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*Penulis Korespondensi 

Abstract. One interesting topic in algebra and graph theory is a graph representation of 

a group, especially the representation of a group using a non-coprime graph.  In this 

paper, we describe the non-coprime graph of integers modulo 𝑛 group and its subgroups, 

for 𝑛 is a prime power or 𝑛 is a product of two distinct primes. 
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I. INTRODUCTION 

The non-coprime graph of a finite group was introduced by Mansoori et al. [1]. In [1], 

the authors determined some numerical invariants of the non-coprime graph of a finite group, 

such as its diameter, girth, dominating number, independence, and chromatic number. 

Moreover, they characterize the planar non-coprime graph of a group and the regular non-

coprime graph of a nilpotent group. Furthermore, they also stated a connection between the 

non-coprime graphs and some prime graphs.  

 

Aghababaei-Beni and Jafarzadeh [2] investigated the properties of Cartesian and tensor 

products of non-coprime graphs of finite groups such as the dihedral and semi-dihedral groups. 

They considered the properties such as the independence, clique, chromatic number, covering 

number, diameter, connectedness, and the existence of the Eulerian spanning subgraph. They 

also gave a characterization for such graphs to be an Eulerian graph and to be a planar graph. 

Recently, Aghababaei et al. [3] extended some results in [2]. They studied the non-coprime of 

a finite group with respect to a subgroup and investigated some properties of such a graph, 

including its diameter, chromatic number, clique, and the number of connected components. 

They also investigated some properties of the non-coprime graph of the nilpotent group.  

 

Some authors give some properties of the non-coprime graph and the coprime graph to more 

specific groups.  Rilwan et al. give some properties of the non-coprime graph of integer [4], 

Juliana et al. give some properties of the non-coprime graph of an integer modulo [7], and 

Syarifudin et al. give some properties of the non-coprime graph of dihedral groups [8]. 

In this paper, we describe the non-coprime graph of the group ℤ𝑛 and that of its subgroups, 

where 𝑛 is a prime power or 𝑛 is a product of two distinct primes. We used the result of the 

coprime graph of the group ℤ𝑛 as the non-coprime graph is the duality of the coprime graph 

[6].  This paper is organized as follows. Section 2 (Some Basic Notions) collects some basic 
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notions related to group and graph. We give our main results in Section 3 (Main Results).  Some 

concluding remarks are collected in Section 4 (Conclusions). Finally, we give some related 

references in the References section. 

II. SOME BASIC NOTION 

Let 𝐺 be a finite group and |𝐺| be the number of elements in 𝐺 or the order of 𝐺. The 

definition of the order of an element in 𝐺 is as follows. 

 

Definition 1. Let 𝐺 be a finite group with the identity element 𝑒. The order of 𝑔 ∈ 𝐺, denoted 

by |𝑔|, is the smallest positive integer 𝑛 such that  𝑔𝑛 = 𝑒. 

 

Let 𝐻 be any subgroup of 𝐺. In the rest of the paper, if 𝐻 is a subgroup of 𝐺, then we denote 

it by 𝐻 ≤ 𝐺. Also, let 𝑎 be an element in 𝐺. A subgroup < 𝑎 >= {𝑎𝑛| 𝑛 ∈ ℤ} is called a cyclic 

subgroup of 𝐺 generated by an element 𝑎. The following theorem states a relation between |𝐻| 
and |𝐺|.  
 

Theorem 1. (Lagrange’s Theorem [4]). If 𝐺 is a finite group and 𝐻 ≤ 𝐺, then |𝐻| is a divisor 

of |𝐺|. 
 

As a consequence of Theorem 1, we have that | < 𝑔 > | divides |𝐺|. 
  

A graph is one crucial object in mathematics, especially in discrete mathematics and its 

applications. The definition of a graph is as follows. 

 

Definition 2. [5]. A graph is a pair 𝛤 = (𝑉, 𝐸), where 𝑉 is a non-empty set of vertices, and 

𝐸 ⊆ 𝑉 × 𝑉 is a set of edges.   

 

We have to note that, in the rest of the paper, we only use a simple undirected graph, 

i.e., we assume that (𝑣𝑖 , 𝑣𝑗) = (𝑣𝑗 , 𝑣𝑖) for all (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸.  

 

Definition 3. An undirected graph 𝛤 is complete if for any 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, we have that (𝑣𝑖 , 𝑣𝑗) ∈

𝐸. If |𝑉| = 𝑚, then we denote an undirected complete graph 𝛤 as  𝐾𝑚. 

 

Let 𝑎 and 𝑏 be two integers. The greatest common divisor of 𝑎 and 𝑏 usually denoted by 

(𝑎, 𝑏). The following definition defines the non-coprime graph of a finite group. 

 

Definition 4. [1]. Let 𝐺 be a finite group. The non-coprime graph of 𝐺 denoted by 𝛤𝐺, is a 

graph whose vertices are all elements of 𝐺\{0}. Two different vertices 𝑥 and 𝑦 in  𝛤𝐺 are 

adjacent if (|𝑥|, |𝑦|) ≠ 1.  

III. MAIN RESULT 

Let ℤ𝑛 = {0,1, … , 𝑛 − 1} be the group of integers modulo 𝑛 with addition (mod 𝑛) 

operation. The following proposition gives the non-coprime graph of ℤ𝑛 when 𝑛 is a prime 

number. 
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Proposition 1. If 𝑛 is a prime number, then the non-coprime graph of ℤ𝑛 is a complete graph. 
 

Proof. Since 𝑛 is a prime number, we have that |𝑖| = 𝑛, for all 𝑖 = 1,2, … , 𝑛 − 1.  

So,(|𝑎|, |𝑏|) ≠  1, for all, 𝑏 ∈  ℤ𝑛 . These imply, 𝑎 and 𝑏 are adjacent in Γ̅ℤ𝑛
for all, 𝑏 ∈ ℤ𝑛 −

{0}. Therefore, the non-coprime graph of ℤ𝑛 is a complete graph 𝐾𝑛−1. 

 

Here is an example of Proposition 1. 

 

Example 1. Let ℤ7  =  {0,1,2,3,4,5,6}. As we can see, |1| = 7, |2| = 7, |3| = 7, |4| = 7, |5| =
7, |6| = 7.  So, we have that (|𝑎|, |𝑏|) ≠  1, ∀ 𝑎, 𝑏 ∈ ℤ7. Therefore, every non-zero element of  

ℤ7 are adjacent to each other. We can see Γ̅ℤ7
in Figure1. 

 
Figure 1. Non-coprime graph of ℤ𝟕 

Let 𝑛 = 𝑝𝑠 for some prime number 𝑝 and a natural number 𝑠 ≥ 2. The following theorem 

describes the non-coprime graph of ℤ𝑛, when 𝑛 = 𝑝𝑠. 

 

Theorem 2. If 𝑛 =  𝑝𝑠, for some prime number 𝑝 and natural number 𝑠 ≥ 2, then the non-

coprime graph of ℤ𝑛 is a complete graph. 

 

Proof. Let 𝑎 be an element in ℤ𝑝𝑠 with (𝑝𝑠, 𝑎) ≠  1.The element 𝑎 can be written as  𝑎 =  𝑝𝑘𝑞 

, for some 1 ≤  𝑘 < 𝑠 and an integer 𝑞, where (𝑝, 𝑞) = 1.  As a consequence, we have that 

|𝑎| =  𝑝𝑠−𝑘.  Also, for any 𝑏 ∈  ℤ𝑝𝑠 with (𝑝𝑠, 𝑏) = 1, we have that |𝑏| =  𝑝𝑠. These imply 

(|𝑎|, |𝑏|) ≠  1, for all, 𝑏 ∈ ℤ𝑝𝑠 − {0}.  So, 𝑎 and 𝑏 are adjacent in Γ̅ℤ𝑝𝑠  for all, 𝑏 ∈ ℤ𝑝𝑠 − {0}. 

Therefore, the non-coprime graph of ℤ𝑝𝑠 is a complete graph  𝐾𝑝𝑠−1. 

 

Here is an example of Theorem 2 

 

Example 2. Let ℤ32  =  {0,1, 2,3,4,5, … ,8}.  As we can see, |1| = 9, |2| = 9, |3| = 3, |4| =
 9, |5| =  9, |6| =  3, |7| =  9, |8| =  9 . Consequently, we have that 𝑎 and 𝑏 are adjacent in 

Γ̅ℤ
32 for all 𝑎, 𝑏 ∈ ℤ32 − {0}. The non-coprime graph of ℤ32 is shown in Figure 2. 

 

 

 

 

 

 

 

 
Figure 2.  Non-coprime graph ofℤ𝟗 
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Let 𝑛 be a product of two distinct primes. The following theorem describes the non-coprime 

graph of ℤ𝑛, when 𝑛 is a product of two distinct primes. 

 

Theorem 3. Let =  𝑝1𝑝2 , where 𝑝1, 𝑝2 are two distinct primes. If  𝐻 is a proper subgroup of  

ℤ𝑛,  then the non-coprime graph of 𝐻 is complete. 

 

Proof. Let 𝐻 be any proper subgroup of ℤ𝑛. By Theorem 1 (Lagrange’s Theorem), we have 

that |𝐻| =  𝑝1 or |𝐻| =  𝑝2 . Therefore, by Proposition 1, we have that Γ𝐻 is a complete 

graph. 

 

Here is an example of Theorem 3. 

 

Example 3. Let ℤ15 =  {0, 1, 2, … ,14}. We can check that non-trivial subgroups of ℤ15 are 

〈 3 〉 and 〈 5 〉 . Moreover, we can see that 〈3〉  =  {0,3,6,9,12 } and 〈5〉  =  {0,5,10}. The non-

coprime graphs of 〈 3〉 and 〈 5〉 are shown in Figure3. 

 

 

 

 

 

 

 

Figure 3. Non-coprime graph of subgroups inℤ𝟏𝟓 

IV. CONCLUSIONS 

We have shown that the non-coprime graph of ℤ𝑛, when 𝑛 is a prime power, is a complete 

graph 𝐾𝑛−1.  Moreover, when  𝑛  is a product of two distinct primes, the non-coprime graphs 

of its non-trivial subgroups are complete graphs. 
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