largest local discount rates

Summary

- EPA does not consider economic characteristics when prioritizing Superfund site cleanups
 - ► Large literature showing economic benefits ⇒ Maybe they should?
- ► We model the local economic impact of site cleanup
 - Both short-run and long-run benefits
- Our Monte Carlo simulations show that prioritization improves welfare
 - We provide a set of guidelines for the EPA to follow
- These guidelines are nearly costless to implement
 - Ignoring these guidelines is leaving money on the table

Future Work

- Correlations among economic characteristics
- Other potential characteristics
 - Length of time to clean a site, geographical complementarities between sites, site contractors may respond to local economic conditions
- Allow the social planner to bank funds across time/borrow from their "future self"
 - Legally ambiguous
- Ex post analysis of our simulation if the EPA implements our guidelines
- Extensions to other types of federal spending
 - Transportation, education

Thank You