
sustainability

Article

Algorithm Selection for Edge Detection in Satellite
Images by Neutrosophic WASPAS Method

Romualdas Bausys 1 , Giruta Kazakeviciute-Januskeviciene 1, Fausto Cavallaro 2,* and
Ana Usovaite 1

1 Department of Graphical Systems, Vilnius Gediminas Technical University, Sauletekio al. 11, LT-10223
Vilnius, Lithuania; romualdas.bausys@vgtu.lt (R.B.); giruta.kazakeviciute-januskeviciene@vgtu.lt (G.K.-J.);
ana.usovaite@vgtu.lt (A.U.)

2 Department of Economics, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
* Correspondence: cavallaro@unimol.it

Received: 29 November 2019; Accepted: 6 January 2020; Published: 10 January 2020
����������
�������

Abstract: Nowadays, integrated land management is generally governed by the principles of
sustainability. Land use management usually is grounded in satellite image information. The
detection and monitoring of areas of interest in satellite images is a difficult task. We propose a
new methodology for the adaptive selection of edge detection algorithms using visual features of
satellite images and the multi-criteria decision-making (MCDM) method. It is not trivial to select
the most appropriate method for the chosen satellite images as there is no proper algorithm for all
cases as it depends on many factors, like acquisition and content of the raster images, visual features
of real-world images, and humans’ visual perception. The edge detection algorithms were ranked
according to their suitability for the appropriate satellite images using the neutrosophic weighted
aggregated sum product assessment (WASPAS) method. The results obtained using the created
methodology were verified with results acquired in an alternative way—using the edge detection
algorithms for specific images. This methodology facilitates the selection of a proper edge detector
for the chosen image content.
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1. Introduction

Sustainability is the key aspect in managing natural resources, such as forests, water bodies, and
agricultural land. Usually, the aerial data for land observation is acquired as aerial images, either from
the satellite images or aerial photography. During the last decade, satellite imagery data have been
actively used to keep development sustainable.

Acquired aerial images include information about the various objects of interest. The information
of interest can be filtered out using edge detection methods, reducing unnecessary information. The
environmental projects are usually constructed applying a vector form of land data. Therefore, all raster
objects in the satellite images must be converted into the vector ones in the land management projects.
Edge discrimination of a particular object for the creation of an edge map is based on the satellite
image content features of the textured and non-textured areas, and these features are associated with
the visual perception of the image. The texture is represented by the spatial interrelationships of pixels
and can be estimated as local changes of luminosity or intensity pattern [1]. Satellite imagery has a
wide variety of texture types that represent different target areas: roads, rivers, lakes, land, vegetation,
buildings, and more [2]. Many applications for sustainable project management aim to distinguish
these areas in grayscale and/or color images, and edge detection has been used as the pre-processing
step before the other subsequent stages of data processing [2–5].
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Vectorization of the objects usually starts by constructing the edge map. Edges identify and localize
significant changes in the digital image. These changes may be caused by object boundaries, textural
properties, illumination, orientation, depth, or other reasons [6]. The typical edge detection method
aims to highlight the important features in the satellite image. The main edge detection methods,
for now, are differential, statistical, multiresolution, morphological based approaches, methods of
computational intelligence, and other created edge detection methods [6–9]. A particular algorithm
responds differently to the given image content, and results are different for the chosen image. Edge
detection algorithms have been used in boundary detection, in image segmentation as a pre-processing
step, for example, to extract coastlines between regions of land and sea in aerial photos [2], in
content-based image retrieval (CBIR) [10], building detection in low contrast satellite images [6] as well
as others computer vision-based applications [4,5]. Edge detectors significantly reduce the amount
of image data and provide the necessary structural information about objects and regions in the
satellite image.

One of the crucial tasks is to discriminate features of interest, related to the appropriate image
content and represented by various textures, in satellite images using appropriate methods and
algorithms. Many authors have analyzed the textural features that humans can discriminate in the
images. In [1], textural characteristics such as roughness, regularity, density, directionality, contrast, and
coarseness are described. The researchers in [11] mention contrast, coarseness, busyness, complexity,
and texture strength. Other authors reused some previous textural features for the analysis of the visual
complexity of the textures [12,13]. In [14], images of real-word scenes were used for their complexity
evaluation using the number of objects, a variety of colors, clutter, etc. Most of the authors [1,11–13]
have studied the visual characteristics of the individual types of textures in the isolated areas of an
image. Our selection of subjective visual features of the satellite images is based on the scientists’
works [1,11–16], and validated with the set of experiments. This set of visual characteristics has been
applied for the edge detection algorithms.

The edge detection process has been evaluated using a number of different criteria with different
optimization directions. Therefore, the selection of the edge detection algorithm for the particular
image can be accomplished using multi-criteria decision-making (MCDM) methodology. MCDM is an
important technique that is used in sustainability engineering [17], as it is applied in a variety of areas:
an improvement of image segmentation [18] and edge detection algorithms [7], sustainable urban
development [19], ranking of the urban parks according to their safety [20], environment exploration
by autonomous mobile robots [21], concentrated solar power (CSP) [22,23], combine heat and power
(CHP) [24]. However, the multi-criteria analysis is not widely applied for the selection of the edge
detection methods for application-specific images based on their features. The authors of [5] have
provided an idea and a framework for the realization of such an opportunity, but neither the selection
of criteria nor practical decision-making has been justified and verified. The research dedicated to
the application of MCDM methods in image processing is usually concerned with improving edge
detection algorithm characteristics [7].

As an alternative to edge detection, deep learning can be used [25]. It is usually applied as a part
of image processing algorithms and the improvement of their characteristics [26–28]. The drawback
of this technique is the requirement of a huge amount of the initial data [29]. While deep learning
is used for edge detection, this paper covers another topic—the selection of optimal methods for
edge detection.

We propose and verified a novel set of visual image features to be used in the MCDM framework.
We formulate a new MCDM problem dedicated to the adaptive selection of edge detection algorithms
governed by visual features of satellite images. Herewith, we performed ranking of edge detection
algorithms according to their suitability for the appropriate satellite image type using the neutrosophic
WASPAS method.

The guidelines for appropriate MCDM algorithm choice have been well-documented by
Guitouni et al. [30]. The WASPAS method is a unique combination of the weighted sum model
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(WSM) and the weighted product model (WPM). Because of its mathematical simplicity and capability
to provide more accurate results as compared to WSM and WPM methods, the WASPAS method is an
efficient decision-making tool for solving the problem of algorithm selection. The uncertainty of the
initial information expressed by linguistic terms is solved using the neutrosophic set environment [31].

The structure of the work is as follows. Section 2 presents a set of criteria and alternatives for
a multi-criteria task for selecting edge detection algorithms based on image content, as well as a
framework for implementing the task itself. Section 3 describes the MCDM neutrosophic WASPAS
method. Section 4 presents the implementation and results of the experiments, the ranking of the edge
detection algorithms based on the neutrosophic WASPAS method, and the verification of the ranking.
The conclusions and future works are presented in Section 5.

2. Selection of Edge Detection Algorithms for Satellite Images

In the proposed methodology, the selection of edge detection algorithms is governed by the visual
features of satellite images. The satellite image features like contrast, smoothness, edge density, and
others depend on the spatial arrangement and interrelationship of pixel values as it is perceived as
changes of gray tones in the intensity pattern. The perceivable local patterns of pixel values can be
treated as textures of the image regions. Places of the image, exposing significant changes of the
intensity in the neighboring pixels are perceived as edges. Edges can separate regions of the objects in
the image, as well as discriminate the elements of textured regions, depending on the features of the
image regions and the edge detection methods [9]. We have identified features of the image regions
responsible for the perceived edges and the influence of these features on the edge detectors.

2.1. Subjective Visual Features of the Satellite Image Content

Orthographic images are of the most importance to the satellite image content analysis since
those images form the basis for the environmental projects. Orthographic image or orthophoto is a
geometrically corrected satellite image. The orthographic image content features are based on the
intensities of pixels. Lightness information influences the perception of real-world images with a
higher degree than color [15,32]. In the simplest case, a group of pixels with similar intensity values
being close to each other constitute a region. When the region is neighboring the other region with
homogeneous intensity values within it, these two regions of different intensity values are separated
by the edge. The boundary delineates the area of the region. When the region consists of similar pixel
values, it is considered a smooth region. The region consisting of neighboring contrasting pixel values
that are close to each other presents a rough intensity pattern and is considered a textured (rough)
region. The basic metrics of these regions are energy, homogeneity, entropy, and others [33]. When in
the textured region is represented repeating local variations of image intensities, a lot of short edges
are distinctive characters of these regions because of high spatial frequencies of intensities, like grass,
water waves, foliage, and similar objects.

The textures of the high and low-frequency range are presented in an image simultaneously.
We take into account all types of textures because we analyze visual features throughout the image
perceivable by humans. We have selected the most characteristic visual features of orthographic
images, such as the size of the individual regions, contrast, roughness, density, and the number of
different regions [1,11–16].

For the evaluation of the image content features, the digital orthographic images with a pixel
resolution of 0.5 feet from across the United States were used from Earth Explorer [34] (see Figure 1).

The objects of our interest are water bodies: rivers, lakes, ponds, and sea. By selecting the
appropriate resolution of digital images, we can distinguish separate objects and/or the appropriate
areas and their features. More details are available in the higher resolution images as more edges
too [35]. With smaller resolution images, larger objects or areas can be distinguished, and small objects
make their detection more difficult. If similar small objects are adjacent in orthoimages, they may be
perceived as areas of the respective texture (for example, foliage—rough texture).
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Figure 2 illustrates the cropped parts of the analyzed orthographic image with a different size of 
individual regions. The size of the water area differs significantly from the size of the many 
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Figure 2. Water regions and their surrounding (Landsat-7 image courtesy of the U.S. Geological 
Survey): (a) large water regions with small surrounding elements; (b) small water regions that are 
surrounded by a high number of different small elements. 

Figure 1. The location view was taken from the satellite map using Earth Explorer (Landsat-7 image
courtesy of the U.S. Geological Survey).

The size of the individual regions in the image is closely related to the coarseness of the textured
regions. Coarseness [11] is the image region property related to its structure. The textured region is
coarser when its elements are larger, and they are less repeated. These regions share the intensity values
of the neighborhood pixels and can be characterized by the high local uniformity. By increasing the
size of the texture, we can treat its elements as separate objects. With a significant reduction, we have a
less coarse texture, and the intensity values of pixels in the neighborhood have low local uniformity.

We have reused this feature to map the overall image structure based on the size of individual
regions. Image structure—objects, regions, and edges—is presented from a bottom-up perspective
using pixel intensities, textures, and colors. The larger the regions, the more they are distinguishable
from each other.

The “size” criterion of image regions and objects reflects the structural precision of the image.
The larger the objects, their elements, and the textural regions, the more precisely boundaries can be
defined between them, the easier to distinguish them by the appropriate edge detectors. At the small
size, boundaries of the regions tend to merge, and it is problematic to separate them.

Figure 2 illustrates the cropped parts of the analyzed orthographic image with a different size of
individual regions. The size of the water area differs significantly from the size of the many surrounding
objects (Figure 2a), and the size of the water regions is small (Figure 2b).
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Figure 2. Water regions and their surrounding (Landsat-7 image courtesy of the U.S. Geological Survey):
(a) large water regions with small surrounding elements; (b) small water regions that are surrounded
by a high number of different small elements.

Contrast [11] is related more to image quality but not to image structure. Sharp edges can be
obtained when the intensity between adjacent regions varies considerably. For textured images with
high contrast, the differential edge detectors are not the best choice as no meaningful region will be
delineated. In the case of textured regions with high contrast small elements in them, all fluctuations
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of intensity are treated as false edges within the region. Edge detectors, not sensitive to textured areas,
can be used [9,36].

Edges will separate the texture’s elements if the size of the elements is large (coarse texture), and
the intensity of the elements is contrasting. Differential edge operators prefer the values of pixels
within the region are as similar as possible. The regions themselves should be smooth with minimal
texture. Sharp edges are perceivable in the images with high contrast between regions (see Figure 3a).
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Contrast may be low for a variety of reasons: the artifacts as “motion blur” in the image, adjacent
regions have similar pixel values (see Figure 3b).

Roughness is closely related to the busyness feature of the image region [12,13]. The busyness of
texture presents the rapid changes of pixel intensity values in neighboring [11]. Roughness represents
our feeling of touch. Due to the high spatial frequency of intensity changes, we assume the appropriate
visual texture tends to be rough. The low spatial frequency range of intensity changes within the image
region makes the region feels smooth. The smooth contrasting regions of satellite images give good
results after edge detection using classical edge detection algorithms. In high contrast images, because
of natural fluctuations of pixel values, a higher roughness of textured regions is perceived. The part of
the smooth water region and the rough forest region (the foliage is visible from above) are presented in
Figure 4a,b.
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Survey): (a) smooth water region; (b) rough forest region.

Density describes how the fluctuations of intensity are perceived throughout the image between
the regions but not only within the regions. Density [12,13] is used to evaluate the sparsity of edges
in the image. The density is influenced by the number of elements in the region and the number of
regions themselves. The less regions and elements there are in the region, the better the results of the
edge detectors. Figure 5a presents the image with low edge density, while Figure 5b presents the image
with high edge density.
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Figure 5. Density feature of image (Landsat-7 images courtesy of the U.S. Geological Survey): (a) low
density; (b) high density.

The number of different regions is based on the intensity of textured and smooth areas [14]. This
feature of the satellite image is related to the number of objects in the image and their details. The color
feature can be included for respondents besides the intensity to separate regions. There is a correlation
between color and intensity, evaluating the complexity of the image, but the color information does
not influence the perception significantly [15].

The edge detection algorithms that are sensitive to the textured areas do not produce the precise
result for the images which have objects containing many details and complex textures. These
algorithms will detect edges of the separated regions if the image has a small number of objects with
clearly distinguished details and smooth textures. The edge detection result is more cluttered for the
textured surfaces, as edges are derived from the imaginary edges between elements of the texture. For
the image containing some regions with similar or identical textures, they will be treated as a single
region (Figure 6).
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texture features are only six (Landsat-7 image courtesy of the U.S. Geological Survey).

All five of the above-described image features were selected as our strategy criteria. As the sixth
criterion, we have included image processing time. All criteria have a more or less different effect
on the result of edge detectors, and time criterion directly influences the duration of edge detection
and depends on the algorithm and image size. Therefore, when selecting edge detection algorithms
for satellites according to their suitability, it is important to distinguish what visual features of image
content have the most significant influence on their suitability, and how important is time.

2.2. Edge Detection Algorithms and Their Properties Based on the Image Content

Edge detection is the process which captures the significant changes in the image intensity function.
This process should be reliable because the other subsequent stages of satellite data processing depend
on it. The input for the process is a discrete image, and the edge map is the output.

There are defined these requirements for proper detection of edges [6]: the optimal edge detector
has to find the real edges without noise and other artifacts; the detected edges have to be close to the
real (true) edges as much as possible; for the true edge one point for each edge point must be returned.
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We selected the classical edge detection algorithms—Prewitt [37], Kirsch [38], Canny [39], Laplacian
of Gaussian (LoG) [40] alongside with Canny-mathematical morphology-based [36] and SubPixel
methods [41]—for the implementation of our strategy. The differential edge detectors (Prewitt, Kirsch,
Canny, Laplacian of Gaussian (LoG)) belong to first or second-order derivatives operators. The
morphological method uses the Canny algorithm and mathematical morphology. SubPixel algorithm
for edge detection uses the hypothesis of the partial area effect. These selected edge detection algorithms
form the set of alternatives for MCDM problem formulation.

Changes in brightness over a set of pixels refer to the image gradient. The approximation of image
gradients can be calculated by convolution using different kernels. The gradient kernel influences the
result of edge detection.

The first-order derivative operators—Prewitt, Kirsch, Canny—compute edge gradients of a
discrete image in the appropriate directions. The strength and direction of the edge can be evaluated
from gradient information by the gradient magnitude and angle of orientation. The edge direction is
perpendicular to the direction of the gradient. After thresholding operation, all pixels with gradient
values large the defined threshold become possible edge pixels. The morphological operation thins the
possible edges to the one point for each edge point. The Canny edge detector is a multistage algorithm
and evaluates more nuances in the edge detection process. Morphological edge detection is related to
the first-order derivative edge detectors as in first stage, it uses the base of the Canny algorithm. The
SubPixel algorithm differs from the differential edge detection algorithms.

Prewitt and Kirsch operators have 3 × 3 convolution kernels and average out the small intensity
fluctuations of image. The convolution kernels of the Prewitt operator are directed towards the
filtering of horizontal and vertical edges. Prewitt’s algorithm uses the integer-valued filters and is
computationally inexpensive.

Kirsch edge detector uses eight 3 × 3 directional convolution kernels. The single kernel is rotated
in 45 degrees to get N, NW, W, SW, S, SE, E, and NE compass orientations. Kirsch algorithm, like the
other algorithms based on compass kernels, finds the maximum absolute gradient magnitude across all
directions and uses it as the edge gradient. Kirsch algorithm needs more time for the filtering process
of edges than Prewitt.

Prewitt and Kirsch edge detectors work well when an image has a low noise level and sharp
intensity transitions. The Canny algorithm is improved in respect of the noisy edges. The smoothing is
applied to the image using a Gaussian filter to reduce the noise effect. Then the intensity gradients
are calculated to find the edge strength and direction like for other gradient-based edge detection
algorithms. All pixels that are not the edge pixels are suppressed using the thinning process, which
is applied to the gradient magnitude and called non-maxima suppression. The remaining pixels are
classified using two thresholds—high and low. Edge pixels above the high threshold are assigned as
strong edge, edge pixels not reaching the low threshold are discarded, and pixels with values between
the two thresholds are marked as weak edges. Edge tracking and connection are realized by hysteresis
and connectivity analysis, respectively.

The Laplacian filter approximates the second-order derivative. This filter has been used for edge
detection as it highlights the rapid intensity change in the image and herewith the noise in those
regions. The 2-D Gaussian smooth kernel of appropriate standard deviation was applied before the
Laplacian filter to overcome this problem. The second derivatives are more sensitive to noise than the
first ones and return edge points finding the zero crossings of the intensity image. Then the threshold
is applied to minimize the false edges due to noise.

The problem of the Gaussian smoothing is that the filtering removes noise, but after blurring the
edge, information can also be lost. The missing information, localization errors, and false edges are the
problems of the Gaussian-based edge detectors.

Morphological edge detection combines the advantage of a Canny algorithm detecting the strength
of edges and the processing the edges by morphological operations. The final result of the algorithm
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was improved by the morphological thinning. The noise and false edges can be suppressed more
effectively using morphological edge detection than with the Canny algorithm.

SubPixel algorithm achieves the accurate extraction of contrast, position, orientation, and curvature
of the edges. It based on the partial area effect hypothesis. The algorithm detects SubPixel features
for each pixel belonging to the edges of the image. The sensitivity threshold specifies the minimum
difference of intensity at both sides of a pixel to be considered as an edge.

The threshold of edge detection algorithms defines their sensitivity to the image content. When
the image is noisy, has textures with high spatial frequencies of intensity changes, selection of threshold
becomes a trade-off between the false and weak edges. False edges are useless and originate from
noise and surface texture. Weak and strong edges are usually useful edges, but they have different
characteristics. The strong edges are sharp and continuous in opposite to the weak edges. Weak and
false edges can be detected as the broken segments, but weak edges are distributed more regular
than false ones [42]. Canny and LoG algorithms, besides the threshold, use standard deviation that
determines the filter size for smoothing. The size of the filter and smoothing degree increase with the
standard deviation value. The experiments for testing the sensitivity of edge detectors were performed
using threshold and standard deviation.

2.3. A Framework of the Methodology Implementation

The original methodology for the adaptive selection of edge detection algorithms includes six
essential steps:

• Creation of the generalized set of visual characteristics (features) for the images as the criteria for
the strategy;

• Selection of the set of edge detection algorithms;
• Etimation of the influence of the selected visual features of satellite images to the result of the

appropriate edge detection algorithm from the defined set of algorithms as the alternatives of
the strategy;

• Evaluation of the satellite image content using the set of visual characteristics of the image;
• Applying the neutrosophic WASPAS method for optimal decision making;
• Ranking of edge detection algorithms according to their suitability for the appropriate satellite

image type.

For the realization of our strategy, the classical differential, morphology-based, and SubPixel edge
detection methods were selected. The edge detection algorithms have to be selected for each satellite
image according to the order of relevance of five criteria: contrast, roughness, density, number of
different regions, size of the individual image regions. The sixth criterion, processing time, is related to
the image size. Afterward, the ranking of algorithms obtained using the created methodology has to
be verified with the ranking obtained in an alternative way—using the edge detection algorithms for
appropriate images. The general framework of the methodology is presented in Figure 7.

The proposed methodology is universal and applicable to the selection of the edge detection
algorithms for satellite images due to the adaptation of the algorithm characteristics to visual
image features.
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3. Selection of the MCDM Method for Data Processing and Evaluation

In this work have been explored the problem for choosing appropriate edge detection algorithms
depending on the visual image features. Generally, the WASPAS approach is quite popular for the
solution of different MCDM problems. The review of the WASPAS methods application was presented
in [43]. The popularity of WASPAS can be defined due to simplicity and stability. The direct subjective
criteria weights evaluation method was applied for the determination of the criteria weights.

3.1. Evaluation Method for the Criteria Weights

Most of the currently known and applied methods of determining weights for MCDM are
subjective and based on expert judgment. The subjective method described by Kendall [44]. Frequently,
the subjective method is implemented for calculating criteria values cik and criteria weights wi
of importance.

In this study, we applied the direct method of criterion importance weights determination. This
method has higher accuracy compared to the other ranking methods. Using the direct method for
determination of the weights for criteria, the sum of the weights of each expert evaluations must be
equal to 100% (or one). The criteria assessment values may be repeated [45–47].

The values cik for mathematical calculations were collected by interviewing the experts. The
average criterion value ci was calculated by the formula:

ci =

∑r
k=1 cik

r
, (1)

where cik is the estimation value of the i criterion by the k experts, and r is the number of the experts.
The weights of the criteria were calculated by dividing the sum of the criteria average values by

the average value of each criterion:

wi =

∑r
k=1 cik∑m

i=1
∑r

k=1 cik
, (2)

where r is the number of experts, m is the number of criteria, cik is i criteria by k experts’ determination
of criteria weights.
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The total sum of weights must be equal to one:

m∑
i=1

∑m
i=1 ci

ci
= 1. (3)

Generalized experts’ assessments of the importance of visual image features are presented in
Table 1.

Table 1. Evaluation of the criteria importance using the direct subjective method.

Experts Criteria (Features) of Images

Roughness, C1 Density, C2 Contrast, C3
Processing
Time, C4

Size of Individual
Regions, C5

Number of Different
Regions, C6

Expert 1 15 20 20 15 15 15
Expert 2 20 20 15 15 15 15
Expert 3 15 20 15 15 15 20
Expert 4 20 20 15 20 15 15
Expert 5 20 15 20 20 15 15

Average criteria
values 18 19 17 17 15 16

Criteria weights 0.176 0.186 0.167 0.167 0.147 0.157

In the last row of Table 1 are presented the values of criteria weights.

3.2. MCDM WASPAS Method

The WASPAS-SVNS extension of the WASPAS method is used to solve the mentioned MCDM
problem. Previously, the WASPAS-SVNS method was applied for the problem of the real
world [17,20,21,48]. The basis of this method is governed by the single-valued neutrosophic set.
The description of the separate steps can outline the implementation of the solution to the selection of
the edge detection algorithm for satellite images:

1. The first part of the initial information consists of estimates of edge detection algorithms according
to selected criteria (image features). The criteria weighting coefficients are also used for the data.
It can be illustrated by the initial data xAij, i = 1, 2, . . . .. m; j = 1, 2 . . . .. n, which, in fact, is the
aggregated expert assessment of the ith algorithm by the jth criterion. Accordingly, the algorithm
evaluation matrix can be expressed as:

XA =


xA11 xA12 · · · xA1n
xA21 xA22 · · · xA2n

...
...

. . .
...

xAm1 xAm2 · · · xAmn

. (4)

2. The second part of the initial information provides the image assessment with respect to the same
criteria. These assessments form the vector Xi, which has the same numbers of elements as the
separate column of matrix XA. All evaluations presented in these matrices have a linguistic form.

3. At the neutrosophication step, the initial linguistic matrix XA and vector Xi are converted into

the single-valued neutrosophic numbers. Consequently, the neutrosophic decision matrix X̃n
A

and vector X̃n
i are calculated. The relationships between linguistic and neutrosophic values are

applied the same as in [21].

The final decision matrix is calculated by applying the neutrosophic addition operation by
summing each column of the matrix X̃n

A with a vector X̃n
i

X̃n = X̃n
A

⊕
X̃n

i . (5)
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It should be mentioned, that single-valued neutrosophic number can be described by
Ñ1 = (t1, i1, f1), t corresponds to membership degree, i—to indeterminacy degree, and t—to a
non-membership degree. The summation of two single-valued neutrosophic numbers is governed
applying the equation as follows

Ñ1

⊕
Ñ2 = (t1 + t2 − t1t2, i1i2, f1 f2). (6)

4. The first decision component of the WASPAS-SVNS method is governed by the sum of the total
relative importance of the alternative i, which is determined by the expression:

Q̃(1)
i =

Lmax∑
J=1

x̃n
+i j·w

n
+ j

⊕Lmin∑
J=1

x̃n
−i j·w− j


c

, (7)

where x̃n
+i j and w+ j values are associated with the criteria to be maximized and x̃n

−i j and w− j
values are associated with the criteria to be minimized. The multiplication of the neutrosophic
variable and real crisp weight is calculated by the following expression

λÑ1 =
(
1− (1− t1)

λ, iλ1 , fλ1
)
,λ > 0. (8)

The second term of the summation (Equation (3)) consists of the complementary neutrosophic
numbers, which are determined by the equation

Ñc
1 = ( f1, 1− i1, t1). (9)

5. The second term of the optimal alternative in the WASPAS-SVNS methodology is determined
by applying the formulation of the product total relative importance of the alternative i and is
calculated by the described expression:

Q̃(2)
i =

Lmax∏
j=1

(x̃n
+i j)

wn
+ j ·

Lmin∏
j=1

(x̃n
−i j)

wn
− j


c

. (10)

The meaning of the terms of this equation is the same as in Equation (4). The multiplication of the
neutrosophic numbers is governed applying the equation as follows

Ñ1

⊗
Ñ2 = (t1t2, i1 + i2 − i1i2, f1 + f2 − f1 f2). (11)

6. For the final ranking of the alternatives by the applied WASPAS-SVNS method, we need to
calculate final generalized criterion as follows:

Q̃i = 0.5Q̃(1)
i

⊕
0.5Q̃(2)

i . (12)

7. In the final step, the score function S(Q̃i) is calculated for all ranking alternatives i = 1, 2, . . . , m
by the following equation

S(ÑA) =
3 + tA − 2iA − fA

4
, (13)

and the final rankings of the alternatives may be formed by applying the descending order of the
S(Q̃i) i = 1, 2, . . . , m.
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4. Results and Discussion

This section describes a study for selecting edge detection algorithms based on the content of
satellite images. The set of criteria related to the visual characteristics of the images was selected for the
content evaluation of the satellite images. The influence of the selected visual characteristics of satellite
images to the result of the edge detection algorithms was estimated. The edge detection algorithms
were ranked according to their suitability for corresponding images using the neutrosophic WASPAS
method. Ranking of algorithms obtained using the created methodology was verified with the ranking
of experts using the results of the edge detection algorithms for particular images.

4.1. Subjective Evaluation of Algorithms and Satellite Image Content

Six edge detection algorithms were selected for the initial experiment: Prewitt, Kirsch, LoG,
morphological, SubPixel. Every algorithm returned a unique edge map for the image. The content of
the selected image also influences the result. Five experts were presented the edge detection results
to evaluate the sensitivity (constant values, Table 2) of the edge detectors to the image content. A
consistent pattern was discovered to match the edge detection algorithm to the appropriate image type.
The image type is determined by its content features like roughness, density, contrast, size of individual
regions, number of different regions. The time factor was estimated as an important criterion for
each edge detection algorithm. Experts from Vilnius Gediminas technical university, Department of
Graphical systems with at least 15 years of experience in image processing and analysis, participated
in the evaluations of algorithms and images considered in the present section. These experts are also
presented their opinion concerning the image visual criteria weights considered in Section 3.1. To rank
the different edge detection algorithms, the 10-point Likert scale [49] was used. The experts were asked
to fill the questionnaire (see Appendix A), and the mean values of the assessments were calculated.
The results of the poll are summarized in Table 2 below.

Table 2. Experts’ opinions in the evaluating of the algorithms.

Criteria (Features) of Images Optimum Edge Detection Algorithms (Alternatives)

Prewitt, A1 Kirsch, A2 Canny, A3 LoG, A4 Morphological, A5 SubPixel, A6

Roughness, C1 min 6 5 9 4 2 8

Density, C2 max 5 4 6 3 9 7

Contrast, C3 max 5 6 9 4 7 8

Processing time, C4 min 9 4 5 8 7 2

Size of individual regions, C5 max 3 5 8 4 6 9

Number of different regions, C6 max 5 6 7 4 9 8

Experts’ opinions in the second table show that the evaluations of some algorithms are significantly
different, while Canny and SubPixel were evaluated in a similar manner. However, one of the criteria
may differ more, like processing time for the Canny and SubPixel algorithms. The “roughness” criterion
with the optimum value min will match the smoothness feature of the image content. The value of this
criterion for the morphological algorithm is the lowest compared to the values of the other algorithms.
Most of the criteria of the Prewitt, Kirsch, and LoG algorithms have lower criteria values compared to
the Canny, SubPixel, and morphological algorithms. However, Prewitt and LoG algorithms are fast
enough. The Prewitt algorithm was included as a quick method to assess how it lags qualitatively. In
terms of time, the LoG algorithm differs little from Prewitt. The Kirsch algorithm, which does not have
high criteria values, is taken to test how it lags against all other selected algorithms.

All developed edge detection algorithms have their advantages and disadvantages. They generate
the edge maps of different quality, and processing time also varies. The quality of edge detector results
is inseparable from the visual characteristics of the image content. The criteria weights used in our
methodology also differ (see Table 1). The results of the algorithms’ evaluations (see Table 2) show that
some algorithms have lower values for majority criteria compared to the criteria values of the other
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algorithms. However, only after conducting an experiment, we can determine which one fits better to
the image content.

The second evaluation was focused on evaluating the content of the images. We have studied the
most typical aspects of the satellite image content. We have selected images that have different visual
features from the analyzed set of images and constructed a representative set of visual features, best
characterizing satellite images.

Along with the evaluation of visual features set, it is essential to distinguish the most important
satellite imagery cases, rather than investigate a large number of images. We have created a new strategy
for evaluating the edge detection algorithms based on the generalized set of visual characteristics of
the satellite image without actually classifying them.

Six satellite images of the different content were selected from Earth Explorer. We must assure
the important characteristics of the image, such as roughness, edge density, and others must vary
considerably as it will be easier to evaluate the sensitivity of the edge algorithms to the image
content. Images were cropped to randomize the processing time and saved using a lossless image
compression format. Satellite images used in evaluations (Figure 8): (a) “img1” is taken from
dataset 201401_hillsborough_county_fl_6in_sp_cnir, saved as 1250 × 1250 PNG image and cropped
to 600 × 1000 px; (b) “img2” is taken from dataset 201402_georgetown_county_sc_6in_sp_cnir,
saved as 1250 × 1250 PNG image and cropped to 616 × 992 px; (c) “img3” is taken from dataset
200601_hillsborough_county_fl_6in_sp_clr, saved as 1250 × 1250 PNG image; (d) “img4” is taken from
dataset 201402_lake_county_fl_6in_sp_clr, saved as 1250 × 1250 PNG image and cropped to 651 × 901
px; (e) “img5” is taken from dataset 201402_lake_county_fl_6in_sp_clr, saved as 1250 × 1250 PNG
image and cropped to 851 × 1000 px; (f) “img6” is taken from dataset 201402_lake_county_fl_6in_sp_clr,
saved as 1250 × 1250 PNG image and cropped to 741 × 751 px.
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The selected satellite images with appropriate visual features are presented in Figure 8a–f.
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Before starting the evaluation of the images, the respondents were explained the meaning of the
criteria and a rating scale, they were provided with a questionnaire (see Appendix B) and an individual
blank response table (see Table 3). The 10-point Likert scale was used for the evaluation of the image
content. The respondents were asked to fill the response tables, and later the mean values of the
content assessments were calculated.

Table 3. Expert opinions in the evaluation of the satellite images.

Criteria (Features) of
Images

Optimum
Orthographic Images

“img1”,
600 × 1000

“img2”,
616 × 992

“img3”,
1250 × 1250

“img4”,
651 × 901

“img5”,
851 × 1000

“img6”,
741 × 751

Roughness, C1 min 9 1 4 3 1 4
Density, C2 max 2 8 7 9 7 6
Contrast, C3 max 8 4 6 7 6 7

Processing time, C4 min 3 2 1 5 2 6
Size of individual

regions, C5
max 7 8 9 5 6 7

Number of different
regions, C6

max 3 5 6 9 4 7

4.2. Ranking of Edge Detection Algorithms

The obtained results of the applied WASPAS-SVNS for the selection of edge detection algorithms
are illustrated below. The elements of the single-valued decision matrix were calculated by neutrosophic
addition operation (Equation (5)) for algorithm evaluation matrix X̃n

A and images assessment vector

X̃n
i for image “img1” and presented in Table 4. In the same way, the decision matrices were calculated

for other images (“img2”, “img3”, “img4”, “img5”, “img6”).

Table 4. The decision matrix of the edge detection algorithms on the processing of the image “img1”.

Criteria of Images Edge Detection Algorithms (Alternatives)

Prewitt, A1 Kirsch, A2 Canny, A3 LoG, A4 Morphological, A5 SubPixel, A6

Roughness, C1

(0.1028,
0.9100,
0.8972)

(0.1311,
0.8689,
0.8689)

(0.0364,
0.9636,
0.9636)

(0.1646,
0.8160,
0.8354)

(0.2605, 0.7030,
0.7395)

(0.0562,
0.9539,
0.9438)

Density, C2

(0.1567,
0.8529,
0.8433)

(0.1276,
0.8955,
0.8724)

(0.1910,
0.7981,
0.8090)

(0.1022,
0.9197,
0.8978)

(0.3749, 0.6322,
0.6251)

(0.2331,
0.7497,
0.7669)

Contrast, C3

(0.3192,
0.6488,
0.6808)

(0.3441,
0.6113,
0.6559)

(0.4797,
0.4959,
0.5203)

(0.2982,
0.6779,
0.7018)

(0.3749, 0.5779,
0.6251)

(0.4158,
0.5307,
0.5842)

Processing time, C4

(0.1964,
0.7795,
0.8036)

(0.2982,
0.6658,
0.7018)

(0.2715,
0.7066,
0.7285)

(0.2121,
0.7721,
0.7879)

(0.2294, 0.7561,
0.7706)

(0.3749,
0.5779,
0.6251)

Size of individual
regions, C5

(0.2050,
0.7819,
0.7950)

(0.2434,
0.7366,
0.7566)

(0.3387,
0.6171,
0.6613)

(0.2228,
0.7656,
0.7772)

(0.2678, 0.6990,
0.7322)

(0.4028,
0.5814,
0.5972)

Number of different
regions, C6

(0.1520,
0.8573,
0.8480)

(0.1812,
0.8106,
0.8188)

(0.2173,
0.7689,
0.7827)

(0.1273,
0.8933,
0.8727)

(0.3413, 0.6659,
0.6587)

(0.2656,
0.7096,
0.7344)

The final results of the described WASPS-SVNS methodology (steps 4–7) are presented in Table 5.
We compute the first and second terms of each alternative in the WASPAS-SVNS methodology by
Equations (7) and (10). Final generalized criteria Q̃i were calculated by Equation (12). Likewise, the
ranking of the alternatives was calculated by the application of the score function S(ÑA) (Equation (13)).
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Table 5. The aggregated results provided by the WASPAS-SVNS method for “img1” processing.

Edge Detection Algorithms (Alternatives)

Prewitt, A1 Kirsch, A2 Canny, A3 LoG, A4 Morphological, A5 SubPixel, A6

Q̃(1)
i

(0.8847,
0.1122,
0.1153)

(0.8546,
0.1456,
0.1454)

(0.9430,
0.0515,
0.0570)

(0.8273,
0.1905,
0.1727)

(0.9318, 0.0673,
0.0682)

(0.9332,
0.0583,
0.0668)

Q̃(2)
i

(0.3263,
0.6734,
0.6737)

(0.3260,
0.6763,
0.6740)

(0.4111,
0.5716,
0.5889)

(0.2888,
0.7280,
0.7112)

(0.4469, 0.5450,
0.5531)

(0.4283,
0.5534,
0.5717)

Q̃i

(0.7214,
0.2748,
0.2786)

(0.6869,
0.3138,
0.3131)

(0.8167,
0.1717,
0.1833)

(0.6496,
0.3724,
0.3504)

(0.8058, 0.1916,
0.1942)

(0.8046,
0.1797,
0.1954)

S(Q̃i) 0.7233 0.6866 0.8225 0.6386 0.8071 0.8125

Rank 4 5 1 6 3 2

It can be observed that alternative A3 (Canny edge detection algorithm) is superior to the other
mentioned alternatives. It can be concluded that for “img1” processing, the most preferred alternative
is A3. Alternatives A6 (SubPixel algorithm) and A5 (Morphological algorithm) are in second and third
places, respectively. Alternative A6 (LoG algorithm) is the worst variant for “img1” processing. The
ranking results for all images (“img2”, “img3”, “img4”, “img5”, “img6”) are presented in the next
section in Table 6.

Table 6. Experts’ ranking of algorithms compared to neutrosophic WASPAS method ranking.

Edge Detection Algorithms
(Alternatives)

Satellite Images

Rank by WASPAS Experts Rank by WASPAS Experts Rank by WASPAS Experts

“img1” “img2” “img3”

Prewitt, A1 0.7233 4 3 0.6944 5 5 0.7356 4 4
Kirsch, A2 0.6866 5 4 0.6959 4 4 0.7284 5 5
Canny, A3 0.8225 1 1 0.8001 3 3 0.8267 3 2
LoG, A4 0.6386 6 5 0.6454 6 6 0.6854 6 6

Morphological, A5 0.8071 3 6 0.8192 1 1 0.8367 1 1
SubPixel, A6 0.8125 2 2 0.8099 2 2 0.8311 2 3

“img4” “img5” “img6”

Prewitt, A1 0.8010 4 4 0.6513 5 5 0.7507 4 4
Kirsch, A2 0.7933 5 5 0.6531 4 4 0.7321 5 5
Canny, A3 0.8731 2 3 0.7713 3 3 0.8391 1 1
LoG, A4 0.7614 6 6 0.5965 6 6 0.6916 6 6

Morphological, A5 0.8723 3 2 0.7947 1 1 0.8352 3 3
SubPixel, A6 0.8738 1 1 0.7841 2 2 0.8366 2 2

4.3. Verification of Ranked Edge Detection Methods

The reliability of the WASPAS ranking method was verified in an alternative way. For each of the
four images, six edge maps were generated varying their parameters—threshold or standard deviation
and threshold—experimentally, totaling to the 24 edge maps of the relevant images. These edge maps
were provided for the experts to rank them. For the experiment, the luminosity (Y) component was
extracted from the color satellite images from the Earth Explorer [34]. The intensity component Y
was processed using the selected edge detectors (first-order derivate algorithms—Prewitt, Kirsch;
multistage first order derivate algorithm—Canny; second-order derivative algorithm —Laplacian of
Gaussian; morphological algorithm—Canny based; SubPixel algorithm based on the hypothesis of the
partial area effect).

The filtered edge maps of each image (selected region) using appropriate algorithms are presented
in Figures 9–14.
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Figure 9. The region of satellite image “img1” after edge detection: (a) original color image (Landsat-
7 image courtesy of the U.S. Geological Survey); (b) Y component of the original image; (c) Prewitt 
edge map; (d) Kirsch edge map; (e) Canny edge map; (f) LoG edge map; (g) morphological edge map; 
(h) SubPixel edge map. 

Figure 9. The region of satellite image “img1” after edge detection: (a) original color image (Landsat-7
image courtesy of the U.S. Geological Survey); (b) Y component of the original image; (c) Prewitt edge
map; (d) Kirsch edge map; (e) Canny edge map; (f) LoG edge map; (g) morphological edge map; (h)
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Figure 10. The region of satellite image “img2” after edge detection: (a) original color image (Landsat-
7 image courtesy of the U.S. Geological Survey); (b) Y component of the original image; (c) Prewitt 
edge map; (d) Kirsch edge map; (e) Canny edge map; (f) LoG edge map; (g) morphological edge map; 
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Figure 11. The region of satellite image “img3” after edge detection: (a) original color image (Landsat-
7 image courtesy of the U.S. Geological Survey); (b) Y component of the original image; (c) Prewitt 
edge map; (d) Kirsch edge map; (e) Canny edge map; (f) LoG edge map; (g) morphological edge map; 
(h) SubPixel edge map. 
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Figure 10. The region of satellite image “img2” after edge detection: (a) original color image (Landsat-7
image courtesy of the U.S. Geological Survey); (b) Y component of the original image; (c) Prewitt edge
map; (d) Kirsch edge map; (e) Canny edge map; (f) LoG edge map; (g) morphological edge map; (h)
SubPixel edge map.
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Figure 11. The region of satellite image “img3” after edge detection: (a) original color image (Landsat-
7 image courtesy of the U.S. Geological Survey); (b) Y component of the original image; (c) Prewitt 
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Figure 12. The region of satellite image “img4” after edge detection: (a) original color image (Landsat-
7 image courtesy of the U.S. Geological Survey); (b) Y component of the original image; (c) Prewitt 
edge map; (d) Kirsch edge map; (e) Canny edge map; (f) LoG edge map; (g) morphological edge map; 
(h) SubPixel edge map. 
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Figure 13. The region of satellite image “img5” after edge detection: (a) original color image (Landsat-
7 image courtesy of the U.S. Geological Survey); (b) Y component of the original image; (c) Prewitt 
edge map; (d) Kirsch edge map; (e) Canny edge map; (f) LoG edge map; (g) morphological edge map; 
(h) SubPixel edge map. 
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Figure 14. The region of satellite image “img6” after edge detection: (a) original color image (Landsat-
7 image courtesy of the U.S. Geological Survey); (b) Y component of the original image; (c) Prewitt 

Figure 12. The region of satellite image “img4” after edge detection: (a) original color image (Landsat-7
image courtesy of the U.S. Geological Survey); (b) Y component of the original image; (c) Prewitt edge
map; (d) Kirsch edge map; (e) Canny edge map; (f) LoG edge map; (g) morphological edge map; (h)
SubPixel edge map.
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SubPixel edge map.
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Figure 14. The region of satellite image “img6” after edge detection: (a) original color image (Landsat-
7 image courtesy of the U.S. Geological Survey); (b) Y component of the original image; (c) Prewitt 

Figure 14. The region of satellite image “img6” after edge detection: (a) original color image (Landsat-7
image courtesy of the U.S. Geological Survey); (b) Y component of the original image; (c) Prewitt edge
map; (d) Kirsch edge map; (e) Canny edge map; (f) LoG edge map; (g) morphological edge map; (h)
SubPixel edge map.

The experts ranked the maps of each image by quality in descending order. The mean values of
the ranks were calculated. After evaluation, we can see that the ranking of the algorithms does not
significantly differ compared to WASPAS (Table 6).

As in WASPAS, the Canny algorithm ranks in the first place, and SubPixel is in the second place
for the edge detection of the “img1”. As the ranking values of the WASPAS method show, there is
little difference in the result of these algorithms. The same can be observed about visual differences
(Figure 9e,h). Thus, both Canny and SubPixel algorithms are suitable for images with lower roughness.
The morphological algorithm was evaluated differently: it was ranked third by WASPAS and in sixth
place by the experts. The ranking difference using the WASPAS method (the third place) can be
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explained by ranking higher than Prewitt, Kirsch, and LoG algorithms in many cases. The estimations
of Prewitt, Kirsch, and LoG algorithms differ by only one in both cases.

The “img2” edges were best filtered by the morphological algorithm in both cases (Figure 10g).
This algorithm was ranked well as it has high values of the roughness and density criteria, and the
“img2” content exposes these features. The SubPixel ranks second place both by WASPAS and experts.
The LoG ranks last, and it was the worst ranked by experts. Kirsch and Prewitt edge detectors are in
fourth and fifth places accordingly.

For “img3” (Figure 11), the ranking is slightly different. Under the WASPAS method, the SubPixel
algorithm was ranked higher than Canny due to the size of individual regions and density, and the
content of “img3” has high values for these criteria. Furthermore, the weight coefficient for density is
the highest.

In the case of “img4” (Figure 12), we have the same ranking using the WASPAS method and
expert evaluation for all algorithms except Canny and morphological. Canny was ranked second by
WASPAS and in third place by the experts. These small ranking discrepancies between Canny (0.8731)
and morphological algorithm (0.8723) can be explained by higher values of contrast criteria for Canny,
and the “img4” content exposes this feature.

The “img5” like “img2” edges were best detected by the morphological algorithm in both cases
(Figure 13g). This algorithm is suitable for images with high roughness and density criteria values.
The SubPixel ranks second place both by WASPAS and experts, and Canny third place. Kirsch, Prewitt,
and LoG edge detectors are in fourth, fifth, and sixth places accordingly.

In the case of “img6” (Figure 14), we have the same ranking using expert evaluation and the
WASPAS method for all algorithms. The Canny algorithm was ranked first place, SubPixel is in the
second, morphological in the third, and Prewitt, Kirsch, and LoG are in the fourth, fifth, and sixth
places accordingly.

The additional experiment was conducted to assess the sensitivity of image content evaluation
and validate the proposed methodology. Traditionally, the sensitivity analysis is applied to assess the
reliability of MCDM methods. The sensitivity analysis is based on the accuracy of image evaluations,
i.e., how evaluations of the respondents influence the algorithm selection.

Four new user groups, each consisting of 10 people (IT (information technologies) students,
engineers, managers, and image processing experts), filled the questionnaire (see Appendix B). The
“img1” was taken for sensitivity analysis. The mean values of the assessments for each considered
group of the evaluators were calculated. The results of the survey are presented in Table 7 below.

Table 7. Opinions of the evaluator groups in the evaluation of the image “img1”.

Criteria (Features) of Images Optimum Evaluator Groups

Students Engineers Managers Experts

Roughness, C1 min 6 5 3 9
Density, C2 max 4 3 7 2
Contrast, C3 max 7 9 1 8

Processing time, C4 min 4 3 1 3
Size of individual regions, C5 max 6 3 2 7

Number of different regions, C6 max 4 6 2 3

The presented assessments allow make a conclusion that the opinion of the managers’ group about
the satellite image content varied quite perceptibly comparing to the mean values of the assessments
of the fourth target group—experts (Table 7). Students’ assessments are close to experts’ and engineers’
opinions a little differ from the experts’.

The results of the sensitivity analysis are presented in Figure 15.
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Figure 15. Rating of the six edge detection algorithms based on the different evaluation of the image
content by four evaluator groups. WASPA-SVNS was used for the experiment with “img1”.

The data in Figure 15 shows that the variation in the evaluators’ opinions influences the results
calculated using the WASPAS-SVNS method. The third alternative (A3, Canny’s algorithm) ranks first
place by students’ and experts’ evaluations of “img1” content. Slight fluctuations in the engineers’
judgment changed the position of the A6 alternative (SubPixel’s algorithm) in the ranking from second
to first place. More significant deviations from the content evaluations also lead to the more significant
discrepancies in the algorithm ranking; for example, A5 (morphological algorithm) ranked first using
managers’ assessments of the “img1” content.

The sensitivity experiment shows the importance of proper evaluation of the image content by
the experts and choosing the proper set of visual image features (criteria), influencing the algorithms’
ranking. The assessment of visual content depends on the involvement of the respondent group to the
field of image processing: the IT students ranked the images almost in the same order as the experts,
the evaluation of engineers is slightly broader, and the evaluation of managers does not reflect the
image content characteristics correctly.

5. Conclusions and Future Work

We proposed the novel multi-criteria decision-making methodology for the selection of the
best performing edge detection algorithms for the satellite images based on their content. MCDM
WASPAS-SVNS and direct criteria weights evaluation methods were used to rank the edge detection
algorithms (alternatives) by visual image features. The reliability of the methodology was cross-checked
with expert evaluations of edge detection results.

Because of the variety of algorithms used to detect the edges of an image, it is difficult to decide
which algorithm will be appropriate for the selected image content, since several criteria determine the
choice. If edge detection algorithms have high criteria values and the criteria weights are not low, their
ratings for images with different content should be checked using the proposed methodology.

A set of appropriate criteria needs to be linked to the specificity and suitability of the algorithm.
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It is vital to construct a representative set of visual features that directly related to the content of
the image and best characterize satellite images. This set of visual features is used as the criteria to
evaluate the edge detection algorithms. The result of the edge detection algorithm depends on these
criteria: roughness, density, contrast, size of individual regions, and the number of different regions.
Processing time is related to image size and depends on the algorithm.

The slight differences in the ranking of the algorithms in both cases, by WASPAS and experts, are
explained by the subjective evaluation of image visual features and algorithms’ performance. Experts
evaluated criteria weights, algorithms’ sensitivity to image content, the edge map created by the
appropriate algorithms, and the content of images. The correctness of the ranking is based not on the
statistical evaluation of the number of samples, but on that how well the constructed set of original
visual features describes the cases of the content of the characteristic satellite images. For this purpose,
it must be distinguished most important satellite imagery cases. The sensitivity of evaluations of the
image content is also essential. The reliability studies of MCDM methods are usually performed by
sensitivity analysis but not by the statistical analysis. Sensitivity analysis allows us to detect what
imperfections of user image evaluations influence the final result of the algorithms’ selection. Allowing
the values of each criterion of the image fluctuate within a wide range when evaluating the image by
different respondents may lead to incorrect algorithm ranking. If the differences between the values of
all the criteria (differences in the visual characteristics of the images) are small, the ranking of edge
detection algorithms will be similar too.

Developing an expert system, we are going to include the set of criteria (visual characteristics
of the images) and the evaluation ranges of each criterion along with its visual representation. This
possibility would allow users to rate images of different content more accurately and effectively, as the
image processing algorithms (edge detection in our case) are used not only by specialists in this field.

In this work, the classical differentiation, morphological, and subpixel edge detectors were
employed, while other edge detection techniques such as multiresolution and other morphological
based approaches, methods of computational intelligence for the broader set of images are to be
considered for the future work. The objective criteria related to the subjective visual criteria of satellite
images are to be explored.
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Appendix A

• The first questionnaire for the evaluation of the edge detection algorithms.
• Evaluate how each algorithm processes the images with low roughness.
• Evaluate how each algorithm processes the images with high density.
• Evaluate how each algorithm processes the images with high contrast.
• Evaluate how fast each algorithm processes the images.
• Evaluate how each algorithm processes the images with a large size of individual regions.
• Evaluate how each algorithm processes the images with a high number of different regions.

Appendix B

• The second questionnaire for the evaluation of the image content.
• Does the image have low roughness?
• Does the image have a high density?
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• Does the image have a high contrast?
• How fast will the image be processed according to its size?
• Does the image have a large size of individual regions?
• Does the image have a high number of different regions?
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