
                                                              Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                               

ISSN: 2395-0218     

 
Volume 16, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm                                                          3093| 

 

 
SCITECH                                                                            Volume 16, Issue 3   

RESEARCH ORGANISATION|                   Published online: August 18, 2020| 

Journal of Progressive Research in Mathematics 

www.scitecresearch.com/journals     

Effects of minimum epidemic and population sizes on a 

global epidemic in simulations of final size data   

Umar M. Abdulkarim𝑎 , and Husseini S. Ndakwo𝑏  

𝑎,𝑏  Nasarawa State University, Keffi Nigeria, 

Department of Mathematics   

 

Abstract.   

  The stochastic SIR household epidemic model is well discussed in [2], [3] and [4]. The work of [1] 

also proposed maximum likelihood based algorithm for its inference by assuming independence of epidemic in 

each household, contrary to the dependency assumption in [4]. 

Using simulations, we examined the need for an appropriate choice of cut-off between small and large 

epidemics often referred to as minimum epidemic size, using rejection sampling, for a global infection to occur 

and then compared the estimates of the model parameters over a range of theoretical parameters, 𝜆𝐿 and 𝜆𝐺  with 

corresponding 𝑧 ∈ [0,1]. 

We found that with large population size, appropriate choice of the minimum epidemic size and 𝜆𝐺 ≠ 0 

facilitate the occurrence of a global epidemic. 

Thus, given these scenarios, the adequacy of the model fitness to the final size epidemic data is then 

realised. 

Keywords: Final size epidemic, Global Infection, Infectious Period distribution, Maximum likelihood 

estimates. 

 
 

1  Introduction 

 Most often, in simulation of household epidemic, the target is to allow a global epidemic occur in 

which unimodal behaviour for the distribution of the number infected is observed. This is to provide enough 

information for estimation of the model parameters. 

This work examined ways in which this can be realized and organized in the following form. 

In section 2.1, we examined the model with reviews of related literature’s, in section 3, we discuss the 

household structure, in section 4, we examined the properties of the epidemic in the early stages, in section 5, 

we examined the properties and conditions for the occurrence of a global epidemic. In section 6, we examined 

maximum likelihood estimation method for the model parameters. In section 7, we simulate and examined the 

epidemic for occurrence of global infection and the properties of the estimates, given small and large population 

sizes with different choice of minimum epidemic size, we present plots of the estimates with minimum epidemic 

size of 10, table of parameter estimates and other statistics when the minimum epidemic size is 10. Also, we 

present plots of the estimates and table of mean, standard deviation, mean square error and root mean square 

error with minimum epidemic size of 50 and those with minimum epidemic size of 1000. 
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In section 9, we discussed our results and in section 10, we present our conclusion. 

2  Material and Methods 

2.1  The model 

  The stochastic S-I-R household epidemic model is a generalization of the simple stochastic epidemic, 

called the general stochastic epidemic with exponentially distributed infectious period. Its development can be 

traced to the pioneering work of [2-4],[6] and other active contributors like, [9], [8] and [7], [12], [5], [13, 14], 

[11], [8], [9, 10] etc. 

The model assumes a closed and finite population structured into households, each made of 

susceptibles, infectives and removed individuals, with homogeneous mixing between susceptibles and 

infectives, independently and at random at two levels, (locally and globally) within the households and 

individuals from different households, at the points of a homogeneous Poisson processes having rates, 𝜆𝐿 and 
𝜆𝐺

𝑁
 

respectively [4], where 𝑁 is the total population size, 𝜆𝐺  is the total rate that a given infective makes global 

contacts [3, 4]. 

Any susceptible contacted will immediately become infectious (since there is no latency for the 

disease) for period 𝑇𝐼 , referred to as the infectious period after which it is removed (died or isolated or immune) 

at the end of the infectious period. The infectious period of each infective is assumed to be independent and 

identically distributed according to the random variable 𝑇𝐼 which is arbitrary but must be specified [3, 4]. The 

Poisson processes describing contacts and the infectious period are assumed to be mutually independent. 

However [12] and [1] proposed an extensions, which assumes, that infection is initiated from outside 

the population unlike [4] assumption in which infection is started by some initial number of infectives within the 

household. 

3  Household Structure 

The proportion or distribution of households of size 𝑛 = 1,2,…,is given in [3, 4] and [6] as, 

 

 𝛼𝑛 =
𝑀𝑛

𝑀
 

where 𝑀𝑛  is the number of household of size 𝑛 and 𝑀, the total number of households. 

The mean household size is then ℎ =   𝑗 𝑗𝛼𝑗  and the Probability that global contact is with an 

individual residing in a household of size 𝑛 is,  

 𝛼 𝑛 = 𝑛𝑀𝑛/𝑁 

. 

Where the total population size illustrated in plate I, is  

 𝑁 =   ∞
𝑛=1 𝑛𝑀𝑛   

4  Epidemic in the Early Stages. 

  Every global contact is with a completely susceptible household. The epidemic process behaves like a 

branching process, in which extinction of the population occur with probability one, if the expected number of 

offspring is less than one, and by translation from the branching process theorem, this means, the expected 

number of infected households emanating from a typical infected household, 𝑅∗ < 1. Global epidemic occurs if 

in the limit as 𝑚 → ∞ the epidemic infects infinitely many groups, if the branching process does not go instinct 

[3, 4, 6]. 

By standard branching process theorem, global epidemic occur if and only if 𝑅∗ > 1, 
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where 𝑅∗ = 𝐸(𝑅), and 𝑅 is the number of infected households emanating from a typical infected 

household. 

5  Global epidemic 

  During the early stage of an epidemic, the number of initial infectives are small, if the number of 

households is large, then the probability that any global contact is with an infected household is also small. This 

means that, global contact is with a completely susceptible household. 

This makes it possible to approximate an epidemic during its early stages, with a continuous times 

branching process, in which infected individuals independently infect susceptibles in completely susceptible 

households at random. However, it is showed by[3] that global epidemic occurs if in the limit as 𝑚 → ∞, the 

epidemic infects infinitely many household, ie, if the branching process does not go extinct. The probability of a 

global epidemic is then computed in line with [4] as,  

 1 − 𝑝𝑎  (1) 

 where 𝑝 is a unique root of 𝑓(𝑠) = 𝑠, in [0,1], representing the proportion of the susceptibles infected in the 

global epidemic 𝑎 is the number of the initial infectives, 𝑓(𝑠) = 𝐸(𝑠𝑅) is the probability generating function of 

𝑅, the number of infected households emanating from a typical infected household also referred to as the 

offspring random variable for the approximating branching process. For other configurations of the initial 

infectives, the probability of a global epidemic is defined by conditioning on the size of the first generation in 

the branching process [4, 6]. 

We need to first determine the generating function 𝑓(𝑠) in line with [3, 4, 6] defined by,  

 𝑓(𝑠) = 𝐸(𝑠𝑅) =   ∞
𝑛=1 𝛼 𝑛𝐸(𝑠𝑅𝑛 ) (2) 

 where 𝑅𝑛  is the total number of global contacts emanating from the household epidemic, assumed to follow a 

Poisson distribution with random mean, 𝜆𝐺𝐴𝑛 , 𝐴𝑛  is the sum of the infectious period of all the infectives and  

 𝐸(𝑠𝑅𝑛 ) = 𝐸(𝐸(𝑠𝑅𝑛 |𝐴𝑛)) (3) 

 

 = 𝐸(exp(−𝜆𝐺𝐴𝑛(1 − 𝑠))) (4) 

 

 = 𝜙𝑛−1,1(𝜆𝐺(1 − 𝑠)) (5) 

 where 𝑅𝑛  and 𝐴𝑛  are defined in equation (2), 𝜆𝐺  and 𝜆𝐿 are the local and global contact rates. Also, 𝜙𝑛,𝑎 =

𝐸(exp(−𝜃𝐴𝑛,𝑎)) and 𝐴𝑛,𝑎  is the sum of the infectious periods of the infectives in the household epidemic, 

called severity of the household epidemic with initially 𝑛 susceptibles and 𝑎 infectives, which is defined in [3, 

6] as,  

 𝜙𝑛,𝑎(𝜃) =   𝑛
𝑘=0  

𝑛
𝑘
 𝛾𝑘(𝜃)𝜙(𝜃 + 𝜆𝐿 . 𝑘)𝑛+𝑎−𝑘 . (6) 

 Where 𝛾𝑖(𝜃) for 𝑖 = 0,1, … , 𝑛 are determined recursively by,  

   𝑘−1
𝑖=0 𝛾𝑖(𝜃)𝜙(𝜃 + 𝜆𝐿 . 𝑖)𝑘−𝑖 +  

𝑘
𝑘
 𝛾𝑘(𝜃) = 1. (𝑘 = 0,1…𝑛) (7) 

The gamma function in equation (7) can further be simplified for every 𝑘 = 0,1,…𝑛 as follows, 

𝑘 = 0, gives, 
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0
0
 𝛾0(𝜃)𝜙(𝜃 + 𝜆𝐿 . 0)0−0 = 1 

 𝛾0(𝜃) = 1, ∀𝜃 ≥ 0 (8) 

Thus, 𝛾𝑘(𝜃) can be written as,  

 𝛾𝑘(𝜃) = 1 −   𝑘−1
𝑖=0  

𝑘
𝑖
 𝛾𝑖(𝜃)𝜙(𝜃 + 𝜆𝐿 . 𝑖)𝑘−𝑖 , 𝑘 = 1,2…𝑛, ∀𝜃 ≥ 0, (9) 

where 𝜙(𝜃) = 𝐸(exp{−𝜃𝑇𝐼}), 𝑇𝐼 is the infectious period of an infected individual. 

If 𝜆𝐿 and 𝜃 approaches zero simultaneously, then 𝜙(0) goes to 1. Then from equation (8), we can see 

that equation (9) reduces to,  

 𝛾𝑘(0) = 1 −   𝑘−1
𝑖=0  

𝑘
𝑖
 𝛾𝑖(0), 𝑘 = 1,2…𝑛, (10) 

We prove by induction that 𝛾𝑘(0) = 0, ∀𝑘 ∈ 𝐙+ − {1}. 

When 𝑘 = 1, equation (10), reduces to, 𝛾1(0) = 1 −  
1
0
 𝛾0(0) = 0. 

When 𝑘 = 2, 𝛾2(0) reduces to, 

 𝛾2(0) = 1 −   
2
0
 𝛾0(0) +  

2
1
 𝛾1(0)  

using 𝛾0(0) = 1 and 𝛾1(0) = 0, we get 𝛾2(0) = 1 − 1 = 0. 

We assumed, this expression holds for all 𝑘 ∈ 𝐙+ and show that it holds for 𝑘 + 1. 

For 𝑘 + 1, equation (10) assumes,  

 𝛾𝑘+1(0) = 1 −   𝑘
𝑖=0  

𝑘 + 1
𝑖

 𝛾𝑖(0) (11) 

Since, we can express  
𝑘 + 1
𝑖

  as  
𝑘
𝑖
 +  

𝑘
𝑖 − 1

 , equation (11) can be written as, 

 

 𝛾𝑘+1(0) = 1 −   𝑘
𝑖=0   

𝑘
𝑖
 +  

𝑘
𝑖 − 1

  𝛾𝑖(0) 

 = 1 −    𝑘−1
𝑖=0  

𝑘
𝑖
 𝛾𝑖(0) + 𝛾𝑘(0) +   𝑘

𝑖=0  
𝑘
𝑖 − 1

 𝛾𝑖(0)  

Also, from equation (10), we have   𝑘−1
𝑖=0  

𝑘
𝑖
 𝛾𝑖(0) = 1 − 𝛾𝑘(0) so that 

 𝛾𝑘+1(0) = −  𝑘
𝑖=0  

𝑘
𝑖 − 1

 𝛾𝑖(0) 

Thus, 𝛾𝑘+1(0) = 0. 

The hypothesis, holds for 𝑘 + 1, and so in general, 𝛾𝑘(0) = 0, ∀𝑘 ∈ 𝐙+ − {1}. 

Putting these results in 𝜙𝑛,𝑎(0) we now have, 

 𝜙𝑛,𝑎(0) =   𝑛
𝑖=0  

𝑛
𝑖
 𝛾𝑖(0). (12) 
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From equation (12), we can see that the terms reduces to zero except the first one, i.e,  
𝑛
0
 𝛾0(0) = 1, 

since 𝜙(0)𝑛 = 1. Hence equation (12) reduces to 1, ∀𝑛 ≥ 0. 

The probability generating function of the number of infected households generated by a typical 

infected household is given by,  

 𝑓(𝑠) = 𝐸(𝑠𝑅) =   ∞
𝑛=1 𝛼 𝑛 = 1, (13) 

 where, 𝜃, 𝜆𝐿 → 0,𝑠 = 1 is the largest solution of 𝑓(𝑠) = 𝑠 = 𝑝 ∈ [0,1], for which there is no global epidemic. 

Where a global epidemic, is given by 1 − 𝑝 = 0, for an epidemic started by a single initial infective. 

Thus, the probability of nonglobal epidemic corresponding to extinction of an approximating branching 

process to the epidemic process is given by 1. 

This means, there can’t be an epidemic in absence of contacts within and among members of the 

households. 

If on the other hand 𝜆𝐿 → ∞ and 𝜃 ≥ 0, 

then 𝜙(𝜃 + 𝜆𝐿)𝑘−𝑖  in equation (9) reduces to 0, ∀𝜃 ≥ 0, since 𝑘 − 𝑖 ≥ 1, ∀𝑖 = 0,1,… , 𝑘 − 1. Also 

from equation (9), we see that 𝛾𝑘(𝜃) reduces to 1, ∀𝑘 ∈ 𝐙+,𝜃 > 0 and 𝜆𝐿 → ∞. 

Applying these results in equation (6), we have 𝜙(𝜃 + 𝜆𝐿 . 𝑘)𝑛+𝑎−𝑘 → 0, since 𝑛 + 𝑎 − 𝑘 ≥ 1,∀𝑎 ≥ 1, 

where 𝑎 is the initial number of infectives. 

It trivially follows that, if 𝜆𝐿 → ∞, then 𝜙𝑛,𝑎(𝜃) → 0, ∀𝜃 > 0. 

From equation (2), we will have 𝑠 = 0. Hence the extinction probability of the approximating 

branching process to the epidemic process is, 𝑝 = 0. The probability of a global epidemic is 1. 

This result also holds if 𝜃 → ∞ for some 𝜆𝐿 ≥ 0. Since 𝑘 − 𝑖 ≥ 1, in equation (9), we have, 𝜙(𝜃 +

𝜆𝐿 . 𝑘)𝑘−𝑖 → 0, for 𝜆𝐿 ≥ 0. 

From equation (9), if 𝜃 → ∞, then 𝛾𝑘(𝜃) → 1, ∀𝜆𝐿 ≥ 0. 

Also, from equation (6), 𝜙(𝜃 + 𝜆𝐿 . 𝑘)𝑛+𝑎−𝑘 → 0, where 𝑛 + 𝑎 − 𝑘 ≥ 𝑎, ∀𝑎 > 1, and 𝑛 + 𝑎 − 𝑘 

cannot be 0, ∀𝑘 ∈ 𝐙+. 

It follows that, if 𝜃 → ∞, then 𝜙𝑛,𝑎(𝜃) → 0, ∀𝜆𝐿. 

Hence, equation (6) reduces to 0, 𝑓(𝑠) = 𝐸(𝑠𝑅𝑛 ) = 0 and 𝑠 = 0. 

There will be a global epidemic with probability 1. 

If 𝜃, 𝜆𝐿 → ∞ simultaneously, then we see that equation (9) will assume, 1, since 𝜙(𝜃 + 𝜆𝐿 . 𝑖)𝑘−𝑖 → 0, 

where 𝑘 − 𝑖 ≥ 1. 

Similarly, in equation (6), 𝜙(𝜃 + 𝜆𝐿 . 𝑘)𝑛+𝑎−𝑘  will be zero, where 𝑛 + 𝑎 − 𝑘 ≥ 𝑎, 𝑎 > 1. Hence, 

equation (6) reduces to 0. 

         It follows from equation (2) that 𝑓(𝑠) = 0, and 𝑠 = 0. There will be a global epidemic with probability 1. 

From 𝜃 = 𝜆𝐺(1 − 𝑠) and in lines with [3, 4, 6], we see that 𝛾𝑘(𝜃) is a function of both 𝜆𝐿 and 𝜆𝐺  

respectively and 𝜃 → 0 will mean either 𝜆𝐺 → 0 for 𝑠 ∈ (0,1], or 𝑠 = 0 for 𝜆𝐺 > 0. 
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If 𝜆𝐺 → 0 for some 𝑠 ∈ [0,1) and 𝜆𝐿 → 0. Then 𝛾𝑘(0) = 0 for ∀𝑘 ∈ 𝐙+ − {0}, where 𝛾0(0) is given in 

equation (8) and 𝜙𝑛,𝑎(0) = 1, 𝑓(𝑠) = 1. There will be nonglobal epidemic with probability 1. The probability 

of a global epidemic is 0. 

However, if 𝑠 = 1, 𝜆𝐺 > 0 and 𝜆𝐿 → 0, then we will have 𝛾𝑘(0) = 0 and 𝛾0(0) in equation (8), 

𝜙𝑛,𝑎(0) = 1, and since 𝑠 = 1. It follows that the probability of nonglobal epidemic is 1 and the probability of a 

global epidemic is 0. 

Similarly, the case for which 𝜃 → 0 for some 𝜆𝐺 > 0, follows by allowing either 𝜆𝐺 → 0 for some 

𝑠 ∈ [0,1) or 𝜆𝐺 > 0 and 𝑠 = 1. 

Thus, 𝜆𝐺 > 0 for a global epidemic to occur in the household 

6  Maximum likelihood estimation 

  If 𝑋𝑛,𝑗  is the number of households of size 𝑛 with 𝑗 infectives, (total number of cases), and 𝑃𝑛,𝑗  is the 

final size probabilities, (probability of 𝑗 cases in a household of size 𝑛 at the end of the epidemic), then each 

household size, has a separate multinomial distribution for 𝑋𝑛,0 , … , 𝑋𝑛,𝑗 , (𝑗 = 0, … , 𝑛, 𝑛 = 1,… ,𝑚𝑎𝑥), given by 

[10] as, 

 

 𝑃(𝑋𝑛,0 = 𝑥𝑛,0, … , 𝑋𝑛,𝑗 = 𝑥𝑛,𝑗 ) =
(𝑀𝑛 )!

  𝑚𝑎𝑥
𝑗=1 (𝑥𝑛 ,𝑗 )!

  𝑛
𝑗=0 𝑃𝑛,𝑗

𝑥𝑛 ,𝑗
, (14) 

 where 𝑀𝑛  is the number of household of type 𝑛 among the infected households. 

By assuming independence of epidemics in each household in accordance with [1], the likelihood 

function which is referred to as approximate likelihood function of the parameters, 𝜆𝐿 and 𝜋, [4] is given by,  

 𝐿(𝜆𝐿 , 𝜋) =
(𝑀𝑛 .)!

  𝑚𝑎𝑥
𝑖=1 (𝑥𝑛 ,𝑗 )!

  𝑚𝑎𝑥
𝑖=1   𝑛

𝑗=0 𝑃𝑛,𝑗 (𝜆𝐿 , 𝜋)𝑥𝑛 ,𝑗 , (15) 

 where 𝑃𝑛,𝑗  are the final size probabilities, 𝑛 is the household size, 𝜋 is the probability of avoiding infection 

from outside the household, 𝜆𝐿 is the local contact rate, 𝑥𝑛,𝑗  is the final size data defined as the number of 

households of size 𝑛 with 𝑗 number of infectives, 𝑚𝑎𝑥 is the maximum household size, and 𝑀𝑛  is the number of 

households of size 𝑛 among the infected households. 

Using logarithm in equation (15) for ease of computation and simplification, we can express the 

approximate likelihood function in terms of its loglikelihood as,  

 𝑙(𝜆𝐿 , 𝜋) = log(𝑀𝑛.)! −   𝑚𝑎𝑥
𝑖=1 log(𝑥𝑛,𝑗 )! +   𝑚𝑎𝑥

𝑖=1   𝑛
𝑗=0 𝑥𝑛,𝑗 log𝑃𝑛,𝑗 . (16) 

 The approximate loglikelihood function of the theoretical parameters, 𝜆𝐿 and 𝜋 can then be computed using 

appropriate numerical optimization along the lines of the computational algorithm given in [1]. 

We have developed Matlab programs using the Nelder-Mead fminsearch simplex numerical algorithm 

referred to here as two dimensional numerical optimization to estimate the parameters. 

7  Simulation and Inference 

  We studied the behavior of the epidemic and the model using simulations and then examined the 

place of minimum epidemic size, population size and the magnitude of 𝜆𝐺  on the occurrence of a global 

infection. Using appropriate cut-off between the small and large epidemics, we see that global infection is 

realized. We examined the estimates of the parameters, their mean, variance and mean square error given these 

scenarios. 
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Using the assumption of independence of epidemic between households in [1] and since each 

household size (number of cases) has separate multinomial distribution given in equation (14), we can express 

the approximate likelihood function as in equation (15). 

The parameters of the approximate likelihood function, which are the local infection rate and the 

probability of avoiding infection from outside the households, 𝜆𝐿 and 𝜋 are then estimated. 

The process is such that the starting values for 𝜋 and 𝜆𝐿 are obtained according to [9] from equations 

(17) and (18). 

For example estimating 𝜋, requires equation (17) to be used in evaluating the starting value given as  

 𝜋 = 1𝑛  max
𝑠=1 𝑛𝑠  

𝑛0,𝑠

𝑛𝑠
 

1𝑠

, (17) 

 where 𝑛 is the total number of households, max is the maximum household size, 𝑛𝑠 is the number of 

households of sizes 𝑠 and 𝑛𝑗 ,𝑠  is the number of households of size 𝑠 in which the size of the outbreak is 𝑗 =

0,1,… , 𝑠. i.e. number infectives in the household of size 𝑠. Observe that   𝑠
𝑗=0 𝑛𝑗 ,𝑠 = 𝑛𝑠 and   max

𝑠=1 𝑛𝑠 = 𝑛 

respectively. 

Here, 𝑛0,𝑠𝑛𝑠 is an unbiased estimate of 𝑃0(𝑠) = 𝜋𝑠 , where 𝑃0(𝑠) is the probability of zero infectives in 

the household of size 𝑠, which can also be read as the probability that all the susceptibles in the household of 

size 𝑠 avoid global infection. 

Then (𝑛0,𝑠𝑛𝑠)1𝑠 provides estimates of 𝜋 for the household sizes 𝑠 = 1,2, … ,𝑚𝑎𝑥. Pooling the estimates 

together [9] gave the initial estimates in equation (17). 

For the local infection rate, a reasonable estimate for 𝜆𝐿 for the household size 𝑠 is given by [9] as, 

(𝑛1,𝑠(𝑛𝑠 − 𝑛0,𝑠))1(𝑠−1) and is unity when 𝑛0,𝑠 = 𝑛𝑠 . 

Pooling the estimates together as in [9], the estimate of 𝜆𝐿 is started using,  

 𝜆 𝐿 =
1

  max
𝑠=2 (𝑛𝑠−𝑛0,𝑠)

  max
𝑠=2 (𝑛𝑠 − 𝑛0,𝑠)(

𝑛1,𝑠

𝑛𝑠−𝑛0,𝑠
). (18) 

 

Alternatively if we know the pair of parameters, (𝜆𝐿 , 𝜆𝐺), then by defining a new functional 𝐷, which is 

the sum of square difference between the old and new values of 𝜋 and between the old and new values of 𝑧 

given as,  

 𝐷 = (𝜋𝑜𝑙𝑑 − 𝜋𝑛𝑒𝑤 )2 + (𝑧𝑜𝑙𝑑 − 𝑧𝑛𝑒𝑤 )2, 

 

 𝜋𝑁𝑒𝑤 = exp(−𝜆 𝐺𝑧𝑜𝑙𝑑𝐸(𝑇𝐼), 

 

 𝑧𝑁𝑒𝑤 =   ∞
𝑛=1 𝛼 𝑛𝑛

−1   𝑛
𝑘=1  

𝑛
𝑘
 (1 − 𝜋𝑜𝑙𝑑 )𝑘𝜋𝑜𝑙𝑑

𝑛−𝑘𝜇𝑛−𝑘,𝑘𝜆 𝐿 . 

 Then we can adopt the Nelder-Mead fminsearch simplex numerical algorithm on 𝐷 to find the values of 𝑧 and 

𝜋 respectively. Using these procedures, the parameters are estimated in table 1. 
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8  Table of Theoretical Parameters 
 

 Corresponding theoretical parameter  

(𝜆𝐿 , 𝜆𝐺) 𝜋 𝑧 𝑅∗ 

(0.3, 0.12)  0.84487 0.3426  1.2902 

(0.13, 0.17)  0.74223  0.4275  1.1432 

(0.1, 0.29)   0.4199  0.7298  2.2166 

(0.25, 0.39)   0.2302  0.9185  4.0229 

Table  1: Pairs of the local and global infection rates with their corresponding theoretical parameters. 

With household structure and population size fifty times that of [1] given as [133,189,108,106,31] ×

50, minimum epidemic size of 1000 and simulation runs of 1000, in comparison with our studies in sections 

8.1 and 8.5 for theoretical parameters corresponding to 𝑧 = 0.1775 and population size in [1] for different 

choice of the minimum epidemic size and simulation runs of 1000. 

This is done in order to study the influence of the minimum epidemic size and the population size on 

the occurrence of a global infection in the households and hence their effects on the estimates of the parameters. 

These are implemented using program functions developed for this purpose with the theoretical 

parameters in [1, 4] and household structure in [1], population size of 1414, and simulation runs of 1000 for the 

following minimum epidemic sizes 10,100 respectively. 

The scatter plots of the estimates and the histogram of the number infected are then presented to 

provide insights into their behaviors. 

8.1  Plots of the estimates with minimum epidemic size of 𝟏𝟎 

 

Figure  1: Plots of the estimates of (𝜆𝐿 , 𝜆𝐺), (𝜆𝐿 , 𝜋), (𝜆𝐺 , 𝜋) and histogram of number infected with theoretical 

parameters corresponding to 𝑧 = 0.1775 and minimum epidemic size of 10. 
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8.2  Table of parameter estimates and other statistics when the minimum epidemic size is 𝟏𝟎. 
 

   Parameter Estimates. 

Mean, SD, MSE, 

RMSE.  

𝜆 𝐿 𝜆 𝐺  𝜋  𝑧  𝑅 ∗ 

Theoretical 

Parameters 

 0.0446   0.1955  0.8674   0.1775   1.0596  

Mean   0.038025  0.19346   0.94022  0.07902  1.0661  

Standard 

Deviation  

 0.01582  0.020356   0.075164  0.098512  0.081201 

Mean Square 

Error  

 0.00029238 0.00041811  0.010968   0.019431   0.011596  

Root Mean 

Square Error  

 0.017125 0.020448   0.10473   0.1394  0.10769  

 

Table  2: Mean of the parameter estimates for theoretical parameters corresponding to 𝑧 = 0.1775, household 

structure and size in [1, 4] and minimum epidemic size of 10. 

8.3  Plots of the estimates and table of mean, standard deviation, mean square error and root 

mean square error with minimum epidemic size of 𝟏𝟎𝟎. 

 

Figure  2:  Plots of the estimates of (𝜆𝐿 , 𝜆𝐺), (𝜆𝐿 , 𝜋), (𝜆𝐺 , 𝜋) and histogram of number infected with theoretical 

parameters corresponding to 𝑧 = 0.1775 and Minimum Epidemic size of 100. 
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8.4  Table of parameter estimates and other statistics when the minimum epidemic size is 𝟏𝟎𝟎. 
 

   Parameter Estimates. 

Mean, SD, MSE, 

RMSE.  

𝜆 𝐿 𝜆 𝐺  𝜋  𝑧  𝑅 ∗ 

Theoretical 

Parameters 

 0.0446   0.1955  0.8674   0.1775   1.1303  

Mean  0.043791  0.19786  0.86498  0.17851  1.1362  

Standard 

Deviation  

 0.0074468  0.012422  0.063977   0.082632   0.07399  

Mean Square 

Error  

5.61E-05 0.00015973  0.0040941  0.0068219   0.0055032  

Root Mean 

Square Error  

 0.0074869  0.012638   0.063985   0.082595  0.074183  

Table  3: Mean of the parameter estimates for theoretical parameters corresponding to 𝑧 = 0.1775 and 

household structure and size in [1, 4] and minimum epidemic size of 100. 

8.5  Plots of the estimates and table of mean, standard deviation, mean square error and root 

mean square error with minimum epidemic size of 𝟏𝟎𝟎𝟎 

  The behaviour of the estimates are further examined in table 4 with minimum epidemic sizes of 10 

and 100 in figures 1 and 2 with corresponding tables of statistics, 2 and 3 respectively. 

From table 3, we see that the estimates are unbiased given the population size in [1] and minimum 

epidemic size of 100 compared to the choice of minimum epidemic size less than 100. However, the question 

then is how precise are the estimates if the minimum epidemic size is extremely larger than 100, given the small 

population size of 1414 in [1] and also population size larger than 1414. 

We explored these questions by assuming minimum epidemic sizes of 1000 for the small population 

size of 1414, which is far greater than 100, adopted in figures 3 (a)-(d). We employed the same minimum 

epidemic size of 1000 for the population of size of 70700, which is fifty times greater than the population size 

considered in [1] as in table 4. 

In the case of the small population size of 1414, a minimum epidemic size of 1000, give estimates that 

are biased and imprecise compared to the choice of 100 as the minimum epidemic size in table 3 with the same 

population size. Unlike in table 3, we see significant difference between the mean of the parameter estimates 

and their true values. 

The mean square error of the estimates does not satisfy the minimum mean square error criterion 

required of good estimates. With large population size of, 70700, and choice of minimum epidemic size 1000, 

the estimates are unbiased with insignificant difference from their true mean values compared to the former as 

shown in table 4. 

There is no doubt that inappropriate choice of the minimum epidemic size below and above its 

threshold given small and large population sizes affects the precision and other properties of the estimates of the 

parameters. Hence, there is the need to apply a better strategy of choosing these parameters. These involve, 

firstly simulating the household epidemic with minimum epidemic size of 1 to understand the bimodal behavior 

of the distribution of the epidemic and hence locate the minimum cut-off of the number infected between the 

epidemics then followed by rejection sampling. 
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From the bimodal behaviors of the distribution of the number infected in figure 3, for the small and 

large population sizes, 1414 and 70700, the cut-off of 100 and 1000 respectively are reasonable. 

Choice of extremely large value above the minimum epidemic size leads to loss of information in the 

final size epidemic data. This is because simulations with large number infected will be rejected and hence may 

result in estimates that are biased and imprecise as shown in table 4, with minimum epidemic size of, 1000, for 

population sizes, 1414, and, 70700, respectively. The choice of, 1000, for the small population size of 1414, is 

far above the required cut-off between the epidemics as shown in figure 3 for small and large population sizes 

and hence some of the large epidemics will be wrongly rejected. This then leads to loss of information required 

for inference from the final size epidemic data. Hence biased estimates are obtained unlike the case with 100, in 

table 4. 

  Pop. size=1414 Pop. size=70700 

Par.  Estim. mean std MSE mean std MSE 

𝜆 𝐿 0.0446   0.053486  0.0089206   0.00015846 0.0445 0.0010809  1.18E-06 

𝜆 𝐺  0.1955   0.33199  0.012481  0.018786  0.19525  0.0028492 8.17E-06 

𝜋  0.86725   0.38183  0.013799   0.23583  0.86946  0.018014 0.00032903 

𝑧  0.1777  0.70781   0.0013614  0.28103  0.17469  0.023642 0.00056745 

𝑅 ∗ 1.1304   2.0239   0.033412 0.7995 1.1282  0.019158 0.00037142 

 

Table  4: Table of comparison of the mean, standard deviation and mean square error of the estimates using the 

minimum epidemic size of 1000 and simulation runs of 1000. 

 

Figure  3: Histogram of number infected from simulations of household epidemic with population sizes of 1414 

and 70700 respectively, minimum epidemic size of 1 and simulation runs of 1000. 
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8.6  Parameter estimates with minimum epidemic size of 𝟏𝟎𝟎𝟎 

  In section previous simulations, we found that with small population size and inappropriate choice of 

the minmimu epidemic, global infection failed to occur. Hence 𝜋, 𝑧 and 𝑅∗ are biased with imprecise estimates 

owing to lack of enough information in the final size data. With increasing minimum epidemic size, these 

estimates become less biased with improved estimates. 

In order to overcome this estimation problem, we considered large population size with appropriate 

minimum epidemic size of 1000 and a range of theoretical parameters in table 1 to allow global epidemic and 

hence provide sufficient information for parameter estimation. 

We considered pair of theoretical parameters (𝜆𝐿 , 𝜆𝐺) corresponding to 0 < 𝑧 < 0.5 and 0.5 < 𝑧 < 1 

away from its boundaries and then studied the behavior of the estimates and the distribution of the number 

infected for these sets of theoretical parameters corresponding to 𝑧 in the given sets. 

Starting with 𝜆𝐿 = 0.0446, 𝜆𝐺 = 0.1955 and corresponding theoretical parameters, 𝜋 = 0.8674, 𝑧 =

0.1775,𝑅∗ = 1.1303, minimum epidemic size of 1000, to allow global epidemic to take off in each of the 

simulation runs. We simulate 1000 times household epidemic in a population of size 70700 which is fifty times 

that of [1] given as 1414, estimate and plot the parameters, (𝜆𝐿 , 𝜆𝐺), (𝜆𝐿 , 𝜋), (𝜆𝐺 , 𝜋) and histogram of the 

distribution of number infected. 

Table of mean, standard deviation and root mean square error of the estimates are presented. 

8.7  Plots of the estimate of 𝝀𝑳, 𝝀𝑮 and 𝝅 when the theoretical parameters are 𝝀𝑳 = 𝟎.𝟎𝟒𝟒𝟔 and 

𝝀𝑮 = 𝟎. 𝟏𝟗𝟓𝟓 with minimum epidemic size of 𝟏𝟎𝟎𝟎. 

Figure  4: Plots of the Estimates of (𝜆𝐿 , 𝜆𝐺), (𝜆𝐿 , 𝜋), (𝜆𝐺 , 𝜋) and histogram of number infected with theoretical 

parameters 𝜆𝐿 = 0.0446, 𝜆𝐺 = 0.1955 and minimum epidemic size of 1000. 
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8.8  Plots of the estimate of 𝝀𝑳, 𝝀𝑮 and 𝝅 when the theoretical parameters are 𝝀𝑳 = 𝟎.𝟐𝟓 and 

𝝀𝑮 = 𝟎. 𝟑𝟗 with minimum epidemic size of 𝟏𝟎𝟎𝟎. 
 

Also with 𝜆𝐿 = 0.25, 𝜆𝐺 = 0.39 and corresponding theoretical parameters, 𝜋 = 0.2302, 𝑧 =

0.9185,𝑅∗ = 4.0229. We plot (𝜆𝐿 , 𝜆𝐺), (𝜆𝐿 , 𝜋), (𝜆𝐺 , 𝜋) and the histogram of the distribution of number infected. 

Table of mean, standard deviation and root mean square error are presented. 

 

Figure  5: Plots of the estimates of (𝜆𝐿 , 𝜆𝐺), (𝜆𝐿 , 𝜋), (𝜆𝐺 , 𝜋) and histogram of number infected with theoretical 

parameters 𝜆𝐿 = 0.25, 𝜆𝐺 = 0.39 and minimum epidemic size of 1000. 

  Proportion Infected. 

Par.  z=0.1775  Theor.   z=0.42757 Theor.   z=0.7298 Theor.  z=0.9185  Theor. 

  Par.    Par.  Par.    Par. 

𝜆 𝐿  0.044578 0.0446  0.13004  0.13  0.099901  0.1   0.24987  0.25  

𝜆 𝐺   0.19515 0.1955   0.16997 0.17   0.28997 0.29   0.38983   0.39  

𝜋   0.86956 0.8674   0.74247  0.7423   0.42011 0.4199   0.23046 0.23021  

𝑧   0.17461  0.1775   0.42728 0.42757   0.72949 0.7298   0.91833  0.9185  

𝑅 ∗  1.1282  1.1303   1.4315 1.4316   2.2154 2.2166   4.0203   4.0229  

 

Table  5: Table of mean of the estimates from the two dimensional model and theoretical parameters in table 1.  
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  Proportion Infected. 

Par.  z=0.1775  z=0.42757  z=0.7298  z=0.9185  

𝜆 𝐿 0.0010624  0.0015197  0.0015715 0.0047053 

𝜆 𝐺  0.0030219  0.0016325  0.0023247  0.0036795 

𝜋   0.018571  0.006892  0.0045573 0.0036487 

𝑧  0.024377  0.0094885  0.0037947 0.0014917 

𝑅∗  0.019749  0.014713 0.017152 0.033281 

Table  6: Table of the standard deviation of the estimates from the two dimensional model with theoretical 

parameters in table 1  

 Proportion Infected.  

Parameter.  z=0.1775   z=0.42757  z=0.7298  z=0.9185  

𝜆 𝐿 0.0010621 0.0015196  0.0015738  0.0047048 

𝜆 𝐺  0.0030408 0.001632  0.0023238 0.0036814  

𝜋  0.018705  0.0068906  0.004558  0.0036554  

𝑧  0.024559   0.009487 0.0037996  0.0015001  

𝑅 ∗ 0.019861   0.014707  0.017183  0.033367 

Table  7: Table of the root mean square error of the estimates from the two dimensional model with theoretical 

parameters in table 1. The estimates are precise.  

9  Results and Discussion 

  In figure 1, we see positive and negative linear correlation between some of the parameter estimates 

for example increasing 𝜆𝐿 leads to decreasing 𝜆𝐺 . Generally, in most of the simulations few number of 

infections occurred, many suceptibles avoid global infection. Hence a global epidemic has not taken place. 

In table 2, we see small difference between the mean of the estimates of 𝜆𝐿 , 𝜆𝐺  and their theoretical 

values. While those of 𝜋, 𝑧 and 𝑅∗ are significantly different from their theoretical mean and possess large 

standard deviation, which are the standard error of the estimates. These later three parameter estimates are 

biased owing to the choice of 10 as the minimum epidemic size with the small population size in [1]. 

Most of the simulations yielded small number of infections, as many susceptibes avoided global 

infection. 

The estimates are less biased compared to those in table 2. This indicates that appropriate choice of the 

minimum epidemic size leads to the realization of a global infection in the households and hence the occurrence 

of a global epidemic in which there is enough information for the estimation of the parameters. 

Also large number of simulations yielded few number infected with only small number of simulations 

with large number infected as shown by the bimodal behavior of the histogram of the distribution of the number 

infected associated with simulations with small population size. 
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In figures 4 (a)-(d), the estimates are unbiased and scattered around their true parameter values. The 

unimodal pattern of the distribution of the number infected by the histogram is indicative of the occurrence of a 

global epidemics. 

In figures 5 (a)-(d), the estimates are precise and centered around the true parameter values. Also large 

number of susceptibles are infected. 

10  Conclusion 
  In summary with appropriate choice of the minimum epidemic size, large population size and 𝜆𝐺 ≠ 0, 

arbitrary choice of the local infection rate, 𝜆𝐿 , the histogram of the number infected exhibits unimodal behaviour 

indicative of global infection with high precision for the parameter estimates as expected. 

Thus, the two dimensional stochastic SIR household epidemic model fit reasonably well given these 

scenarios, in which adequate choice of the minimum epidemic size and large population size are assumed. 
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