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Abstract 

Alzheimer’s disease (AD), the most common form of dementia worldwide, is a mixed proteinopathy (amyloid 
and tau). Originally defined as a clinicopathological entity, it is a heterogenous, multifactorial disorder, current-
ly referred to as the Alzheimer’s continuum. Its cardinal pathological features are extracellular β-amyloid (amy-
loid plaques) and intraneuronal tau aggregates forming neurofibrillary tangles, which are accompanied by vas-
cular amyloid deposits (cerebral amyloid angiopathy), synapse and neuronal loss, as well as neuroinflammation 
and reactive astrogliosis. In addition to “typical” AD, various subtypes with characteristic regional patterns of 
tau pathology have been described that show distinct clinical features, biomarker levels, and patterns of key 
network destructions responsible for cognitive decline. AD is frequently associated with other age-related 
changes including Lewy and TDP-43 pathologies, hippocampal sclerosis, argyrophilic grain disease, cerebrovas-
cular lesions, and others. These additional pathologies influence the clinical picture of AD, may accelerate dis-
ease progression, and can cause a number of challenges in our understanding of the disease including the 
threshold of each individual pathology to cause dementia and the possibility of underlying common etiologies. 
This article provides an up-to-date overview of AD neuropathology, its heterogeneity, and additional patholo-
gies in order to explain the difficulties in the diagnosis and the failure of clinical trials in AD patients. 
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Abbreviations 

AD – Alzheimer’s disease, ADNC - Alzheimer’s 
disease neuropathological changes, AP - amyloid 
plaque, APP - amyloid precursor protein, Aβ - β-
amyloid peptide, AβO - Aβ oligomer, CAA - cerebral 
amyloid angiopathy, CBS - corticobasal syndrome, 
CERAD - Consortium to Establish a Registry for Alz-
heimer Disease, CSF - cerebrospinal fluid, CVD - 
cerebrovascular disease, DLB - dementia with Lewy 
bodies, EOAD - early-onset AD, FTLD - frontotem-

poral lobar degeneration, FTLD-TDP - frontotem-
poral lobar degeneration with TDP-43, GVD - 
granulovacuolar degeneration, HcSp-AD - hippo-
campal sparing AD, hp-tau - hyperphosphorylated 
tau protein, LATE - limbic-predominant age-related 
TDP-43 encephalopathy, LATE-NC - limbic-
predominant age-related TDP-43 encephalopathy 
neuropathological change, LC - locus ceruleus, 
LOAD - late-onset AD, LP-AD - limbic-predominant 
AD, LPPA - logopenic primary progressive aphasia, 
MA-AD - minimal-atrophy AD, MCI - mild cognitive 
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impairment, MTL - medial temporal lobe, NFT - 
neurofibrillary tangle, NIA-AA - National Institute of 
Aging/Alzheimer's Association, NP - neuritic plaque, 
NT - neuropil thread, PART - primary age-related 
taupathy, PCA - posterior cortical atrophy, PHF - 
paired helical filament, SF - straight filament, TDP-
43 - 43-kDa TAR DNA binding protein 43. 

1. Introduction  

Alzheimer’s disease (AD) is the most common 
form of dementia, currently affecting around 50 
million people worldwide. It accounts for 60-70% of 
dementia cases in clinical and autopsy series, but it 
is often associated with other confounding pathol-
ogies in the elderly. Its incidence increases from 
2/1.000 at age 65-74 years to 37/1.000 at age 85+ 
[1], and doubles every five years after age 65, with 
peaks in the tenth decade and slight decrease af-
terwards [2, 3]. The point prevalence of AD among 
individuals aged 60+ is 40.2/1,000 persons, the 
pooled annual period prevalence is 30.4/1,000, and 
the incidence rate is 15.8/1,000 person-years [4]. 
With the disproportional increase of the elderly 
population, the prevalence of AD will approach 
around 132 million worldwide and up to 16 million 
cases in the USA by 2050 [5, 6], AD has become a 
tremendous public health and socio-economic chal-
lenge of the 21st century [5]. As available treat-
ments only target symptoms and neither slow nor 
reverse the progression of the disease, the devel-
opment of disease-modifying therapeutic proce-
dures is urgent [7]. 

AD was originally defined as a clinicopatholog-
ical entity, characterized by progressive memory 
deficit, involvement of multiple cognitive domains, 
and a defining pathological substrate with deposi-
tion of amyloid-β peptide (Aβ) in extracellular 
plaques and cerebral vasculature (cerebral amyloid 
angiopathy/CAA), neuritic plaques defined by the 
presence of microtubule-associated hyperphos-
phorylated tau protein (hp-tau), intraneuronal ag-
gregations of hp-tau manifesting as neurofibrillary 
tangles (NFTs) in the cell soma, and neuropil 
threads (NTs), which occur mainly in dendritic 
compartments and, to a lesser degree, in the axon-
al domain. These changes are accompanied by ear-
ly synaptic loss [8], activated microglia [9], mito-
chondrial dysfunction causing energy loss [10], 

neuroinflammation [11], neurovascular dysfunction 
[12], disruption of the blood-brain barrier [13], 
neuronal loss and reactive astrogliosis [14]. AD, a 
mixed proteinopathy (amyloid, tau, TDP-43, and 
others), is a heterogenous disorder currently re-
ferred to as the Alzheimer’s continuum [15] with 
several pathobiological subtypes and various co-
pathologies [16]. The final definite diagnosis of AD 
rests with post-mortem neuropathology despite the 
advent of more sensitive neuroimaging and the use 
of reliable biomarkers [17]. Even though the classi-
cal morphological features of AD have been known 
for many years, the recently used more sensitive 
immunohistochemistry techniques for Aβ and hp-
tau have replaced silver-staining techniques and 
have not only forwarded the diagnosis of AD but 
allowed a more scientific evaluation of the dis-
ease's pathology. 

For the neuropathological diagnosis of AD, the 
updated National Institute on Aging/Alzheimer's 
Association (NIA/AA) 'ABC' criteria are used [17]. 
The morphological changes involving brain regions 
and neuronal cell types following a stereotypical 
pattern [18] result from selective cellular and re-
gional vulnerability to pathogenic factors and their 
progression through functionally integrated regions 
of the brain [19-23] as well as functional networks 
that result in progression of AD [24, 25]. However, 
AD is a heterogenous continuum with a variety of 
clinically and morphologically defined subtypes, 
currently referred to as Alzheimer’s clinical syn-
drome [15], which presents major challenges for 
both diagnosis of AD, monitoring and targeting of 
disease progression [26]. 

The new definition of AD as a biologically de-
fined spectrum, using the NIA/AA framework [15], 
enables recognition and diagnosis of the various 
subtypes of AD [16]. Research consensus guidelines 
have been proposed for the intra vitam biological-
ly-based categorization termed 'ATN', which uses 
combinations of in vivo biomarkers for Aβ deposi-
tion (A), tau pathology (T), and neurodegeneration 
(N). They use cerebrospinal fluid (CSF) or plasma 
biomarkers, PET, and functional and structural MRI. 
The biomarker profiles and categories of the Alz-
heimer’s spectrum referring to AD neuropathologi-
cal changes (ADNC) have been summarized recent-
ly [27]. 
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2. Pathology of Alzheimer’s disease  

2.1. Macroscopic features 

The AD brain often has decreased weight and 
at least moderate cortical atrophy most marked in 
the medial temporal lobes (MTLs) with relative 
sparing the primary motor, somatosensory and 
visual cortices and enlargement of the lateral ven-
tricles (ex vacuo hydrocephalus). Brain atrophy 
often involves posterior cortical areas, most nota-
ble in precuneus and posterior cingulate gyrus in 
the preclinical stage of AD [28]. However, none of 
the macroscopic features are specific to AD, and 
healthy elderly people often show moderate corti-
cal atrophy especially affecting the frontal lobes, 
with volume loss of the white matter [29]. Medial 
temporal atrophy affecting amygdala and hippo-
campus with enlarged temporal horn is typical of 
AD (Fig. 1). However, this is also seen in other age-
related disorders such as hippocampal sclerosis 
[30]. 

2.2. Microscopic features 

The definite diagnosis of AD requires micro-
scopic examination of multiple brain regions with 
semiquantitative assessment of the density of 

 

 

Figure 1. Comparison between formalin-fixed brain slices of 
the left hemispheres (level of posterior hippocampus) of an 
aged nondemented individual (A) and an AD patient (B). Note 
the marked atrophy (thinning of the gyri and deepening of the 
sulci) in B, in particular hippocampal atrophy (arrow in B) with 
widening of the inferior horn of the second ventricle (asterisk 
in B). Photographs by courtesy of Simon Fraser and Arthur 
Oakley. 

lesions and their topographical distribution. Extra-
cellular amyloid plaques (APs) and intracellular 
NFTs that are essential for the neuropathological 
diagnosis, are associated with tau-positive NTs, 
dystrophic neurites and neuritic plaques (NPs), 
CAA, reactive astrocytes and activated microglia, 
and neuroinflammation are present. These lesions 
result in loss of synapses and neurons in vulnerable 
regions leading to brain atrophy and the character-
istic clinical picture of the disease. Hirano bodies, 
granulovacuolar degeneration (GVD), TDP-43 de-
posits, and other lesions may also be present [31, 
32].  

2.3. Amyloid deposits 

APs are formed by the abnormal extracellular 
nonvascular accumulation and deposition of Aβ 
peptides of varying length including those with 40 
or 42 amino acids (Aβ-40 and Aβ-42), resulting 
from the sequential cleavage of the amyloid pre-

cursor protein (APP) by the enzymes β- and -
secretases [33]. APP, from which Aβ is cleaved by 
endoproteolytic processing, is a large single trans-
membrane protein, encoded by the APP gene on 
chromosome 21 [34, 35]. Proteolytic cleavage of 
APP develops mainly via two exclusive pathways, 
the amyloidogenic and the non-amyloidogenic 
pathway, but other alternative pathways (η-

secretases, -secretase, etc.) have been described 
for the physiological processing of APP [36]. The 
initial cut at the β-site of APP is due to the β-
secretase activity enzyme BACE1, a transmembrane 
enzyme with aspartyl protease activity. Clearance 
by β-secretase yields a slightly shorter soluble 
fragment (sAPPβ) and a correspondingly longer C-
terminal fragment (CTFβ) or C99 [37]. APP under-
goes constitutive shedding by a protease activity 
called α-secretase, which appears to be a metallo-
protease of the ADAM family. TACE (ADAM17) is 
one of the α-secretase, but ADAM10 is more im-
portant for α-secretase activity and sAPPα produc-
tion. ADAM10 is the physiologically relevant consti-
tutive of α-secretase in primary neurons [38], as 
has been demonstrated in vitro and in vivo [39]. 

Cleavage of APP by α-secretase releases the 
soluble ectodomain of APP, called sAPPα, and a 
membrane-tethered intracellular C-terminal frag-
ment, termed CTFα of C83. The amyloidogenic (or 
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β) cleavage of APP is in direct competition with an 
alternative non-amyloidogenic pathway (cleavage 
by the α-secretase within the Aβ sequence) which 
precludes the formation of amyloidogenic peptides 
and leads to soluble sAPPα, and has neuroprotec-
tive properties preventing Aβ production [40]. 
However, aberrant sAPPα production may tilt the 
cells toward unregulated growth, but the underly-

ing mechanisms are still unknown [41]. Lastly, -
secretase, a high molecular weight complex that 
consists of presenilin (PS1, PS2), an aspartyl mem-
brane protease, Aph-1, nicastrin and presenilin 
enhancer (PEN2), cleaves APP terminal fragments 
(CTFs) such as C83 and C99, releasing 3 or 4 amino 
acid peptides from the transmembrane fragment of 

APP. Notably, -secretase is active on APP only fol-
lowing the antecedent α- or β-secretase. The prod-

ucts of -secretase cleavage of C83 are a 3-kDA 
peptide, termed p3 and an APP intracellular do-

main (AICD), while -secretase cleavage of C99 
yields the infamous Aβ peptide and an identical 

AICD fragment. Besides cleavage by α-, β-, and -
secretase, other N-terminal fragments (NTFs) of 
APP have been identified that are generated by 
unknown proteases [42, 43]. Mounting evidence 
suggests that astrocytes that have increased levels 

of APP, β-secretase (BACE1), and -secretase play 
an additional role in AD by secreting significant 
amounts of Aβ and contributing to overall Aβ bur-
den in the brain [44]. BACE1 inhibition more effec-
tively suppresses the initial process of plaque for-
mation, rather than the subsequent phase of 
plaque growth, which has implications for thera-
peutic efficiency for the treatment of AD [45]. AD is 
driven by intraneuronally retained Aβ produced by 
the AD-specific βAPP-independent pathway [46]. 
Neuronal Aβ-42 is enriched in small vesicles at the 
presynaptic side of synapses [47].  

Aβ deposits contain a mixture of various 
isoforms. The most common are Aβ-40 (under 
physiologic conditions around 90%), Aβ-38 and Aβ-
42 (less than 10%). Aβ-40 is produced within the 
trans-Golgi network (TGN) whilst Aβ-42 can be 
made in either the TGN or the endoplasmic reticu-
lum [48]. The specific production of Aβ-42 in the 
endoplasmic reticulum of neurons links this com-
partment with the generation of Aβ and explains 
why primarily endoplasmic reticulum localized pro-
teins such as presenilin could induce AD [49]. In-

creased production of Aβ-42 at the expense of Aβ-
40 is a common feature in both familial and sporad-
ic AD [50]. The latter is believed to be more toxic 
than Aβ-40 because of its tendency to aggregate 
and to form fibrils [51]. The phosphorylation of APP 
by extracellular-regulated kinase (ERK) and protein 
kinase C (PKC), in the proteolytic processing of APP 
has been demonstrated to be critically modulating 
the generation of Aβ [52]. The C-terminal APP 
fragments (APP intracellular domain) are generated 

by -secretase cleavage [53]. -Secretase was 
shown to cleave near the cytoplasmic membrane 
boundary of APP, called ε-site cleavage, as well as 

in the middle of the membrane domain, called -
site cleavage, indicating that γ- and ε-site cleavage 
are regulated independently [54]. Ubiquilin-1 has 

been shown to modulate -secretase-mediated ε-
site cleavage and thus may play a role in regulating 

-secretase cleavage of APP and other proteins 
[55]. Further cleavage of APP intracellular domain 
(AICD) fragments by caspase or caspase-like prote-
ases results in additional fragments which, howev-
er, does not seem to require antecedent proteoly-
sis of APP [41]. 

Truncated Aβ fragments are deposited in APs 
due to axonal linkage and release of APP [56]. 
Chemical imaging of evolving AP pathology in a 
transgenic mouse model for AD suggested initial 
plaque formation to be seeded by Aβ-42, followed 
by plaque maturation upon deposition of Aβ-40 as 
well as deposition of others [57]. Due to its higher 
rate of fibrillization and insolubility, Aβ-42 is its 
major component in addition to other Aβ peptides 
[58]. A recent report demonstrated the role of HIF-
1alpha/lncRNA BACE1-AS axis in the transactivator 
of transcription (Tat)-mediated induction of astro-
cytic amyloidosis [59]. Advanced biophysical exam-
ination of Aβ derived from AD brain tissue showed 
polymorphic structures [60]. The terminology of Aβ 
plaques is confusing, since a myriad of non-vascular 
Aβ deposits have been described, but five major 
types can be distinguished: (a) primitive or imma-
ture plaques are spherical deposits of predomi-
nantly Aβ-42 in the neuropil without a dense core 
and neurites; (b) diffuse plaques, usually large 
(50µm to several hundred µm), slightly immunore-
active and ill-limited, contain loose amyloid bun-
dles in the neuropil without degenerating neurites 
and accompanying microglia (Fig. 2A); (c) stellate 
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deposits probably related to astrocytes [61]; (d) 
focal deposits with dense and spherical accumula-
tions of Aβ-42, surrounded by a neuritic corona 
containing dystrophic tau-positive neurites and 
astrocytic components, constituting the “cored”, 
“classical” or “neuritic” plaques (NPs) (Fig. 2B, 2B1); 
and finally (e) compact or burnt-out plaques with a 
dense core of Aβ-40, absent or tau-negative, ubiq-
uitin-positive neurites. NPs have compact dense 
amyloid cores composed of more fibrillated forms 
of Aβ (Fig. 3). They contain tau-positive dystrophic 
neurites and are accompanied by synaptic loss, 
activated microglia and reactive astrocytes [62, 63]. 
There are differences in the composition of the 

aggregates, for example, the Aβ in NPs has a more 
varied composition with the presence of Aβ 40, 42, 
43, N-terminus truncated Aβ and other post-
transitionally modified forms [64, 65]. Tau-positive 
NPs begin early in AD, but major tau deposition 
follows the Aβ deposition and the clustering of 
activated microglia [66]. Recent studies unequivo-
cally demonstrated that plaque-associated myeloid 
cells are derived exclusively from resident microglia 
[67]. In AD, microglia can eliminate APs through 
phagocytosis with APOE lipoprotein at an early 
stage of disease progression [68]. Scanning trans-
mission electron microscopy (STEM) showed three 
types of fibrillary network structures: amorphous 

 

 

Figure 2. Amyloid and neuritic plaques. A; A1. Multiple diffuse amyloid plaques in the neocortex (antibody 4G8). B, B1. Neuritic plaques 
that contain Aβ and tau in distended processes (i.e. dystrophic neurites). Gallyas silver stain visualizes both aggregated Aβ and tau and is 
therefore ideal to detect neuritic plaques (ring in B, neuritic plaque; arrow in B1, dystrophic neurite; arrowhead in B1, neurofibrillary 
tangle). Scale bars: 200 μm. From [71]. 
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Figure 3. EM image of amyloid core of a neuritic plaque. Radiating bands of amyloid fibrils comprise the core (x). Note the adjacent 
abnormal fibrils filled with dense bodies (arrows) and surrounding damaged myelin sheaths (x 4000). 

 

network, fibril bundles, and amyloid stars [69]. 
Although diffuse non-neuritic plaques are generally 
present before NPs, whether an individual diffuse 
plaque can actually transfer into an NP or whether 
these two types develop differently, is not clear at 
present. A recently described type called the 
coarse-grained plaque, a relatively large deposit 
(diameter about 80 µm) characterized by multiple 
cores and Aβ-devoid pores, is prominent in the 
neocortex and associated with homozygous APO-
Eε4 status and CAA. This divergent AP type is simi-
lar to CAA, predominantly composed of Aβ-40, and 
has been observed particularly in early-onset AD 
(EOAD) [70]. 

“Burnt out” plaques are composed of dense 
cores lacking neuritic components, while the astro-
cytic processes penetrating the plaque core may 
represent a regressive stage (“remnant plaques”) 
[72]. “Cotton wool plaques” are non-compact de-
posits, made of Aβ-42 with sparse glial components 

and variable neurites but not surrounded by a neu-
ritic corona. They can be detected with H&E stain-
ing [61]. Aβ and tau each begin to aggregate in 
separate neuroanatomical locations and meet in 
the cerebral cortex in the NP. This “collision” of 
both proteins mediated by microglia has devastat-
ing consequences in terms of neuronal loss, pro-
moting neurodegeneration and the consequent 
development of cognitive decline, but this is still 
under investigation [73].  

2.4. Distribution of amyloid deposits 

APs in AD brain show a typical distribution 
with brain areas that are connected via the “default 
network” typically affected early. In animal models 
some demonstration of “propagation” along neu-
ronal systems has been observed [74, 75], suggest-
ing some axonal transport of seeds that lead to 
extracellular deposits.  
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Most Aβ deposits are located in the gray mat-
ter, while some diffuse or lake-like deposits may be 
seen in the subpial white matter. Cortical soluble 
Aβ protein is a neurotoxic agent [76, 77], and Aβ 
oligomers (AβOs) may trigger the early phase of the 
Aβ seeding process, while depletion of AβOs delays 
the aggregation process leading to a transient re-
duction of seed-induced Aβ deposits [78]. The to-
pography of Aβ deposits depends on the stage of 
the disease, which leaded to several staging 
schemes. Three stages were distinguished: Stage A 
with amyloid deposits in the basal portions of the 
frontal, temporal and occipital cortex; in stage B all 
isocortex is involved, with primary cortices spared 
and the hippocampus only mildly affected; while 
stage C shows deposits in the whole isocortex in-
cluding sensory and motor core fields [18]. Others 
proposed five amyloid “phases” using sensitive 
silver staining or Aβ antibodies: stage 1 or isocorti-
cal, stage 2 with additional involvement of hippo-
campus and entorhinal cortex, stage 3 plus stria-
tum and diencephalic nuclei, stage 4 several brain-
stem nuclei and medulla oblongata, and stage 5 
presenting amyloid deposits in the pons and mo-
lecular layer of the cerebellum [79, 80]. These can 
be reduced to three stages: 1 - isocortical, 2 - allo-
cortical or limbic, and 3 - subcortical. Usually in-
volved is the total isocortex, layers II-V more than 
layers I and VI [18]. In advanced cases band-like 
diffuse Aβ deposits are also seen in the subpial 
surface of the cortex or in the white matter close to 
layer VI [71]. Amyloid PET-based staging of Aβ pa-
thology in vivo confirmed its progression in AD [81], 
and revealed higher plaque counts in entorhinal 
and occipital regions of typical AD, while other 
phenotypes showed more severe Aβ deposition in 
frontal and parietal cortices [82]. Post-mortem 
analysis of (18)Fflutemetamol and (11)CPiB PET signal 
showed that it is influenced by both diffuse plaques 
and cored plaques and, therefore, is likely a func-
tion of plaque size and density of Aβ fibrils in 
plaques. Brain regions with large volumes of diffuse 
plaques could yield PET retention levels compara-
ble with lower volume/frequency of cored plaques 
[83]. 

2.5. Cerebral amyloid angiopathy 

Aβ peptides also involve the vessel walls, as 
with CAA, with the more soluble Aβ-40 as the ma-

jor constituent. 85-90% of confirmed AD cases have 
some degree of CAA [84]. It mainly accumulates in 
the interstitium between the smooth cells of the 
tunica media. Small arteries, arterioles and even 
capillaries in the cerebral cortex and leptomenin-
geal vessels are affected [85]. Stage 1: vessels are 
affected in the isocortex, stage 2: involvement of 
allocortex, and stage 3: basal ganglia, thalamus, 
pons and medulla oblongata [86]. Others distin-
guished four patterns [87]: Type 1: APs with or 
without CAA in the leptomeninges alone; type 2: 
CAA in both leptomeningeal and deeper penetrat-
ing arteries (Fig 1A); type 3: CAA affects both pre-
capillaries and arterioles; type 4 shows Aβ deposi-
tion in and around blood vessels. Genetically, type 
3 (capillary subtype) is more strongly associated 
with the APOEε4 allele [87, 88]. Two other types 
were distinguished: Type 1 affecting capillaries, 
arterioles and small arteries is associated with AP-
OEε4, whereas type 2 not involving capillaries is 
more likely associated with APOEε2, its most fre-
quent form [89]. Both severe CAA and AD are asso-
ciated with APOEε4-positive patients [88]. A more 
recent staging system is based on the severity of 
CAA in a single vessel: grade 0: absence of staining, 
grade 1: a congophilic ring around the otherwise 
normal-appearing vessel, grade 2: complete re-
placement of the tunica media by congophilic ma-
terial, grade 3: involving >50% of vessel circumfer-
ence, giving a “double-barrel” appearance, and 
grade 4 or fibrinoid necrosis of the vessel wall with 
additional amyloid deposits in the surrounding 
neuropil (“dyshoric changes”) [88]. The parietal and 
occipital cortices are more vulnerable than the 
frontal and temporal lobe, and the leptomeningeal 
vessels more than the parenchymal ones [84]. Aβ 
deposition shrinks the cerebral blood vessels by 
about 8% and reduces the energy supply resulting 
from decrease of blood flow [90]. CAA can cause 
small infarcts in the cerebral cortex, while severe 
CAA may lead to lobar hemorrhages in the frontal 
and occipital lobes and to diffuse white matter 
lesions (Fig. 4) [91]. Brain hemorrhage does not 
appear to be directly linked to amyloid burden in 
patients with CAA-related intracerebral hemor-
rhage, because amyloid burden was similarly dis-
tributed across the brain hemispheres and no 
interhemispheric difference was observed for Aβ 
burden nor for MRI markers of small vessel disease 
[92]. CAA and deep perforating arteriopathy are
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Figure 4. Multiple large hemorrhages in both frontal lobes (A) 
and occipital lobe (B). Diffuse white matter destruction (C). 
CAA in many vessels in the cerebral white matter; scale bar 70 
µm (D). From [97]. 

 

similar and interact with blood-brain barrier break-
down, endothelial damage, and impaired peri-
vascular Aβ drainage. Both may cause ischemic 
lesions and intracerebral hemorrhages [93]. Chron-
ic treatment of a mouse model of AD with fungi-
cides produced Aβ fibril formation and impairment 
of Aβ clearance through neprylisin, suggesting that 
fungicide residues could be a risk factor for AD via 
CAA [94]. Although several pathogenic mecha-
nisms, including the disbalance between produc-
tion and clearance of Aβ creating a self-reinforcing 
cycle of increased vascular Aβ and further CAA and 
AD progression, have been shown, they do not 
explain completely the disease pathogenesis [95]. 
The intersection between CAA and AD points to a 
crucial role for improving vascular function in the 
treatment of AD [96]. 

2.6. Tau pathology 

Tau protein is encoded by the MAPT (microtu-
bule-associated protein tau) gene on chromosome 
17 [98], which generates a total of 6 isoforms 
through alternative splicing of exons 2, 3 and 10 in 
the CNS [99]. Tau protein, the main constituent of 
NFTs, is involved in the stabilization of neurotu-
bules that leads to the appropriate function of the 
neuron. Its microtubule-binding regions are made 
of 3 or 4 repeats (3R or 4R tau), their second repeat 
(exon 10) being spliced in some isoforms. Com-

bined phosphorylation of Ser202, Thr205, and 
Ser208 forms a unique post-translational modifica-
tion configuration that promotes tau aggregation, 
accelerating the formation of tau filaments and 
eventually resulting in NFT formation. Tau adopts 
different stable conformations, consistent with the 
notion of 'strains' as may be seen with the concept 
of phenotypic diversity or with different environ-
mental stimuli [100, 101]. 

Truncation of tau by caspases-3 or -4 is an ear-
ly event in the development of NFTs [102]. The 
molecular mechanisms leading to the accumulation 
of tau are characterized by numerous translational 
modifications that change its conformation and 
structural state. Recent studies indicate that the 
dysregulation and dislocation of splicing factor pro-
line and glutamine rich (SFPQ), the subsequent 
DNA anomalies and aberrant dynamics of TIA-1-
positive stress granules in association with patho-
logical tau may represent a critical pathway which 
contributes to the rapid progression of AD [103]. 
Abberant phosphorylation and truncation make tau 
protein into a pathological entity; paired helical 
filaments (PHF), the major structural constituents 
of NFTs, exhibit a greater degree of phosphoryla-
tion than normal tau [104].Tau monomers can ag-
gregate to form oligomers and higher-order fibrils. 
Whilst Aβ can largely self assemble, tau phosphory-
lation is believed to be important for its aggrega-
tion [105]. Phosphorylation of Ser208 likely occurs 
at different disease stages from phosphorylation of 
Ser202 and Thr205. hp-Tau accumulation causes 
synaptic impairment, neuronal dysfunction, and 
formation of NFTs. Tau with site-specific posttrans-
lational modification/soluble hp-tau species impact 
mitochondria and facilitate neurodegeneration 
[106]. Recent studies support the hypothesis that 
tau phosphorylation at Ser208 strongly contributes 
to unique types of tau aggregates, and may be a 
reliable marker for the presence of mature NFTs 
[107]. 

In AD, tau protein usually accumulates in the 
somato-dendritic and, to a lesser degree, in the 
axonal domains of the neuron. NFTs and pretangles 
are due to accumulation in the soma; NTs occur in 
dendrites, and the neuritic corona of core plaques 
is constituated by axonal processes filled by tau 
proteins (Fig. 2). As major constituents of NFTs and 
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NTs, they are hyperphosphorylated and aberrantly 
misfolded, have lost their microtubule stabilizing 
functions, and contribute to axonal transport defi-
cits [105]. PHFs in AD contain all 6 isoforms of tau 
protein including those with 3 and 4 repeats (3R- 
and 4R-tau) in the microtubule binding domain, 
forming the core of PHF [108]. The tau isoforms 
show a chronological shift: initially, early pretangles 
are positive only for 4R, gradually 3R is involved in 
mature tangles, and finally 4R is replaced by 3R in 
ghost tangles [109]. Ultrastructurally, NFTs appear 
as PHFs, i.e., fibrils of ca. 28 nm in diameter that 
form pairs with a helical tridimensional confor-
mation and a regular periodicity of 65-80 nm [110] 
or as helical or twisted ribbons [111]. Straight fila-
ments (SFs) show a longer crossover distance and 
modulations in width from 10 to 15 nm. Both le-
sions are different from those seen in other 
tauopathies [112]. PHFs and SFs differ in their inter-
protofilament packing, and are ultrastructurally 
polymorph [113]. Visible with cryo-EM, PHFs and 
SFs are made of two C-shaped protofilaments with 
a combined cross-β-β-helix structure, without vari-
ations in the filamentous structures between spo-
radic and inherited AD [114]. NTs have an ultra-
structure and immunohistochemistry similar to 
NFTs. Why, despite its axonal origin, PHF tau accu-
mulates primarily in the neuronal cell body and 
dendrites, is unknown. It shows in three stages: (a) 

Pre-NFTs composed of diffuse, or punctuate tau 
staining occur within the cytoplasm of otherwise 
normal-looking neurons with well-preserved neu-
rites; or (b) mature intraneuronal NFTs consist of 
cytoplasmic filamentous aggregates of tau displac-
ing the nucleus toward the periphery of the soma 
and extending to the proximal segment of the ax-
on. They appear as “flame-shaped tangles” in py-
ramidal neurons of the hippocampus (Fig. 5) and 
layer V of association cortices and as “globose tan-
gles” in subcortical nuclei; (c) extraneuronal 
“ghost” NFTs in dead neurons, showing loss of their 
nucleus and of stainable cytoplasm [115]. Total loss 
of functional microglia in advanced late-onset AD 
(LOAD) promotes widespread intraneuronal neuro-
fibrillary degeneration leading to brain failure 
[116]. Neuronal tau pathology has been linked to 
neuronal death and cognitive decline in AD [117], 
while others suggested that neuronal cell loss is 
associated with dementia and not the presence of 
plaques and tangles [118]. It is generally thought 
that NFTs impede neuronal functioning, but recent 
data indicate that they can be found in functionally 
intact neurons integrated in cortical circuits [119-
121]. How hp-tau specifically mediates its toxic 
effects is still unknown, but oligomeric tau species, 
analogues to AβOs, are potential toxic species be-
sides NFT tau. Recent proteomic studies have iden-
tified specific proteins that interact with hp-tau,

 

 

Figure 5. In AD, high amounts of neurofibrillary tangles and neuropil threads are seen in the hippocampus (A). CA1, CA2, and CA4 hippo-
campal cornu ammonis (Ammon’s horn) sectors 1, 2, and 3, respectively; GR, granule cell layer of the dentate gyrus. Immunohistochem-
istry with antibody AT8. Scale bar: 50 μm. From [71]. 
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showing novel potential pathogenic mechanisms 
that are relevant in AD and providing insight into 
how hp-tau mediates its toxicity in AD [122].  

2.7. Topography and spreading pattern of tau 

The extent of tau pathology (NFTs and NTs) 
follows a predictable spatiotemporal progression 
through functionally integrated brain regions [18], 
which had been interpreted as a cell-to-cell spread-
ing through prion-like propagation [123-127] or a 
transneuronal spread through functional networks, 
associated with a trigger, possibly Aβ and/or neu-
ronal network activity that could lead to progres-
sion of NFT pathology [128]. Since tau is expressed 
predominantly in neurons rather than glial cells, 
the detection of tau aggregates in astrocytes and 
oligodendroglia has given support to the concept 
that the release of misfolded tau from neurons (or 
oligodendroglia) may result in uptake into other 
cells [129]. Microglia could potentially play a role in 
spreading of tau pathology [130]. Transcellular 
progression of tau seeds has been observed in early 
Braak stage in regions predicted to be free of hp-
tau [131]. According to the original staging [18], the 
first NFTs consistently occur in the transentorhinal 
(perirhinal) region (stage I) along with the entorhi-
nal cortex, followed by the CA1 region of the hip-
pocampua (stage II), indicating a preclinical phase 
of AD which can last up to 20 years. Limbic struc-
tures, such as the subiculum of the hippocampal 
formation are affected next (stage III), followed by 
the amygdala, thalamus, and claustrum (stage IV). 
Stages III and IV are often correlated clinically with 
mild cognitive impairment (MCI). In stage V, NFTs 
spread to isocortical areas with the association 
areas being affected prior and more severely, fol-
lowed in stage VI by the primary sensory, motor 
and visual areas, which is usually associated with 
overt dementia (Fig. 6). This NFT staging has been 
widely accepted in routine pathology and appears 
well correlated with the clinical status, at least in 
the amnestic AD. Imaging in vivo tau pathology 
with tau-specific PET tracers identified NFT pathol-
ogy reflecting Braak stages IV or higher. It rendered 
it possible to study the temporal progression of tau 
pathology in vivo, and, therefore, can be used as a 
reliable biomarker of tau pathology [132-137]. 
There is an inverse correlation between the accu-
mulation of NFTs and cognitive status; the spread

 

Figure 6. Spreading pattern of neuritic AD pathology. Modified 
from [18]. 

 

and level of tau accumulation reflects the severity 
of dementia with time [61, 138-140]. The seeding 
activity is suggested to begin in the transentorhi-
nal/entorhinal regions and anticipates hp-tau pa-
thology in AD, whereas the locus ceruleus (LC) 
showed seeding only in later NFT stages [141]. 
However, immunohistochemistry has detected pre-
tangle material in multiple subcortical regions, es-
pecially in locus ceruleus (LC) neurons [142-144]. 
Involvement of the subcortical nuclei, not consid-
ered in the original Braak scheme, however, occurs 
in early stages of the disease and has important 
clinical consequences. The cholinergic nucleus ba-
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salis of Meynert and axons of the adrenergic LC 
projecting neurons are affected already in Braak 
stages 0/I, associated with severe neuronal loss, 
while moderate to severe deposition of tau in the 
LC was only seen in Braak stages above IV [142]. 
The intralaminar nuclei of the thalamus, the pon-
tine parabrachial region, the medullary reticular 
formation, the dorsal raphe nucleus, the oculomo-
tor system, and the autonomous nuclei are also 
affected early and increase with disease progres-
sion [142, 145-147]. Nigral pathology including hp-
tau (NFTs) accumulation and α-synuclein aggre-
gates is common in elderly patients with and with-
out AD, and may be related with extrapyramidal 
symptoms [148-150].  

2.8. Aβ and tau pathology - chicken or egg? 

The causes of sporadic AD are far from being 
understood, while the hallmarks that distinguish 
AD from other neurodegenerative diseases – name-
ly Aβ plaques and NFTs - have been known for 
many years. The physiological and pathological 
roles of tau and Aβ, and their implications for AD 
pathology and therapeutics have been reviewed 
recently [151]. Many studies have linked Aβ and 
tau and raised the possibility that protein-protein 
interactions are the key for both spreading and 
toxicity of these two abnormal proteins [152]. Sev-
eral models of interaction have been suggested: (1) 
The seeding of toxic tau is enhanced by the pres-
ence of Aβ; (2) the toxicity of Aβ depends of the 
presence of tau; (3) Aβ and tau enhance each oth-
er's toxicity. Modern network-based models re-
vealed ways in which Aβ and tau protein might 
interact with each other to enhance the propaga-
tion of AD, thus shedding light on the importance 
of protein clearance and protein interaction mech-
anisms in the development of AD pathology [153, 
154] [155]. Soluble oligomeric Aβ is hypothesized 
to be a possible cause of the hyperphosphorylation 
of tau and the development of NFTs. The presence 
of APs accelerates both the formation of hp-tau 
aggregates [156] and its interneuronal transfer 
[157]. The AβO hypothesis was introduced in 1998, 
suggesting that the brain damage leading to AD 
was initiated by soluble ligand-like AβOs [158]. The 
extension of tau pathology is different from the 
spread of Aβ deposition that is related to diffusion 
of soluble Aβ in the extracellular space [159, 160]. 

Quantification of ADNC in formalin-fixed post-
mortem human brain tissue detected high amounts 
of Aβ in the frontal cortex and striatum, and of hp-
tau in the frontal cortex and hippocampus of cases 
with high ADNC pathology load [161]. The most 
recent version of the amyloid cascade hypothesis 
assumes AD arises from synaptic toxicity mediated 
by soluble AβOs, leading to synaptic dysfunction 
and loss. Age-related aggregation of Aβ and its 
apparent downstream effects on microglia, astro-
cytes, and neurons, including the post-translational 
modification of the tau protein, seems necessary 
for AD symptom expression [162]. While an optimal 
concentration of Aβ is thought to likely maintain 
synapses, alterations in the proteolytic processing 
of APP may cause dyshomeostasis of Aβ, increasing 
the levels of Aβ-42, and initiating AD by setting off 
a chain of events that leads to the accumulation of 
tau and downstream neuronal cell death [163]. 
Soluble AβOs are now suggested to cause neuronal 
damage [76]. They are believed to insert into 
membranes, while others support ligand-like accu-
mulation at particular synapses, providing a sub-
stantial molecular basis for the cause of AD [164]. 
Recent data support the hypothesis that Aβ en-
hances tau pathology through increased spreading 
of tau induced by PHF in vivo [165-168], and that 
AβOs promote tau seeding potentiating intracellu-
lar tau aggregation [169, 170]. Intraneuronal Aβ 
accumulation is suggested to precede tau patholo-
gy in the entorhinal cortex [171] and to interact 
with hippocampal and cortical tau pathology, while 
in the absence of Aβ tau deposition may be insuffi-
cient for the neurodegeneration process that leads 
to AD [172]. Many data supporting a toxic role for 
AβOs have backed the AβO hypothesis for AD 
pathogenesis, but further advances in AβO struc-
ture-function studies are needed [158]. Recent 
studies point to a role for exosomes in the spread-
ing of toxic AβOs and the associated disease pro-
gression in the AD brain [173]. However, the tradi-
tional consensus of the amyloid paradigm as a sin-
gular cause of AD has been under revision, with the 
accumulation of new pathobiological evidence 
[174]. New theories suggest that various mecha-
nisms, including prion-like spread of Aβ and tau, 
vasoconstrictions, growth hormone secretagogue 
receptor 1α (GHSR1α), and neuroinflammation, 
come together at a crossroad that ultimately leads 
to AD [11], while others suggested that extracellu-
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lar Aβ and tau act in parallel and upstream of APP 
[175, 176]. However, recent findings have shown 
that the soluble form of APP binds directly to GAB-
ABR1a and modulates synaptic transmission [177], 
while that of Aβ aggregates do not need APP over-
expression [178] but are performed by extracellular 
exosomes [173]. AβOs are deposited inside synap-
tic terminals [179], enriched in small vesicles at the 
presynaptic side [47], and enhance synaptic dys-
function in AD [180]. According to others, Aβ and 
hp-tau may develop concomitantly within synaptic 
terminals [181, 182] and cause abnormalities at 
synapses [183]. On the other hand, preclinical evi-
dence indicates that tau pathology can progress 
independently of Aβ accumulation and arises 
downstream of genetic risk factors for AD by an 
aberrant metabolic pathway [184]. The argument 
that insoluble Aβ and tau deposits begin forming 
concomitantly in the cerebral cortex of AD brains 
would be consistent with the argument in favor of 
the pathogenic importance of tau deposition. Re-
cent quantitative studies did not find regional asso-
ciation between Aβ-42 and insoluble tau, but a 
higher regional association between total Aβ-42 
and soluble tau phosphorylation. This provides 
evidence supporting the local interplay between Aβ 
and soluble hp-tau in AD brains [185], and accumu-
lating evidence suggests that both pathologies have 
synergistic effects. The complex Aβ-tau interaction 
is important for elucidating disease pathogenesis 
and the design of next-generation AD therapeutical 
trials [153]. Targeting the common epitope could 
be a more effective treatment strategy than target-
ing only Aβ or tau alone [186]. 

Mounting data suggest that the prion-like 
spreading of diffusible oligomers and other protein 
aggregates from cell to cell within the brain, proba-
bly through specific neuronal networks, may con-
tribute to AD progression [128, 187]. APP overex-
pression is not a prerequisite for the prion-like in-
duction of cerebral Aβ deposition that may con-
tribute to disease progression in AD [178], and the 
multiple failures of previous anti-Aβ drugs may 
suggest that in the AD brain, the accumulation of 
Aβ could be secondary to an unknown 'initial dis-
rupting event' [188]. Processing and clearance of 
Aβ and tau could be related to a bidirectional rela-
tionship between ADNC and autophagy [189]. 
Seeded templating and neurotoxicity are two of the 

most critical properties attributed to oligomers that 
have been documented for misfolded proteins in 
neurodegeneration [190]. It has been speculated 
that cellular prion protein (PrPC) is a critical player 
in the interplay between Aβ and tau propagation in 
a large group of AD cases. Pre-existing hp-tau pa-
thology interacting with PrPC appears to be a pre-
requisite for Aβ function as a hp-tau pthology ac-
celeration via PrPC [165]. Toxic tau oligomers 
(tauOs) and toxic oligomeric Aβ assemblies (AOs) 
have prionoid characteristics and are responsible 
for cell-to-cell spreading in the brain. Both extra- 
and intracellular AβOs and tauOs (not NFTs and 
APs) may represent novel targets of AD research 
and therapeutic trials [191]. Preventing soluble 
AβO formation and targeting their N-terminal resi-
dues with antibodies could be an attractive com-
bined therapeutic approach [178]. 

Recent studies found striking patient-to-
patient heterogeneity in the hyperphosphorylated 
species of soluble oligomeric seed-competent tau. 
Its seeding capacity correlates with the aggressive-
ness of the clinical disease, and some post-
translational modification sites appeared to be 
associated with both seeding activity and worse 
clinical outcomes, suggesting that different individ-
uals with “typical” AD have distinct biochemical 
features of tau that correlated with differences in 
the aggressiveness of clinical course [192], support-
ing an important causal role of tau as a driver of 
clinical dysfunction in AD [193]. The synergism be-
tween Aβ deposition, NFT neurodegeneration, and 
CAA may be a better predictor of cognitive decline 
or disease progression than either pathology alone 
[194] (Fig. 7). 

2.9. Synaptic and neuronal loss 

Essential neuropathological features of AD are 
loss of synapses and selected neuronal cells (20-
40% in neocortex and 25-65% in hippocampus) as 
the main pathological substrate of cortical atrophy. 
Its regional and laminar pattern parallels the distri-
bution of NFTs and has been suggested to be a 
better correlate of cognitive deficits than the Aβ 
burden [139, 196]. Little is known about the mo-
lecular basis of selective neuronal vulnerability in 
AD and the molecular pathways that lead to 
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Figure 7. Staging of Aβ, NFT, and CAA in non-demented (pre-AD) and demented AD patients. From [195]. 

 

neurodegeneration, a key characteristic of the dis-
ease. It is the result of multiple molecular changes 
of interacting genes and pathways within vulnera-
ble neurons [25]. The relationship between cellular 
senescence in the context of aging and AD have 
been reviewed recently [197]. Age-related in-
traneuronal aggregation of Aβ is colocalized with 
mitochondria and endosomes and less so with lyso-
somes and autophagosomes. Understanding age-
related changes in intraneuronal Aβ may lead to 
application of countermeasures to prolong demen-
tia-free health span [198]. The intraneuronal accu-
mulation of Aβ may involve synaptic dysfunction 
and the formation of APs in AD; intraneuronal Aβ-
42 has been reported to disrupt the normal cytoar-
chitecture of neurites. Recent studies indicate that 
in AD, vulnerable-neuron-specific dysregulation of 
polypyrimidine tract binding protein (PTB) (NCBI 
gene ID 5725), a regulator of alternative splicing 
[199], is the protein most highly correlated to tau in 
the principal neurons of the entorhinal cortex layer 
II (EC II). PTB could precipitate a 3R/4R tau imbal-
ance in these neurons and explain the premature 
accumulation of NFTs, thus explaining the vulnera-

bility of EC II neurons [25]. The neurotoxic effect of 
astrocyte-derived exosomes (ADE) is evident with 
the overlap of AP density and C3/4 fragments 
(complement factors) observed in early AD [200]. 
Although tangle-bearing neurons can be long last-
ing in regions where NFTs occur at a presympto-
matic stage, neuronal loss occurs early in the 
course of the symptomatic disease [201]. Two 
mechanisms of neuronal death in AD have been 
discussed: one affecting tangle-bearing neurons 
that will lead to ghost extracellular tangles, another 
affecting tangle-free neurons, at least in part by 
apoptosis [202-204]. Inflammation-induced hyper-
phosphorylation of tau destabilizes the microtu-
bule-actin network and impairs axonal transport 
and disturbs energy metabolism in the axon, induc-
ing further tau phosphorylation. Accumulating data 
point to the fact that this facilitates the formation 
of PHFs, further impairs axonal transport leading to 
complete blockage and axonal leakage, and induces 
loss of synaptic contacts promoting activation of 
microglia and reactive astrogliosis [56]. Microglia 
have been shown to instigate tau pathology in di-
verse ways, inducing tau aggregation by proin-
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flammatory cytokine release [205, 206], and 
spreading hp-tau oligomers or NFTs through exo-
some secretion [130]. 

Synaptic loss that is possibly driven by Aβ and 
tau pathology has been suggested to precede neu-
ronal loss [207]. Synapses are present in APs and 
their total number decreases with time [61, 208]. 
Their loss has been demonstrated ultrastructurally 
and immunohistochemically [209]. In late stages of 
AD synapse loss ranges from 10 to 60%, most se-
verely in the frontal and mesiotemporal regions. 
Synapse loss by activated astrocytes producing 
different secretomes reduce protein synthesis for 
synapse formation, resulting in synaptic loss found 
in AD [210]. There is a close relationship between 
Aβ accumulation and synaptic loss that may pro-
vide direction for the development of potential 
disease-modifying treatments of AD [211]. EOAD is 
associated with a higher burden of ADNC and a 
higher rate of neocortical atrophy and synapse loss 
than the much more common and apparently spo-
radic LOAD [212]. However, synaptic loss is not a 
unique hallmark of AD and occurs in many other 
brain diseases [213]. 

2.10. Neuroinflammation 

Activated microglia operating as phagocytes 
are frequently observed around Aβ plaques driving 
an inflammatory response, which can be activated 
by multiple factors in the local environment [214], 
in particular by the presence of Aβ in the cortex, 
indicating a “toxic” response which corrupts neu-
rons as collateral damage (“bystander effect”) 
[215]. Tau-positive NPs being early in AD, however, 
major tau deposition follows the accumulation of 
Aβ and clustering of activated microglia. An in-
crease in membrane attack complex formation 
leads to increased tau pathology and neoronal loss 
[216]. On the other hand, microglia may contribute 
to elimination of tau deposits by phagocytosis [217, 
218]. Different states of microglia activation, corre-
sponding to regional activation of Aβ and tau, are 
present simultaneously in the same brain. The clus-
tering of activated microglia is greatest in the pri-
mary motor cortex, a region relatively spared com-
pared to the severely affected inferior temporal 
cortex in AD. This suggests that microglial activa-
tion is not prominent in the early phase of AD 

pathophysiology [66]. Recent studies in hp-tau 
mice demonstrated that microglia are not the agi-
tators of tau aggregation, but different results 
about the involvement of microglia in tau aggrega-
tion and clearance were presented [219, 220]. 
Thus, the functional role of microglial activation 
with hp-tau oligomers still remains elusive. Gene-
profiling technologies applied to isolated microglia 
have challenged the hypothesis that there is one 
acute-type (microglial drivers) of inflammation in 
the human brain causing accelerated proinflamma-
tory damage in AD. These studies have shown that 
many of the microglia genes expressed in increased 
levels reflect a response to restore homeostasis 
and limit inflammatory damage [221]. On the other 
hand, there is an early microglia reaction to AD 
pathology, but a loss of healthy microglia is the 
prominent feature in severely affected regions of 
the AD brain [222]. In addition, there is a non-
disease-specific response of microglia to neuronal 
damage, with upregulation of phagocytotic activity 
to remove damaged neurons and synapses by CD68 
immunoreactivity of lysosomes [73]. Their numbers 
increase on promotion to neuronal damage associ-
ated with NFTs [62], which is due to enhanced pro-
duction of inflammatory cytokines, such as IL-21 
and increase in T follicular helper cells. The strong 
immune response is insufficient at clearing up Aβ 
and instead exacerbates inflammation [223]. Reac-
tive astrocytes that may react to cytokines and 
other agents produced by pro-inflammatory micro-
glia, are observed around APs, though less fre-
quently compared to microglia. Reactive astroglia 
burden occurs later in AD and correlates mainly 
with tau pathology [31]. 

2.11. Pathology of preclinical AD 

Amyloid and neuritic plaques and NFTs occur-
ring in non-demented elderly individuals, represent 
asymptomatic or preclinical AD (pre-AD), while 
clinical AD affects subjects with late stages of 
ADNC. Both AD and pre-AD cases often exhibit CAA, 
which is also observed in non-AD cases, i.e., those 
without ADNC. Patients with MCI do not always 
have ADNC even though they have a risk of devel-
oping dementia in 10-12% and sometimes do not 
have any discernable pathology [224, 225]. The 
presence of NFTs and CAA in cases without APs,  
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classified as non-AD, suggests that they may pre-
cede AP pathology or may present a pre-amyloid 
plaque stage not yet included in the current criteria 
for the neuropathological diagnosis of AD [226]. 
Increased soluble/dispersible Aβ in pre-AD com-
pared to fully developed suggests that, in addition 
to more severe and widespread ADNC, soluble Aβ 
aggregates play a role in the conversion of pre-AD 
to clinical AD [31]. Cognitively impaired individuals 
presenting with an early onset AD phenotype 
showed higher rates of tau PET accumulation, while 
among cognitively unimpaired individuals higher 
rates of tau accumulation were associated with 
faster rates of memory decline [227].  

2.12. Neuropathological diagnosis of Alzheimer’s 
disease 

Histopathological examination of the brain has 
to establish that ADNC are present in sufficient 
densities and extensions to distinguish AD from 
other age-related disorders [61]. Because the dis-
ease affects the whole brain, it is not sufficient to 
make the diagnosis of AD just on one or two brain 
blocks; instead, multiple brain areas have to be 
examined and a staging protocol has to be estab-
lished. The current algorithms for the pathological 
diagnosis of AD are based on semiquantiative as-
sessment of APs and NFTs providing reasonable 
interrater agreement when using standardized 
criteria [228]. Current guidelines include (a) cut-off 
quantitative values for APs and tangles [17, 229]; 
(b) the semiquantitative assessment and age-
adjustment of NPs in the Consortium to Establish a 

Registry for Alzheimer's Disease (CERAD) protocol 
[230]; (c) topographic staging of neuritic/tau pa-
thology [18], re-evaluated by immunohistochemis-
try [231]; and (d) the progress and distribution of 
Aβ phases [79]. In order to develop a system that 
combines all the above pathological features, the 
NIA/AA established a composite score comprising 
the extent of involvement/spread of cerebral Aβ 
based on the progression model by the Thal phas-
es: (A), that of NFTs based on the progression 
model of Braak, (B), and the CERAD score, which 
describes the density of neuritic amyloid plaques 
based on certain key locations in the neocortex, (C) 
(Table 1). From this combination, it gave a likeli-
hood for the degree of AD neuropathological 
changes in an individual case. Sufficient agreement 
in AD diagnosis could be reached only when the 
lesions are considerable (Braak NFT stage V and VI) 
with 91% agreement, while for mild lesions it was 
poorer (for Braak stage I and II, agreement was 
only around 50%) [228, 232, 233]. 

Combined Braak and CERAD scores in the NIA-
RI (National Institute on Aging and Reagan Insti-
tute) criteria that apply only to demented persons, 
relate dementia to ADNC with high, intermediate 
and low likelihood [234]. They have been widely 
used in Anglo-American neuropathology and are 
now replaced by the NIA/AA guidelines. Although 
the sensitivity and specificity of the NIA-RI criteria 
has been proposed to be around 90%, only 30 to 
57% of the brains of patients with the clinical diag-
nosis of probable AD showed “pure” ADNC, thus 
reducing their predictive value to 38% [235].  
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An evaluation of the NIA-RI criteria identified be-
tween 54 and 97% of AD cases with high Braak or 
CERAD stages, and eliminated between 60 and 
100% of non-AD with low Braak or CERAD stages 
[232, 233]. Another autopsy study reported diag-
nostic sensitivity ranging from 70.9 to 87.3% and 
specificity from 44.3 to 70.8% [236]. 

The recent updated NIA/AA guidelines for the 
neuropathological assessment of AD consider 
ADNC levels regardless of the clinical history of a 
given individual [17]. They include (1) the recogni-
tion that ADNC may occur in the apparent absence 
of cognitive impairment; (2) the use of an “ABC” 
score for ADNC that incorporates histological as-
sessment of Aβ plaques (A), based on its phase 
assessment [79], staging of NFTs, (B) based on the 
Braak staging system [231], and scoring of NPs, 
based on their semiquantitative assessment in at 
least three neocortical regions, and (C), based on 
CERAD criteria [230]. Table 2 shows how each of 
the three scores are transformed to state the level 
of ADNC on a four tiered scale (non, low, interme-
diate, and high). The entire process of the neuropa-
thological diagnosis of AD can be followed along 
the pathways shown in Fig. 8. (3) More detailed 
approaches for assessing co-morbid conditions, 
such as Lewy pathology, vascular brain injury, TDP-
43 immunoreactive lesions, argyrophilic grain dis-

ease, and others that can complicate the pathologi-
cal diagnosis and can sometimes co-exist with AD, 
are also considered [17]. Testing of the revised 
NIA/AA guidelines in 390 autopsy cases distin-
guished pure AD and non-AD dementia from non-
demented cases with a sensitivity of 91% and a 
specificity of 99%. The sensitivity increased after 
exclusion of non-AD dementia cases, indicating that 
the revised NIA/AA criteria appear practicable for 
distinguishing pure AD from non-AD dementia, 
preclinical AD, and controls [226]. The revised 
NIA/AA guidelines for the severity score for ADNC
  

 

 

Figure 8. Pathway of the combination of different pathological 
features that allows a classification of ADNC according to the 
NIA-AA guidelines. 
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used in the AD Centers Program achieved an excel-

lent agreement (=0.88, 95% CI 0.77-0.95), and 
good-to-excellent agreement for the three support-
ing scores [237]. 

A comparative study of clinical and neuropa-
thological diagnoses of AD in three epidemiological 
samples reported a sensitivity for probable AD of 
93% [238]. Meta-analysis of 20 (out of 1,189) stud-
ies to distinguish autopsy-verified AD from other 
dementias or healthy controls showed a sensitivity 
of 85.4% (95% CI 80.8-90%) and a specificity of 
77.7% (95% CI 70.2-85.1%). Values were higher for 
neuroimaging procedures and slightly lower for CSF 
biomarkers, while the combination of both resulted 
in better results [239]. 

3. Pathobiological subtypes of AD 

Recent studies showed that the neuropathol-
ogy of AD is heterogenous [240-242]. The current 
guidelines for the neuropathological diagnosis of 
AD only consider the classical “plaque and tangle” 
phenotype but not other subtypes such as the 
“plaque only but without tangle for-
mation/predominant” type with abundant amyloid, 
or the “little or no tau pathology” type limited to 
the hippocampus and abnormal hp-tau in neocorti-
cal pyramidal cells. This type, observed in 3.4-8.0% 
of demented subjects over age 85 years [243], fre-
quently represents a specific type of dementia with 

Lewy bodies (DLB)/DLB-AD [244]. The recently de-
scribed “primary age-related taupathy” (PART) 
[245], previously referred to as “NFT-predominant 
dementia” [246], involves people over 85 years old 
and is associated with mild to moderate cognitive 
impairment [247, 248] It reveals tau pathology 
restricted to the MTL (Braak stages 0-IV), relative 
absence of amyloid (Thal Aβ phases 0-2), total ab-
sence of NPs, and rare CAA [249]. The composition 
of NFTs in PART both for 3R and 4R tau isoforms is 
identical with those in classical AD [246], while 
pattern of hippocampal tau pathology differs signif-
icantly between PART and AD [250, 251]. Tau ag-
gregates influence cognition and hippocampal at-
rophy in the absence of Aβ [249]. Positive correla-
tions were reported in PART between the Braak 
NFT stage and phosphorylated 43-kDa TAR DNA-
binding protein (pTDP-43) stage and density [252]. 
PART is considered either a prodromal form or a 
subtype of AD [253, 254] (see Table 3). MAPT H1H1 
genotype frequency is high in both PART and lim-
bic-predominant AD (LP-AD), and similar to typical 
AD, while APOEε4 is rather rare in PART [255]. Oth-
er genetic differences between PART and AD have 
been described [256]. It seems that lower concen-
trations of AβOs cause less severe tau deposition 
due to the fact that they can potentiate tau aggre-
gation by promoting tau seed uptake [170]. Cogni-
tive decline in PART is usually milder than in AD and 
correlates with tau burden. Biomarkers and neu-
roimaging studies will be important to define PART 
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ante-mortem and to follow its natural history [257]. 
While the incidence of classical AD increases from 
the 7th to the 9th decade and later shows a mild 
decrease, the frequency of PART increases after the 
age of 85 years [3]. 

The limbic-predominant age-related TDP-43 
encephalopathy (LATE), a recently described dis-
ease entity mainly involving elderly people (>75 
years at death), is associated with an amnestic de-
mentia syndrome that may mimic AD [258, 259]. It 
shows pathogenic mechanisms of both frontotem-
poral lobar degeneration with TDP-43 (FTLD-TDP) 
and AD, but there are different molecular patterns 
of TDP-43 pathology in various clinical phenotypes 
with a higher chance of FTD-like symptoms in AD + 
full-length TDP-43 cases [32]. Recent studies indi-
cated that in most cases, limbic-predominant age-
related TDP-43 encephalopathy (LATE-NC) and 
FTLD-TDP can be differentiated by applying single 
neuropathological criteria, e.g., the severity of cor-
tical TDP-43 inclusions [260]. Biomarkers for ante-
mortem diagnosis of this syndrome are currently 
not available [261]. 

Recent clinicopathological studies have ena-
bled the identification of several pathophysiologi-
cally defined subtypes of AD. One distinguished 
three AD subtypes based on NFT density: typical AD 
with balanced NFT counts in the neocortex and 
hippocampus (75%), hippocampal sparing (HcSp), 
with NFT counts predominantly in association corti-
ces (11%), and limbic-predominant (LP) AD mainly 
involving the hippocampus (14%) [262]. These sub-
types had different clinical phenotypes, with differ-
ent ages at onset and rates of progression (Fig. 9). 
Patients with hippocampal sparing AD (HcSp-AD) 
were youngest at onset, had a higher proportion of 
men, and progressed more quickly than typical AD. 
LP-AD patients were older, more often female, and 
showed slower progression. Age at death of the LP 
form was highest, while patients with HcSp-AD 
were youngest, indicating this type as the most 
aggressive. This could be related to the contribu-
tion of TDP-43 pathology, hippocampal sclerosis, 
and the microtubule-associated protein tau (MAPT) 
H1H1 genotype to LP-AD, factors related to tem-
poral lobe atrophy, older age, and slower disease 
progression. APOEε4 carriers more frequently had 
LP-AD and typical AD, whereas non-carriers more 

frequently presented as HcSp-AD. Vascular co-
pathology (ranging from 16 to 36%) was highest in 
the LP and lowest in the HcSp cases. Typical AD had 
higher AP burden in occipital regions compared 
with LP-AD [262], while in contrast to specific tau 
accumulation and brain atrophy patterns among 
AD variants, Aβ accumulation appeared rather dif-
fuse and similarly across groups, except the MA 
group [263, 264]. Tau pathology was closely associ-
ated with sites of neurodegeneration and brain 
atrophy corresponded well with NFT topography 
and neuronal loss. [265-267]. Clinical symptoms 
correlate with neuronal hypometabolism [262, 268, 
269]. Similar results were reported in a study of 
933 autopsy cases of AD, all with neuritic Braak 
stage > IV [270]. Typical AD was more frequent 
than in the Mayo series (82.5 vs 75%), while the 
other two subtypes were slightly less frequent. 
Minimal-atrophy AD (MA-AD) was not included in 
this study. The LP-AD cases shared some morpho-
logical features with PART [245], although later 
studies demonstrated significant pathological dif-
ferences between PART and LP-AD [240]. 

Typical AD showed greater white matter hy-
perintensity (WMH) burden, which may be due to 
Wallerian degeneration induced by cortical tau 
pathology [271, 272], small vessel disease, or both 
[273-275]. Tau pathology and neurodegeneration 
can disrupt key brain networks, which may induce 
memory impairment comparable to LP-AD and 
typical AD in the absence of overt brain atrophy of 
the MTL in MA-AD that shows [276-278]. Distinct 
patterns of NFT deposition in young-onset versus 
older-onset AD give evidence for variability in re-
gional deposition patterns and demonstrate that 
different disease phenotypes have different pat-
terns of tau pathology [279]. 

Other atypical non-amnestic syndromes, re-
ferred to as focal AD [26, 280, 281], include logo-
penic primary progressive aphasia (LPPA), showing 
higher NFT density in superior temporal gyrus but 
Thal amyloid plaques similar to amnestic AD [282-
284]. The proportion of APOEε4 carriers was ele-
vated in amnestic but not in non-amnestic forms of 
AD, suggesting that APOE is a selective risk factor 
that increases the vulnerability of memory-related 
medial temporal areas rather than language-
related neocortices [285]. Further atypical forms 
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Figure 9. Main factors and characteristics of the four major subtypes of AD. AD: Alzheimer’s disease; NFT: neurofibrillary tangle; WMH: 
white matter hyperintensity; CAA: cerebral amyloid angiopathy; EOAD: early-onset Alzheimer’s disease; LOAD: late-onset Alzheimer’s 
disease; LP-AD: limbic-predominant AD. 
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are posterior cortical atrophy (PCA) [286], non-
amnestic AD with TDP-43 pathology [287], syn-
dromes resembling behavioral variant fronto-
temporal lobe degeneration with tau pathology 
(bvFTD-tau) [266, 288], and the corticobasal syn-
drome (CBS) subtype of AD that shows a higher NFT 
density in the perirolandic cortices and greater 
neuronal loss in substantia nigra which may con-
tribute to parkinsonism that uncommon in classic 
AD [289]. Behavioral/dysexecutive AD revealed 
temporo-parietal-predominant atrophy. In the 
Mayo series, PCA, LPPA and bvFTD variants were 
more common in HcSp-AD than in LP and typical AD 
[262, 290]. Accumulation of NFTs and activated 
hypertrophic microglia associated with low neuron 
densities suggests that they may collectively con-
tribute to focal neurodegeneration characteristic of 
primary progressive aphasia AD [291]. 

The pathogenic factors underlying AD sub-
types are unclear and cannot be explained by Aβ 
pathology alone, because the distribution of Aβ PET 
retention is quite similar in all subtypes [263]. 
However, solid-state nuclear magnetic resonance 
measurements showed qualitative differences be-
tween Aβ-40 and Aβ-42 aggregates in the brain 
tissue of patients with two atypical AD clinical sub-
types - posterior cortical atrophy variant and a typi-
cal prolonged-duration form - indicating that there 
are structural variations in Aβ fibrils from AD clini-
cal subtypes [60]. MA-AD, although Aβ-positive, 
shows less tau pathology. According to recent stud-
ies, AD “subtypes” may be linked to different tau 
protein modifications, suggesting that AD patients 
may have multiple molecular drivers of an other-
wise common phenotype [192]. This suggests that 
multiple subtypes are parts of the same AD contin-
uum [266], which may have consequences for per-
sonalized therapeutic approaches. 

4. The impact of co-pathologies 

AD pathology rarely occurs in isolation, while 
complex pathologies frequently lead to cognitive 
decline. The number of co-morbidities increases in 
the aging brain, causing mixed pathologies [3, 248, 
274, 292-298]. The challenges of pathological mim-
ics and concomitant pathologies in the neuropatho-
logic diagnosis of AD have been critically reviewed 
recently [174]. The most frequent co-pathologies 

are cerebrovascular disease (CVD) and Lewy and 
TDP-43 proteinopathies [31, 258, 299, 300]. In a 
consecutive autopsy series of 2,060 elderly de-
mented patients and those with the clinical diagno-
sis of AD, ADNC were present in 82.9% of all de-
mented and in 92.8% of clinically diagnosed AD 
cases, but only 33.6% and 47.6%, respectively, 
showed pure ADNC (ABC 3/3/3). The others were 
either atypical AD forms or subtypes (including 
PART) (7 and 6%, respectively) or exhibited addi-
tional CVD (24.3%), Lewy (12.5%) or other mixed 
pathologies. Vascular dementia in this cohort ac-
counted for only 12.2% and 3.3%, respectively; 
other non-AD pathologies were present in 7.2% 
and 3.7% [301]. Another study of demented elderly 
persons reported pure ADNC in only 31% and mul-
tiple pathologies in 63% [302]. A review of 12 stud-
ies with 3,574 patients, irrespective of the clinical 
symptoms, reported ADNC between 19% and 67%, 
Lewy pathologies in 6% to 39%, vascular patholo-
gies in 28% and 70%, TDP-43 proteinopathy in 19% 
to 78% [290], hippocampal sclerosis between 3% 
and 13%, and mixed pathologies between 8% and 
70% [295]. Among 447 patients with probable AD, 
only 3.13% showed pure ADNC, 27.3% AD+CVD + 
other, 3% AD + CVD, 7.6% AD + other degenerative 
lesions, and 47% AD+CVD + other neurodegenera-
tive lesions [293]. This list of combinations is not 
complete and there are other combinations with 
rare entities that need specific attention [174]. 
Among 673 autopsy cases, including 320 dement-
ed, the majority showed mixed pathologies [274]. 
LATE-NC was present in 57% of AD cases and was 
associated with more rapid disease progression 
[259]. Increased TDP-43 pathology in typical AD 
and LP-AD compared to HcSp-AD [262] was due to 
a strong association between hippocampal sclerosis 
and TDP-43, but clinical presentation seemed to be 
driven by morphological subtypes and not by TDP-
43 pathology [290]. Among 61 autopsy-proven AD 
cases, LATE-NC was present in 67.2% (AD, LATE-
NC), however, it was not associated with an in-
crease of the burden of early or late tau nor Aβ 
pathology. LATE-NC showed a lower final mini men-
tal state examination (MMSE) score independent of 
tau pathology [303]. Among 172 autopsy-
confirmed AD cases, 19% were classified as non-
amnestic, 69% of which had typical ADNC, 31% 
were HcSp-AD, 36% TDP-43-positive, while there 
were no LP-AD cases [287]. In a recent study of 46 
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autopsy-confirmed AD cases, 63% exhibited LATE-
NC (AD+) and a higher burden of hp-tau. This indi-
cates a possible progression of the disease, where-
as AD plus LATE-NC was not associated with differ-
ences in cognitive scores [304]. LATE-NC may also 
occur in isolation and has been viewed as a com-
mon brain disease in aging [258]. Among 574 indi-
viduals with complete measurements of MMSE and 
the Clinical Dementia Rating scale sum of boxes 
(CDR-SB) from 39 AD centers across the USA, 63% 
of those given the 'gold standard' diagnosis of AD, 
possessed either TDP-43 proteinopathy or CAA of 
sufficient severity to independently explain the 
majority of their cognitive impairment. Aβ and/or 
tau burden, particularly in Braak stages IV to VI, 
and small cerebral vessel disease may synergistical-
ly affect cognitive decline [305], and a significant 
interaction was found between Braak NFT stages, 
CAA status and cognitive decline, suggesting that 
there is a significant interaction between tau pa-
thology and CAA on cognition within the AD clinical 
spectrum [306]. Hence, interventions targeting CAA 
may contribute to delay the onset of cognitive im-
pairment, particularly in individuals with interme-
diate ADNC [307]. This suggests that many individ-
uals diagnosed with AD may actually suffer from a 
mixed dementia, and therapeutic targeting AD-
related processes only may have limited efficiency 
in these co-morbid populations [298]. 

Based on data from the NACC, 1,854 partici-
pants with a clinical diagnosis of AD and ADNC at 
autopsy (confirmed AD) were studied; 204 with the 
clinical AD diagnosis had no ADNC (AD-mimics), 
while 253 participants with negative clinical AD 
diagnosis had ADNC (unidentified AD). Compared 
to confirmed AD cases, AD-mimics (FTLD-tau, hip-
pocampal sclerosis, cerebrovascular pathology, 
etc.) had less severe cognitive impairment [308]. 
Special practical considerations for the diagnosis of 
essential co-pathologies and their relations with AD 
were given recently [174]. 

Argyrophilic grain disease (AGD), a limbic-
predominant 4R-tauopathy, with grain-like deposits 
in neuritic dendrites, oligodendroglial inclusions 
(“coiled bodies”), ramified astrocytes, and bal-
looned neurons in the amygdala, hippocampus and 
MTLs [309], represents an age-related disorder and 
has been reported in up to 25% AD cases [310], and 

rarely occurs before the age of 75 [311]. Aging-
related tau astrogliopathy (ARTAG) is defined by 
the presence of two types of tau-bearing astro-
cytes: thorn-shaped and granular/fuzzy astrocytes 
in the brains of old-aged individuals in different 
locations and anatomical regions (subependymal, 
subpial, perivascular, white and gray matter [312, 
313]. 

Among additional pathological changes in AD 
is granulovacuolar degeneration (GVD), character-
ized as 3-5 μm vesicles bound by a unit membrane, 
most frequently occurring in the pyramidal neurons 
of the hippocampus, usually in association with 
NFTs. Their origin and significance are unclear. De-
spite the strong association between tau aggrega-
tion and granulovacuolar degeneration body (GVB) 
formation [314], intracellular aggregates of pro-
teins other than tau can also induce GVB for-
mation, which needs further elucidation [315]. The 
granule of the GVD is immunolabeled by antibodies 
against tubulin, ubiquitin, neurofilament, and tau 
[31]. They correlate with NFT density, suggesting 
that they may be a cellular response to neuronal 
damage or late-stage autophagic vacuoles [316]. 
Necrosome complex detected in GVD is associated 
with neuron loss in AD [317]. 

Recent clinicopathological studies have shown 
that the complex cascades of the underlying pa-
thologies in most elderly patients may lead to cog-
nitive decline, and that the number of possible 
combinations due to co-morbidities increases with 
aging [248]. These concomitant pathologies may be 
harmful to individuals with low cognitive reserve 
such as patients with MA-AD. They can cause a 
number of challenges including the evaluation of 
the significance of each pathological entity in the 
manifestation of the clinical symptoms, and the 
threshold of each individual pathology to cause 
dementia [174]. Total burden of comorbid patho-
logical abnormalities, rather than any single lesion, 
is the most important cause of cognitive impair-
ment, often despite clinical diagnosis of “only” AD 
[318]. 
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5. Conclusions 

AD is a heterogeneous, multifactorial disorder, 
manifesting clinically and morphologically as sever-
al subtypes that have a distinct signature of net-
work disruptions associated with their atrophy 
pattern and reflecting the differential spread of 
NFT pathology and neuronal loss due to different 
vulnerability patterns of affected brain regions, 
which relates to specific molecular-functional 
properties of the affected neuronal systems [22, 
23]. The severity of lesions corresponds to the “N” 
category in the new A/T/N classification for bi-
omarkers [319]. The heterogeneity of the Alz-
heimer’s syndrome is related to multiple pathogen-
ic factors which induce misfolding tau, Aβ, TDP-43, 
and other proteins, the synergetic or additive ac-
tion of which results in various disease phenotypes 
[320]. Several factors such as brain resilience may 
help compensate for these pathologies up to a 
certain level, although their relevance is still poorly 
understood. These problems and the increasing 
incidence of AD illustrate its consequences on pub-
lic health and the resulting challenges for future 
medicine. Increased sensitivity and specificity of 
new ATN biomarker systems and more extensive 
clinicopathological studies in well-defined popula-
tions are needed, with post-mortem studies using 
the updated NIA/AA criteria. The recent advent of 
tau PET and novel imaging and fluid-based (CSF) 
biomarkers allows us to study the temporal pro-
gression of tau pathology in vivo [321, 322]. Im-
proving methods for disease detection and moni-
toring its progression may hopefully lead to the 

development and refinement of tau-based thera-
peutics. In the interest of optimizing the clinical 
diagnosis of AD and related disorders, neuropatho-
logical studies should use a wide range of molecu-
lar pathological methods and should evaluate mul-
tiple CNS regions. An optimal and less cost-
intensive strategy would be to screen specifically 
neurodegeneration-related proteins and to exam-
ine their cross reactions. The recent correlative 
work on concomitant pathologies has provide in-
sight into the interactions of the various patholo-
gies and their roles in causing dementing symp-
toms. Interdisciplinary studies may improve our 
knowledge about the pathogenesis of the hetero-
geneous manifestation of AD and promote meth-
ods for its early diagnosis as the basis for further 
preventive and successful disease-modifying thera-
peutic measures. 
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