
applied  
sciences

Article

The N-Grams Based Text Similarity Detection
Approach Using Self-Organizing Maps and
Similarity Measures
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Abstract: In the paper the word-level n-grams based approach is proposed to find similarity between
texts. The approach is a combination of two separate and independent techniques: self-organizing
map (SOM) and text similarity measures. SOM’s uniqueness is that the obtained results of data
clustering, as well as dimensionality reduction, are presented in a visual form. The four measures have
been evaluated: cosine, dice, extended Jaccard’s, and overlap. First of all, texts have to be converted
to numerical expression. For that purpose, the text has been split into the word-level n-grams and
after that, the bag of n-grams has been created. The n-grams’ frequencies are calculated and the
frequency matrix of dataset is formed. Various filters are used to create a bag of n-grams: stemming
algorithms, number and punctuation removers, stop words, etc. All experimental investigation has
been made using a corpus of plagiarized short answers dataset.
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1. Introduction

Nowadays text mining can be used in different practice areas [1] but the most common are:
information extraction and retrieval, text classification and clustering, natural language processing,
concept extraction, and web mining. Text analysis can be useful and helps to solve problems, such as
plagiarism detection, creating effective anti-spam filters [2], finding duplicates in a large number of
documents or finding duplicates on the Internet [3]. Some methods focus on keywords from scientific
papers’ extraction which helps to find the main aim of papers automatically [4]. In an education system,
plagiarism detection is a sensitive issue [5]. Plagiarism is one of the common problems because students
keep trying to cheat and present writings which they have not created. Usually the main technique to
detect similarity between texts is to extract the bag of words from all text datasets. Then the frequency
matrix is created, in other words, texts are converted to numerical expressions. In such a technique,
the results depend on selected filters when the bag of words is created. Therefore, it is important to
select the right filters to get accurate results. Using this technique, we can analyze all texts or just split
it into the parts: sentences, paragraphs, pages or n-grams. Depending on the solving task, n-grams
could be formed by using character-level or word-level [2,6]. Similarity results can be evaluated using
different methods, for example, statistical, estimation of numerical values, or using various clustering
methods, such as k-means, Bayesian, artificial neural networks, etc. [7].

In this paper an approach is proposed to find similarity between texts by integrating not only a
numerical estimation but also text clustering and visualization. The text similarity detection is based
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on text splitting into word-level n-grams and evaluating it using a self-organizing map (SOM) and
four numerical measures. The text analysis using a bag of words is not effective because it is difficult to
detect how similar two texts are just analyzing the frequency of separate words. Two different people
writing some kind of text individually can use similar or almost the same number of words in the
text. The bag of words analysis will show that both texts are similar but there is a bigger probability
of accidental text match than analyzing a word-level bag of n-grams [8]. In this paper, four specific
measures have been used to evaluate texts similarity: cosine, dice, extended Jaccard’s, and overlap
coefficient. There is significant different evaluations in the literature [9] but these four measures are
commonly used in various fields [10,11]. The other part of the approach is based on the detection of
the text similarity of a SOM. The advantage of this method compared with other clustering methods is
that we can get a visual representation of all texts in a dataset, cluster, as well as similarities. It helps to
make decisions much quicker than analyzing numerical estimation. The main problem of the SOM
is that it does not have measures that help to define how similar texts are in the same cell of SOM.
Thus, for this reason, it is effective to combine analysis of the texts using SOM and numerical similarity
measures. To get accurate results, we extract word-level n-grams of different length from texts and
analyze them. It allows us to find the same phrases between different texts. In such a way, instead of a
bag of words, we have a bag of n-grams, which characterize all texts. The experimental investigation
was made using a corpus of plagiarized short answers dataset.

2. Text Similarity Detection

2.1. Proposed Approach to Evaluate Text Similarity

As was mentioned earlier, there are various methods to find similarity between texts but mostly
in all of them similarity is evaluated by numerical measures and is based on usage of bag of words.
Instead of this, we propose an n-grams based approach and result estimating in two ways: visual and
numerical. The scheme of the proposed approach is presented in Figure 1. The approach consists of
three main parts: text preprocessing, visualization and clustering, and numerical estimation. The main
aim of text preprocessing is to find the numerical expression of texts (to find the frequency matrix),
which will be used for visualization, clustering, and numerical estimation. The detailed description of
text preprocessing is presented in Section 2.2. After the frequency matrix is created, the matrix is given
to the SOM, where the dataset is clustered and visualized in the SOM. It allows detecting texts similarity
in a visual form. In parallel, the four similarity measures are calculated (numerical estimation).
The combination of these two separate techniques allows performing deeper texts similarity analysis.
The SOM helps to see the whole text dataset similarity in one map and the numerical estimation
justifies and specifies the results quantitatively.

2.2. Preparation of Frequency Matrix

To analyze texts, it is necessary to convert textual information to numerical expression; the so-called
frequency matrix needs to be created. There are many different tools to create it [12–14], but the main
steps are usually the same (Figure 2).
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At first, a text’s dataset has to be parsed, all textual information is extracted from the original
source and Meta information is not included (pictures, tables frames, schemes, and other not necessary
information are rejected). After parsing is done, tokenization has to be made. Tokenization is a process
of breaking a stream of text up into words, phrases, symbols, sentences or other meaningful elements
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called tokens. The list of tokens becomes input for further processing, such as text mining. Afterwards,
we can choose a different filter. It is obvious that all texts have some information that do not characterize
the text or is simply not important in the text analysis. Therefore, the aim of selected filters is to reject
not important information from texts datasets, such as numbers, punctuation, stop words, etc. The
most popular filters and their descriptions are presented in Table 1. In some text mining systems,
a specific filter which helps to reject just links, keywords or other not ordinary information can be
found. It is obvious that the most important part in text conversation is filter selection because it has
the biggest influence on the results. So, it is important to choose the right options, to get accurate
results [15]. Otherwise, useful information can be rejected and results can be inappropriate.

Table 1. Descriptions of filters.

Filters Description

Diacritics filter

Removes all diacritical marks. Diacritical marks are signs that have been attached to a
character usually to indicate distinct sound or special pronunciation. Examples of words
(terms) containing diacritical marks are naïve, jäger, réclame, etc. If the specific language
texts are analyzed, the diacritical marks cannot be rejected because it can change the
meaning of the word. For example, törn/torn (Swedish), sääri/saari (Finnish).

Number filter Filters all terms that consist of digits, including decimal separators ‘,’ or ‘.’ and possible
signs ‘+’ or ‘-’.

N chars filter Filters all terms with less than the specified number N characters.

Case converter Converts all words to lower or upper case.

Punctuation filter Removes all punctuation characters of terms.

Stop words filter

Removes all words which are contained in the specified stop word list. Often words such
as ‘there’, ‘where’, ‘that’, ‘when’, etc. compose the stop word list. Not all of them are
important for texts analysis. However, the common word list can depend on the domain of
texts. For example, if we analyze scientific papers, the words such as ‘describe’, ‘present’,
‘new’, ‘propose’, ‘method’, etc. also do not characterize the papers and it is not purposeful
to include the words into the texts dictionary. Stop words list can be adapted for any
language.

Stemming algorithm
The stemming algorithm separates the stem from the word [16]. For example, we have four
words ‘accepted’, ‘acceptation’, ‘acceptance’, and ‘acceptably’. The stem of the words is
‘accept’, so only this word will be analyzed, other words are ignored.

According to the selected filters, a so-called bag of words is created. The bag of words is a list of
terms from texts excluding the words that do not satisfy the conditions defined by the selected filters.
Suppose we have a texts dataset D = {D1, D2, . . . , DN}. According to the frequency of the words in the
texts, a so-called frequency matrix is created:

x11 x12 . . . x1m
x21 x22 . . . x2m

...
...

. . .
...

xN1 xN2 . . . xNm

 (1)

Here xpl is the frequency of the lth word in the pth text, p = 1, . . . , N, l = 1, . . . , m. N is the number
of the analyzed texts, and n is the number of words in the bag of words. In the simplest case, frequency
value is equal to number that shows how many words appear in the text. A row of matrix (1) is a
vector, corresponding to a text. The vectors X1, X2, . . . , XN, Xp =

(
xp1, xp2, . . . , xpm

)
, p = 1, . . . , N, can be

used for a text analysis using various methods.
Sometimes it is not enough to analyze just words extracted from texts, especially when similarity

has to be found. The analysis of n-grams can be used [17]. An n-gram is a contiguous sequence of
n items from a given sequence. The item can be described as word, letter, phonemes, etc. In our
research, we have used a word as the item. In this way, we have a bag of n-grams, where each text
is characterized by unique n-grams (a few words from the texts). The n-grams analysis allows to
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compare a few words in texts, and so obtained similarity results are more accurate. The main steps
of n-grams usage are the same as presented in the scheme in Figure 2. We further suggest adding
sorting (Figure 1) which helps to avoid a problem when the words in different texts are written in a
different order. Suppose we have two n-grams ’data mining methods’ and ’methods of data mining’.
After filtering (common words are rejected) and the sorting (ascending) step is completed, we get the
same n-gram: ’data methods mining’. In the final results, we get the frequency matrix (1) where each
xpl will be equal to frequency of the lth n-gram in the pth text. The proposed approach to find similarity
between texts can be used to detect plagiarism (see Figure 1).

2.3. Self-Organizing Maps

There are many different clustering methods which can be used in text analysis [18–20]: artificial
neural network (ANN), k-means, agglomerative hierarchical clustering, etc. The SOM is one of the
most popular artificial neural network models, proposed by Professor T. Kohonen [21]. New extensions
and modifications are developed constantly. SOMs can be used to cluster, classify, and visualize the
data. The main advantage of this method is to show results in visual form [22]. There are many
different tasks where SOM can be used and solve it. SOM can be useful in text mining, too [23,24].
The main aim of SOM is to preserve the topology of multidimensional data when they are transformed
into a lower dimensional space (usually two-dimensional). The SOM is a set of nodes, connected to
one another via a rectangular or hexagonal topology. The rectangular topology of SOM is presented in
Figure 3.
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The set of weights forms a vector Mi j, i = 1, . . . , kx, j = 1, . . . , ky that is usually called a neuron
or codebook vector, where kx is the number of rows, and ky is the number of columns of the SOM.
All texts of the analyzed dataset converted to SOM are given as a matrix (1). The learning process of
the SOM algorithm starts from initialization of the components of the vectors (neurons) Mi j. They can
be initialized at random (usually these values are random numbers from the interval (0, 1)) or by the
principal components. At each learning step, an input vector Xp is passed to the SOM. The vector
Xp is compared to all neurons Mi j. Usually, the Euclidean distance between this input vector Xp and
each neuron Mi j are calculated. The vector (neuron) Mw with the minimal Euclidean distance to Xp

is designated as a neuron winner (the best match unit). All the neuron’s components are adapted
according to the learning rule:

Mi j(t + 1) = Mi j(t) + hw
ij

(
Xp −Mi j(t)

)
(2)
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Here t is the number of learning step, hw
ij is a neighboring function, w is a pair of indices of the

neuron winner of vector Xp. The learning is repeated until the maximum number of learning step T
is reached.

2.4. Measures for Text Similarity Detection

To evaluate the similarity between texts, it is necessary to use some mathematical expressions
which can evaluate and give the answer to one single numeric value [25,26]. The widest known and
used texts similarity measures are cosine, dice, the extended Jaccard’s, and the overlap coefficient:

cos(D1, D2) =
D1 ×D2

√
|D1| ×

√
|D2|

(3)

dice(D1, D2) = 2
D1 ×D2

|D1|+ |D2|
(4)

jaccard(D1, D2) =
D1 ×D2

|D1|+ |D2| −D1 ×D2
(5)

overlap(D1, D2) =
D1 ×D2

min(|D1|, |D2|)
(6)

Here |DN | =
(
x2

N1 + x2
N2 + x2

N3 + . . .+ x2
Nm

)
, D1 ×D2 = x11x21 + x12x22 + . . .+ x1mx2m. To show

how these four measures are calculated, a simple example is presented. Let us say we have four texts
D = {D1, D2, D3, D4}with few words inside of them (Table 2).

Table 2. Text dataset.

Text Inside Texts

text message D1
computer science D2

data mining and text mining D3
methods of text data mining D4

Let us say we do not use any filters, so the bag of words list contains all terms from texts follows:
text, message, computer, science, data, mining, and, methods. According to the frequency of each term,
the frequency matrix is obtained (Table 3).

Table 3. Frequency matrix.

text Message Computer Science Data Mining and Methods of

1 1 0 0 0 0 0 0 0 D1
0 0 1 1 0 0 0 0 0 D2
1 0 0 0 1 2 1 0 0 D3
1 0 0 0 1 1 0 1 1 D4

After a frequency matrix is obtained, we can calculate the similarity measures. The results of
calculated measures as an example are given in Table 2, presented in Table 4.
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Table 4. Results of similarity measures.

Cosine Measure
D1 D2 D3 D4

D1 100 0 26 31
D2 0 100 0 0
D3 26 0 100 67
D4 31 0 67 100

Extended Jaccard’s Measure
D1 D2 D3 D4

D1 100 0 13 17
D2 0 100 0 0
D3 13 0 100 50
D4 17 0 50 100

Dice Measure
D1 D2 D3 D4

D1 100 0 22 29
D2 0 100 0 0
D3 22 0 100 67
D4 29 0 67 100

Overlap Measure
D1 D2 D3 D4

D1 100 0 50 50
D2 0 100 0 0
D3 50 0 100 80
D4 50 0 80 100

As we can see, the results of cosine and dice measures are almost the same. The values of extended
Jaccard’s are lower compared to the others. The overlap measure shows the highest values, and as
there is no difference between overlap (D1, D3) and overlap (D1, D4), it means that these texts are
equal in the point of similarity. All measures can be used equally to find similarity between texts, so it
is hard to say which one is the most accurate and the deep investigation has to be made.

3. Experimental Investigation

3.1. Dataset

A corpus of plagiarized short answers [27] has been used for experimental investigation.
This dataset is also suitable to find similarity between texts. The corpus consists of one hundred texts:
95 answers provided by the 19 participants and 5 original Wikipedia source articles. The questions for
students are given bellow:

Q1—‘What is inheritance in object oriented programming?’
Q2—‘Explain the PageRank algorithm that is used by the Google search engine’
Q3—‘Explain the vector space model for Information Retrieval’
Q4—‘Explain Bayes Theorem from probability theory’
Q5—‘What is dynamic programming?’

For each question, there are 19 examples of each of the heavy revision, light revision, and near
copy evaluation, and 38 non-plagiarized examples written independently from the Wikipedia source
(Table 5). The average length of text in the corpus is 208 words and 113 unique tokens. The description
of each revision level is given:

• Near copy (cut)—participants were asked to answer the question by simply copying the text from
the relevant Wikipedia article.
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• Light revision (light)—participants were asked to base their answer on the text found in the
Wikipedia article and were, once again, given no instructions about which parts of the article
to copy.

• Heavy revision (heavy)—participants were once again asked to base their answer on the relevant
Wikipedia article but were instructed to rephrase the text to generate the answer with the same
meaning as the source text, but expressed using different words and structure.

• Non-plagiarism (non)—participants were provided with learning materials in the form of either
lecture notes or sections from textbooks that could be used to answer the relevant question.

Table 5. The level of texts plagiarism.

Texts ID
Category

Q1 Q2 Q3 Q4 Q5

D1 non cut light heavy non
D2 non non cut light heavy
D3 heavy non non cut light
D4 cut light heavy non non
D5 light heavy non non cut
D6 non heavy light cut non
D7 non non heavy light cut
D8 light cut non non heavy
D9 non heavy light cut non
D10 non non heavy light cut
D11 cut non non heavy light
D12 heavy light cut non non
D13 non heavy light cut non
D14 non non heavy light cut
D15 cut non non heavy light
D16 non non heavy light cut
D17 cut non non heavy light
D18 light cut non non heavy
D19 heavy light cut non non
D20 Original Original Original Original Original

3.2. Steps of the Experiment

To find the similarity between the analyzed dataset, the experimental investigation was made in
three steps. At the first step, the way to create a bag of n-grams was analyzed. The primary research
shows that for this dataset, the maximum words in n-grams can be five, otherwise some data is lost
because of short texts. In addition, to create the bag of n-grams, all filters given in Table 1 were included.
The focus is given when the words in n-grams are equal from three to five, so in total fifteen variants
were analyzed. The size of bag of n-grams is given in Figure 4.

At the second step, four similarity measures (Table 6) were calculated between all twenty texts to
detect which texts are similar, to compare it with the given categorical descriptions (Table 5), and to
decide which measure gives better results. At the last step, the same dataset has been presented with
SOM. In SOM, we can see all twenty texts’ similarity at once and according to the obtained results,
decide how similar each text is to each other.
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Table 6. Texts similarity results sorted as Near copy (cut), Light revision (light), Heavy revision (heavy), Non-plagiarism (non) (results are given in percent).

Q1

D20

Cut Light Heavy Non

D4 D11 D15 D17 D5 D8 D18 D3 D12 D19 D1 D2 D6 D7 D9 D10 D13 D14 D16

Cosine 61 51 55 96 94 19 21 7 53 0 1 0 0 5 0 0 4 0 0
Dice 59 50 44 96 94 19 20 6 53 0 1 0 0 4 0 0 3 0 0

Extended Jaccard’s 42 33 28 92 88 10 11 3 36 0 0 0 0 2 0 0 2 0 0
Overlap 80 66 113 99 97 26 30 10 54 0 2 0 0 8 0 0 5 0 0

Q2

D20

Cut Light Heavy Non

D1 D8 D18 D14 D12 D19 D5 D6 D9 D13 D2 D3 D7 D10 D11 D14 D15 D16 D17

Cosine 64 28 0 16 29 54 25 9 8 7 0 1 0 7 0 1 0 0 0
Dice 58 27 0 11 23 50 18 8 7 6 0 1 0 6 0 1 0 0 0

Extended Jaccard’s 41 15 0 6 13 33 10 4 4 3 0 0 0 3 0 0 0 0 0
Overlap 100 39 0 42 58 81 56 14 12 12 0 1 0 11 0 1 0 0 0

Q3

D20

Cut Light Heavy Non

D2 D12 D19 D1 D6 D9 D13 D4 D7 D10 D14 D16 D3 D5 D8 D11 D15 D17 D18

Cosine 79 0 24 51 18 77 46 36 32 14 17 45 3 3 6 6 4 2 5
Dice 78 0 22 51 17 77 45 36 32 14 17 44 2 3 6 6 3 2 5

Extended Jaccard’s 64 0 12 34 10 63 29 22 19 8 9 28 1 1 3 3 2 1 3
Overlap 92 0 36 54 20 79 57 39 33 15 17 51 3 4 8 6 6 2 5

Q4

D20

Cut Light Heavy Non

D3 D6 D9 D13 D2 D7 D10 D14 D16 D1 D11 D15 D17 D4 D5 D8 D12 D18 D19

Cosine 60 36 36 98 24 13 59 18 43 14 27 6 93 0 0 0 0 1 0
Dice 52 36 36 98 21 13 58 17 42 13 27 4 93 0 0 0 0 1 0

Extended Jaccard’s 35 22 22 97 12 7 41 9 27 7 15 2 87 0 0 0 0 0 0
Overlap 105 39 39 99 39 17 66 25 56 22 28 16 96 0 0 0 0 1 0

Q5

D20

Cut Light Heavy Non

D5 D7 D10 D14 D16 D3 D11 D15 D17 D2 D8 D18 D13 D1 D4 D16 D9 D12 D19

Cosine 42 36 77 50 82 35 9 21 62 38 3 31 1 0 0 0 0 1 1
Dice 30 35 75 40 81 28 9 12 58 36 3 28 1 0 0 0 0 1 1

Extended Jaccard’s 17 21 59 25 69 16 5 7 40 22 1 16 0 0 0 0 0 0 0
Overlap 100 46 97 100 97 67 13 65 93 54 6 50 1 0 0 0 0 1 1



Appl. Sci. 2019, 9, 1870 10 of 14

Appl. Sci. 2019, 8, x 8 of 14 

• Heavy revision (heavy)—participants were once again asked to base their answer on the relevant 
Wikipedia article but were instructed to rephrase the text to generate the answer with the same 
meaning as the source text, but expressed using different words and structure. 

• Non-plagiarism (non)—participants were provided with learning materials in the form of either 
lecture notes or sections from textbooks that could be used to answer the relevant question. 

Table 5. The level of texts plagiarism. 

Texts ID 
Category 

Q1 Q2 Q3 Q4 Q5 
 non cut light heavy non 
 non non cut light heavy 
 heavy non non cut light 
 cut light heavy non non 
 light heavy non non cut 
 non heavy light cut non 
 non non heavy light cut 
 light cut non non heavy 
 non heavy light cut non 
 non non heavy light cut 
 cut non non heavy light 
 heavy light cut non non 
 non heavy light cut non 
 non non heavy light cut 
 cut non non heavy light 
 non non heavy light cut 
 cut non non heavy light 
 light cut non non heavy 
 heavy light cut non non 
 Original Original Original Original Original 

3.2. Steps of the Experiment 

To find the similarity between the analyzed dataset, the experimental investigation was made in 
three steps. At the first step, the way to create a bag of n-grams was analyzed. The primary research 
shows that for this dataset, the maximum words in n-grams can be five, otherwise some data is lost 
because of short texts. In addition, to create the bag of n-grams, all filters given in Table 1 were 
included. The focus is given when the words in n-grams are equal from three to five, so in total fifteen 
variants were analyzed. The size of bag of n-grams is given in Figure 4. 

 

Figure 4. The size of the obtained bag of words. 
Figure 4. The size of the obtained bag of words.

3.3. Experimental Results

Deeper analysis showed that for this dataset there was no big difference between three, four or
five words n-grams used so the final experimental results will be presented when the bag of n-grams is
created using three words. In Table 6, we can see all calculated measures, which represent the similarity
between text D20 (original text) and other texts in the dataset. The variable Qn, where n = 1, . . . , 5 is
the question number from the original dataset [28]. All values in Table 6 are in percent so the lowest
percent means the worst result (texts are not similar), the highest-best (similar). The highest percent
has been marked in bold.

The highest percent in Q1 analysis were obtained for all measures when D20 was compared to
texts D5 and D17. According to the Table 5, the most similar texts to the original are texts D4, D11, D15,
D17. All measures get the highest percent when the original text was compared to the D17, which
proves that this text is a near copy. The text D5 is marked as light revision, but all measures showed
that it is mostly copied text. As we can see, the other near copy texts (D4, D11, D15) were detected
(the highest percent) as a near copy when overlap measure (5) was used alone (D4 = 80%, D11 = 66%,
D15 = 113%). The value of D15 is higher than 100%, because the original text and D15 fully overlap
and some n-grams in original text were even mentioned a few times more. In this case, it meant that
these two texts were totally similar. If we look to the Q2 answers’ text similarity results, we can see
that the highest percent is obtained with text D1 and D19 using the overlap measure. According to
Table 5, the heavy copies are D1, D8, and D18. So the only one overlap measure can confirm just one
near copy text similarity (D1 = 100%) and light revision (D19 = 81%). Neither measure detected the
similarity of text D18, all of them got 0%. Deeper analysis showed that it was some a mistake given
in dataset description because looking at the D18 text and comparing it with the original text it was
confirmed that these two texts cannot be marked as a near copy because the text is totally different.

The results of questions Q1 and Q2 answers’ text similarity are presented using SOM (Figure 5) [24].
The color scale from white to black in cells means the values of the U-matrix [22]. The lighter color
means that the distance between some data is short and the dark otherwise. The pie charts represent
the texts of the dataset. If the dataset items are very similar among each other, they will fall to the
same cell (one pie chart divided to pieces). As we can see in Figure 5a, the texts D5, D17, D20 fall in the
same cell so it means that these two texts are similar to the original text D20, that was earlier proved
by calculating similarity measures. The other texts also make some groups or fall to the same cell.
For example, according to the Table 5, the texts D2, D6, D10, D16 are non-copies so in SOM their fall
out in the same cell. Using SOM, we can easily identify which texts are similar to each other. In the
right side of Figure 5b, the near copy and light revision texts D1, D4, D5, D8, D12, D19 are located near
original text D20. It also confirms that these texts are the most similar to the original text.
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The results of the last question Q5 answers texts similarity were almost all confirmed by calculated
measures. According to Table 5, the near copy texts are D5, D7, D10, D14, and D16. All four measures
proved that four of five texts are similar to the original text. As with previous results, the highest
percent was obtained using the overlap measure: D5 = 100%, D10 = 97%, D14 = 100%, and D16 = 97%.
Only one overlap measure confirmed the similarity of the text D5, with other measures the value is
small. In the bottom left corner of the SOM (Figure 7), the original text D20 is located in the same cell
with text D16. The other near copy texts are scattered over all map so in this case, it is hard to confirm
similarity just using the SOM.
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4. Conclusions

In this paper an approach was proposed to detect similarity between texts. The approach was
based on the text splitting into n-grams and evaluating it using a SOM and similarity measures.
The detection of similar texts was made in three steps: (1) text dataset conversion to numerical
expression using n-grams; (2) calculation of similarity measures; (3) text dataset visualization using
SOM and similarity representation on it. At the first step, the main focus was to create a bag of n-grams
of all datasets. The various number of words in n-grams were analyzed. In addition, different filters
were applied: numbers and punctuation removing, words frequency, uppercase transform, stemming
algorithm, etc. The analysis showed the filters and size of n-grams influenced the final results. For this
dataset, the size of the n-grams was selected and equal to three for the experimental investigation.
At the second step, the four similarity measures were calculated: cosine, dice, extended Jaccard’s,
and overlap. Final results showed that the highest percent of similarity was obtained using overlap
measures. The other three measure values were always similar and smaller. The usage of SOM showed
that SOM helps to see the summarized results of all texts’ similarity in visual form quickly. It is
very easy to understand which texts are similar to each other or not. In the analyzed dataset case,
the SOM helped to detect similarity, and the formed clusters were correlated with the given categorical
description of the dataset.

The experimental investigation showed that the most accurate similarity measure is overlap
because this measure detected more near copy texts and gained the highest percent. Sometimes it
showed even full texts overlap which can be defined as plagiarism. The SOM helps to summarize the
full dataset similarity in visual form, but it is hard to confirm how much texts are similar to each other.
The investigations showed that SOM was more useful as an additional tool to decide which texts could
be similar and deeper investigation could then be applied. The usage of n-grams and creation of a bag
of words showed that it is an effective way to find similarity between texts. Deeper analysis has to be
made to detect how all filters, size of n-grams, and other texts’ conversation to numerical expression
affect the final results for much longer texts’ datasets. So it is purposeful to analyze them in more
detailed in the future. The proposed approach allowed finding similarity between texts and evaluating
results by combining SOM and numerical estimations helped to make a deep analysis.
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