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Featured Application: The paper proposes an application of UCB algorithm for item selection
in formative assessment. The main advantage of this approach is its ease of implementation
when compared to Elo and Multidimensional Item Response Theory based testing. Thus the
method should be applicable in virtually any classroom where formative assessment is desired
and students have access to computers or phones.

Abstract: There is strong support for formative assessment inclusion in learning processes, with the
main emphasis on corrective feedback for students. However, traditional testing and Computer
Adaptive Testing can be problematic to implement in the classroom. Paper based tests are logistically
inconvenient and are hard to personalize, and thus must be longer to accurately assess every
student in the classroom. Computer Adaptive Testing can mitigate these problems by making use
of Multi-Dimensional Item Response Theory at cost of introducing several new problems, most
problematic of which are the greater test creation complexity, because of the necessity of question
pool calibration, and the debatable premise that different questions measure one common latent trait.
In this paper a new approach of modelling formative assessment as a Multi-Armed bandit problem is
proposed and solved using Upper-Confidence Bound algorithm. The method in combination with
e-learning paradigm has the potential to mitigate such problems as question item calibration and
lengthy tests, while providing accurate formative assessment feedback for students. A number of
simulation and empirical data experiments (with 104 students) are carried out to explore and measure
the potential of this application with positive results.

Keywords: formative assessment; Upper-Confidence Bound algorithm; Multi-Armed Bandit
algorithm; e-Learning; intelligent tutoring systems; education

1. Introduction

Formative assessment have been proposed to make education more accessible and more
effective [1–4]. The distinction between summative and formative roles of assessment was first
proposed by Scriven [5] and then applied to students by Bloom [6,7]. Formative assessment is
specifically intended to generate feedback on performance to improve and accelerate competency
acquisition as opposed to summarizing the achievement status of a student [8,9]. Any learning
activity has potential value as formative assessment from oral discourse to conventional quizzes [10].
Three core principles form the basis for formative assessment [11]. Firstly, formative assessment
should be viewed as an integral part of instruction, and it should be used in real time for guiding
learning process. The material provided to students should depend on their current state of knowledge
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and understanding. Secondly, formative assessment fosters student involvement. Students are not
punished for their mistakes since assessment does not affect the final grade. Instead they can use
assessments for self-guidance and to monitor their progress towards learning objectives. Thirdly,
formative assessment requires constructive feedback. Feedback is the key element in formative
assessment [12], it is claimed to be the single most powerful factor in enhancing achievement [13].
Studies indicate that feedback may improve learning from about 0.4 Standard Deviation (SD) to 0.8
SD [14], however a critique of these results exists [2]. One of the goals of educational process is
identifying the gaps between what is known and what is aimed to be known [15]. Feedback which is
separated from competency demonstration by days or weeks, as it happens with paper based tests that
have to be manually graded, have diminished value [10]. Feedback in a form of a mark as provided by
traditional tests has a limited use to a student as it is not congruent with good feedback practices [16].
Simply put, a mark does not specify the deficiencies in the student’s knowledge which they should
address in the future [17]. Another strength of formative assessment is that it can aid in using students’
strengths and weaknesses to frame learning goals and monitor progress towards them [18].

In addition to linear traditional tests with fixed test items, adaptive tests based on Item Response
Theory (IRT) have been proposed [19] and implemented [20]. In IRT computer adaptive tests each
test item is dynamically chosen based on the student’s answers. This can improve the precision
of testing by adapting to the knowledge demonstrated by each student and shorten test times [21].
These advantages come at cost of introducing several new issues. Most problematic of which are greater
test creation complexity because of the necessity of calibration of question pool and the premise that
different questions measure one common trait [22]. This premise is not always useful when assessing
separate competencies even in the context of Multidimensional Item Response Theory (MIRT) [23],
which can even further exacerbate the challenge of item calibration. In practice, the main drawbacks
remain the complexity and time required to create a test, which may dissuade teachers from using it as
a learning tool.

Another alternative to traditional methods is Elo rating based approach [24]. Elo rating system
was originally developed for chess skill estimation and ranking. But since has been adapted for use
in education [25,26]. Within the system each participant is assigned a numerical rating and in case
of educational applications so are the test items. The expected probability that a player wins, or a
student successfully completes the task is then given by the logistic function and depends on the
ratings involved. In this formulation Elo rating system estimates the probability of correct answer in
the same way as one parameter IRT model (Rasch model) [27]. What differs is the parameter estimation
procedure. Analogically with MIRT multivariate Elo extensions have been tested [28]. Elo rating-based
systems, like IRT systems, depend on knowledge of item difficulties to estimate students’ proficiency.

Apart from IRT and Elo rating there are other approaches to model learning [29], such as
performance factors analysis [30] and Bayesian knowledge tracing [31]. However, these models can be
equally hard to implement and use due to non-trivial calibration and set up procedures.

In this paper, an alternative testing method based on Upper-Confidence Bound [32,33]
Multi-Armed Bandit algorithm is proposed and tested. Multi-Armed Bandit (MAB) family of
algorithms is named after a problem for a gambler who has to decide which arm of a K-slot machine to
pull to maximize his total reward in a series of trials [34]. These algorithms capable of negotiating
exploration–exploitation trade-offs are applied in several modern applications such as advertisement
placement, website optimization, and packet routing [35]. There are emerging applications of MAB
algorithms in education for optimal learning material selection [36–39].

The problem of choosing next question during a formative quiz can be modeled as a MAB
problem. To the best of our knowledge no applications of MAB algorithms for formative assessment
item selection have been proposed. Research supports that the key element of formative assessment is
feedback, awareness of gaps between current students’ knowledge and their aims, and where to go
next to alleviate those deficiencies. The proposed in this paper assessment method addresses this need
by quickly identifying the lacking areas of knowledge and thoroughly exploring them in order to assist
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further learning. The process can be viewed through the lens of J. Hatties three question feedback
model [15]. To utilize the algorithm the teacher must first form topics or competences (Where am I
going?). The algorithm quickly identifies lacking areas of knowledge (How am I going?) and explores
the topic in detail helping further instruction (Where to next?). This approach in combination with
presently widespread mobile devices has the potential to mitigate the aforementioned issues such as test
creation complexity and long test times, while providing accurate formative assessment data compatible
with J. Hattie three question feedback, Competency Based Learning and Assessment methodologies.

2. Materials and Methods

2.1. Modelling Assessment as UCB Problem

When tutoring, a teacher will often engage in a dialogue with a student. The teacher may ask the
student a series of formative questions in order to diagnose the gaps in student’s knowledge. Assume
the material consists of two topics, and the teacher asked 5 questions on each topic. The knowledge
about first topic appears to be in a worse shape, two incorrect answers, than the knowledge on the
second topic, one incorrect answer (see Table 1).

Table 1. Rudimentary two topic quiz model.

Question 1 2 3 4 5 6 7 8 9 10

Topic 1 + + – + –
Topic 2 + + + – +

If there is time for five more questions before proceeding with didactic instruction, the teacher
must face the dilemma of which topic should they explore with further questions? If the two incorrect
answers to questions on first topic are attributable to bad luck due to small sample size, should the
teacher explore first or second topic? What if there are more than two topics?

The family of bandit algorithms are designed to cope with uncertainty by balancing exploration
and exploitation [40]. However, when applied to formative assessment the exploitation component is
non obvious, as ultimately the goal is to explore the knowledge of the student. The algorithm should
probe and explore the different topics and engage in focused questioning, exploiting those which
are possibly in most need of instruction. This presents an opaque bandit problem where a unique
answer, reward, is observed at each round, in contrast with the transparent one where all rewards
are observed [34]. Thus, in context of assessment, a sequential allocation problem is obtained when
the assessor has to choose from many questions from multiple topics, bandits, and has to repeatedly
choose a topic to explore, which bandit arm to pull. When choosing next question to ask the decision
should depend on the history of already known answers. Then a policy is the mapping from the
individual history of the student to actions (questions to be asked of the student).

Suppose student’s knowledge on number of topics T = {1, 2, . . . , k}. The reward in case of a
multiple-choice quiz with either correct on incorrect answer to each question Xr ∈ {0, 1} is binary valued.
Each topic corresponds to an unknown probability distribution. There exists a vector µ ∈ [0, 1]k such
that the probability that Xr = 0 given the algorithm chose topic Tr = t is µt. This kind of environment is
called a stochastic Bernoulli bandit. If the mean vector associated with the environment was known,
the optimal policy is to always choose a question on one topic t∗ = argmint∈Tµt. This will result in
the exploration of the weakest area of student’s knowledge, so as to aid in the further instruction.
The regret over the n questions is

Rn = E
[∑n

r=1
Xr

]
− n min

t∈T
µt (1)

where the expectation E is with respect to stochastic environment and policy. However, in practical
setting, the number of questions on one topic is usually rather limited due to the scope of the curriculum
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and the question pool. As is the length, or the horizon, of the quiz. Thus the value of calculated this
way regret is of little practical value.

The main challenge of the task is finding the weakest topic of a student. To do so the algorithm must
explore different topics and exploit particular topic to obtain more accurate estimation of the student’s
level of knowledge on that subject. This basic exploration–exploitation dilemma is the key to obtaining
a good strategy. A heuristic principle for dealing with this issue chosen in this paper is optimism in
face of uncertainty and an algorithm which operates on this principle Upper-Confidence Bound (UCB).
UCB algorithm is one of the simplest algorithms that offers sub-linear regret. The algorithm suggest
choosing the action with the largest upper confidence bound, or in case of our model a topic with the
smaller lower confidence bound. Then the question number n chosen on a topic t will be

tn = argmin
t∈T

µt −C

√
logn
Nt

 (2)

where C is a constant that can be chosen to regulate the impact the second exploration component
has on the choice of the topic, and Nt is the number questions on the topic has been asked so far.
As the number of questions on the topic increases, so the uncertainty and the exploration term of the
formula decrease [40]. Thus the algorithm will seek out the weakest topics of knowledge for a student,
once identified it will thoroughly question the student on said topics. This is pedagogically valuable
because, once identified the lacking topic knowledge can be corrected. In addition, the algorithm will
gather a more fine-grained information on the weakest topic by “exploiting it”, which will be useful in
post assessment knowledge correction. In the case when the item pool of the topic is exhausted the
algorithm chooses the topic with the second smallest value as estimated by Formula (2).

2.2. Simulated Students’ Experiments

A number of experiments with simulated students were carried out before proceeding with testing
using empirical data. Number of simulated students for each experiment was 1000, unless stated
otherwise. Each simulated quiz had a number of question on two or more topics. Each topic, then,
would be represented as a vector of weights for each question in the quiz. Each weight would represent
the relevancy of the question to the topic. In this paper only experiments with binary weights, 0 or 1,
where carried out. Moreover, each question was assumed to belong only to one topic. The number
of question items on each topic were set to be equal. Each simulated student had a vector equal in
length to the number of the questions in the quiz, where each element represented the knowledge on
one question, either yes or no. For all simulation experiments, unless stated otherwise, the inter-topic
correlation of answers was random. The probability that the student will know the answer on a topic
pt had uniformly distributed random bias between 0 or 1.

2.3. Real Students’ Assessment Methodology

In this study, feasibility of application of UCB algorithm to formative assessment is explored using
the data collected from a 60-question quiz covering 15 subtopics. (i.e., network topologies, networking
devices, Internet Protocol version 4, Ethernet, cloud computing services). The assessment was held at
Vilnius Gediminas Technical University, Lithuania (on 25 April 2019). The test length and item pool size
were set to 60 questions to keep quiz length close to an hour. Number of topics was set to 15 because it
is the number of lectures in the course. The quiz was designed to assess students’ knowledge of basic
computer networking and cloud computing technologies. In total 104 undergraduate, sophomore
and junior (third year), students from 7 different groups where tested. All of the students took the
test at the same place and time, (Saulėtekio al. 11, Vilnius, from 12:30 to 13:30). The question pool
contained questions of varying difficult (hardest question was answered by 16 students, easiest by
103). This was done to test robustness of the algorithm, as it is meant as an alternative to methods
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that require item calibration. Therefore the algorithm must be able to work with items of varying and
priory unknown difficulty.

All questions in the 60-question quiz where multiple choice questions with four options, only one
of which was correct. Questions on the same topic were made to never appear in consequence so as
to lessen the impact of deductive reasoning over the knowledge of the subject. Students were not
allowed to assist each other during the assessment. All students were also informed that if they so
desire the test will have no summative impact on their grade and will serve exclusively formative
function. Every student gave a written permission allowing their anonymized data to be used for
scientific research. The answers to questions have been aggregated in a comma separated file (csv),
anonymized and later processed using python software written for the purpose of this experiment.

The true knowledge of a student on each topic, the ground truth, was calculated by dividing
the number of correct answers within a topic by a total number of questions within that topic. In the
experiment with participation of real students the number of correct answers was known because all
students were required to answer all questions in the item pool. After complete knowledge of the
test material for each student was known, the algorithms would question the database. The accuracy
was then measured as a relationship between an estimated student knowledge from the incomplete
information accessed by the algorithm and the complete information in the database. Formulas used
for accuracy calculation are provided in the following statistical analysis section.

2.4. Statistical Analysis

The accuracy (performance) of the test was established based on Positive Predictive Value (PPV),
which defines the probability of supplying the correct learning material to a student after the formative
assessment and evaluated according to the formula, PPV = TP/(TP + FP) for one student. Where TP is True
Positive, or the number of correctly identified weakest topics for a student. The number of weakest topics
is not always one, because topic proficiency is assumed to be equal to an expected value of an answer on a
topic question, a Bernoulli variable E(T) = pt. This value can be the same for several topics, in that case it
is assumed that the student would equally benefit from instruction on any of the topics. The FP, False
Positive, is a number of incorrectly identified topics for which topic mean µt is larger than the smallest
mean, µm. For the group of students average of individual accuracies was taken.

Where applicable experimental results where expressed as mean ± Standard Error of the Mean
(SEM). Correlation matrix of questions for heat-map visualization was computed using Pearson
correlation coefficient using Pandas Python data analysis library.

Variance of answers on questions on one topic in simulation experiments was calculated using
Var[T] = pt(1 − pt) formula for Bernoulli distribution. The probability of correct answer on the topic
pt was known and controlled for each topic T to observe its effect on assessment accuracy. In the
experiments where real students’ variance was computed using same formula, pt was estimated
using formula

pt =

∑ns
s=1

∑nqt

q=1 asq

nsnqt
(3)

where s is a student, q is a question within a topic and asq is an answer of a particular student on a particular
question within a topic, ns and nst are the number of students and questions within a topic, respectively.

3. Results

3.1. Impact of Exploration Constant on Accuracy

We start by presenting a set of simulations to systematically explore different properties of
formative assessment using UCB algorithm. UCB algorithm efficiency is dependent on the constant
C which regulates the impact of exploration term on the topic choice as can be seen in Formula (2).
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To analyze this impact and to choose the most suitable C for assessing real students a number of
experiments with synthetic students were carried out.

A cursory result for the C impact on assessment accuracy can be seen in Figure 1. UCB algorithm
shows better performance for every plotted constant over randomly asked questions. Note that algorithm
serving random questions never asks same question twice of the same student, thus it achieves 100%
accuracy after serving all 64 question items. It is clear that exploration can have both positive and negative
impact on accuracy as seen from better performance of C = 0.45 over C = 0 and C = 1.

From Figure 1 it is clear that UCB algorithm when applied to formative assessment has a potential
to significantly shorten test length. With larger constant the algorithm displayed relatively bad accuracy
at quiz lengths from about 15 to 30 questions. This can be explained by failure to exploit known bad
topics in order to further explore topics about which little data is known. Finally, as seen from the best
performance of C = 0.45 exploration component does have a positive impact on assessment accuracy.
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Figure 1. Assessment accuracy as function of number of questions in a quiz. A quiz contained a pool
of 64 questions on 16 different topics and shows average accuracy for a class of 1000 synthetic students.

To choose the appropriate exploration constant for the real quiz, which had 60 questions (to set its
duration at about 60 min), a following experiment with synthetic students was carried out. The number
of questions was set to 64 in order to observe the importance of exploration in realistic scenarios: 4,
8, and 16 topics (see Figure 2). In the experiment we measured the minimal quiz length (number
of questions) required to achieve accuracy greater than 95% in the class of 1000 synthetic students.
The experiment was performed for every constant value from 0 to 2, with a step of 0.1 and the results
were plotted in Figure 2. A conclusion we can draw from Figure 2 is that for every practical topic
number in a 64-question test constant can be set to 0.5 for optimal results.
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3.2. UCB Advantage for Different Quiz Length

A more thorough exploration of quiz space has been performed to gauge the practicality of
implementing UCB algorithm in different classroom situations. From Table 2 it is clear that UCB
testing method becomes more valuable as pool of questions and number of topics increase. Number of
simulated students for this experiment was 500.

Table 2. Reduction in quiz length necessary to achieve 95% accuracy conferred by using UCB algorithm
with optimal exploration constant over traditional random question approach. All numbers are given
for the optimal C value, where T—number of topics; Q—total number of questions. Green color
indicates large reduction in quiz length, and red indicates lesser benefit.

Q
T

4 8 16 32 64 128 256 512

2 33% 0% 8% 0% 24% −2% 22% 24%
4 0% 29% 31% 35% 36% 44% 43% 52%
8 0% 40% 45% 50% 54% 58% 60%
16 0% 57% 50% 59% 67% 71%
32 0% 65% 52% 64% 73%
64 0% 62% 56% 66%

3.3. Assessment of Real Students

In Figure 3 are presented the results from the experiment with real students (n = 104). A formative
assessment quiz included items from 15 topics, with 4 question items in each topic, for 60 total questions.
Results show that in this scenario using traditional testing methods quiz length could be shortened
from 60 questions to 55 questions if the goal was 95% accuracy in weakest topic identification. With use
of UCB adaptive assessment, however, quiz length could be almost halved to 32 questions. Empirical
results (orange and blue plots) are in line with projections drawn from simulations (grey plot). For this
particular quiz and group of students UCB would offer a reduction in quiz length by 23 questions if we
aim for same (>95%) accuracy.
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The ease at which the weakest topic of a student can be identified is dependent on how strongly
the answers on the same topic are correlated. At answer variance equal to zero, it is sufficient to ask
only one question to know the student’s knowledge of the rest of the items within the topic.

However, when answers are uncorrelated, estimation must be harder, and might defeat entire
premise of the proposed UCB testing model. Thus an experiment to measure the effect of knowledge
correlation on items within one topic on method effectiveness was carried out. The impact of answer
variance on testing accuracy can be seen in Figure 4.

As anticipated, identifying weak topics is trivial for unrealistically strongly correlated answers.
However, even for uncorrelated answers UCB performs twice as good as random questioning.
Also plotted in the Figure 4 are variances calculated from answers of real students, N = 104 (15 topic 60
question quiz).
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To assess shorter quiz lengths and algorithm behavior at 95% accuracy value a more detailed look
at accuracy distribution is provided in Figure 6. As seen from the figure for 60 question, 15 topic quiz
the algorithm rarely displays accuracies between 50% and 99% for individual students.
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At quiz lengths between 10 and 32 questions a substantial portion (4–38%) of students were
assessed very poorly, with less than 1% accuracy. Similarly, even at >95% accuracies, there can be a
minority of students with incorrect weakest topic estimates. The root causes may be small correlation of
answers (Figures 4 and 5) in the sample used for testing and small number of items within a topic (only
4). There was an increase in the fraction of students with wildly wrong estimates (accuracy <1%) up to
question 7. This is because initial estimated knowledge on all topics is set to 0.5 in our implementation
of the algorithm. The algorithm shows a steady increase in accurately (>99%) diagnosed students with
no abnormalities.

4. Discussion

UCB algorithm has a potential to significantly reduce assessment length without the loss of
accuracy. Even for very short tests with few topics the algorithm offers significant reduction of test
length (Table 2). However, there is no advantage for quizzes in which each topic contains only one
question, at which point the notion of topic loses its pedagogical meaning. There is evidence that
time allocated to study positively affects student performance [41], thus reducing the time spend on
assessment is desired. The experiments with real students support the conclusions drawn from the
simulations (Figure 3). Such strong change in quiz length has the potential to change the dynamics
in the classroom, because the instructor would not need to spend an entire lesson just for formative
assessment. This in turn, may increase opportunities to provide personalized feedback to students
linked to better performance [14,42]. This advantage comes at no cost in quiz creation complexity,
unlike IRT and Elo rating based systems where quiz creation can be prohibitively complex in some
situations due to item calibration problem [22,27]. Because of this fundamental difference we do not
compare performance of UCB to IRT and Elo based algorithms. Such comparison would not discredit
either approach: If UCB performs worse (as is safe to assume), its simplicity of use and independence
from question item calibration makes it an interesting alternative to traditional assessment.

It is clear that exploration component of the algorithm becomes more important with the increase
in number of items within a topic. This can be observed in bad performance of algorithm in 4
topic quiz when C was set to 0 in Figure 2. It took 45 questions to reach >95% assessment accuracy.
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Also, unintuitively, it takes less questions to identify weakest topics of students’ when there are more
topics when the size of the item pool is kept constant.

Compared to IRT and Elo algorithms UCB will obtain less information about the student in a
mathematical sense [27,43], and this can be seen as a disadvantage. However, not all information is
equally pedagogically valuable [12,16]. For example, assume we are assessing student’s knowledge
on two topics. We are nearing the end of the quiz and have determined that knowledge on first
topic is adequate, but lacking on the second topic. Because of the nature of UCB algorithm topic two
is more explored than topic one, therefore we expect to gain less information by exploring second
topic. However, from pedagogical point of view the information on topic two can be more valuable
to address the assessment needs according to the three question feedback model [15]. According to
the assessment, topic two is in need of instruction. If we are going to proceed to teach it, we can use
the extra diagnostic data to save time and effort by not teaching what the student already knows.
Meanwhile we have no immediate use for the more precise data about first topic.

Simulation data presented in Figure 4 and empirical results (Figures 3 and 5) suggest that the
UCB assessment approach can offer significant reduction in quiz length for any practical item pool size
and inter-topic variance of answers. This is an important result because it indicates suitability of the
method for any grouping of questions regardless of how correlated the answers are within one topic.
Method effectiveness stays almost constant for any observed answer variance, which makes it easy to
predict quiz length. This allows a teacher to group questions on each topic as they see fit according
with syllabus and the learning material at hand, regardless of existence or lack of a common latent trait
underlying the items within a topic. This separates UCB method from IRT and Elo based alternatives
which depend on the assumption of common latent trait [22,28].

At quiz lengths between 10 and 32 questions a substantial portion (4–38%) of students were
assessed very poorly implies that using shorter assessments is morally questionable, as the majority of
the students will receive a very accurate guidance, while the rest will be tutored on topics which they
already know. This presents a problem for more important formative assessments (i.e., entire semester
assessment). This property of the algorithm can be offset my small increase in quiz length as seen in
Figure 6.

5. Conclusions

Presented in this paper novel approach to formative assessment based on UCB algorithm shows
promising results when compared to traditional assessment methods. This approach can significantly
reduce quiz length without reduction in accuracy. For quizzes with item pool equal to 8 questions the
reduction is 29%, for quizzes with item pool of 512 question it is 73%. Variance of answers to questions
within same topic has little impact on assessment accuracy for empirically observed values (0.1 to 0.25),
thus the algorithm is suited for situations where items do not necessary measure same latent skill or
trait. However, distribution of student accuracies within a class is non-normal. Even at high average
class accuracies (95%), the majority of accurately assessed students is offset by a small minority of
students for whom weakest topics where incorrectly identified. To offset this property of the algorithm
we recommend that educators target >99% accuracy for course-crucial UCB formative assessments.
We believe UCB based formative assessment has pedagogical potential for practical applications
and should be further explored. Unlike IRT and Elo rating-based assessment methods UCB based
assessment requires no question item calibration and does not depend on the debatable premise that
different questions measure same latent trait. As consequence UCB method belongs to a different,
sparsely explored class of easy to implement and maintain formative assessment solutions. It may
prove to be a fresh and viable alternative to traditional linear assessment in situations where IRT and
Elo methods were deemed too complex to implement and maintain. In the future a comparative study
of UCB assessment method with established item calibration dependent methods may be of interest.
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