再録 報文

Med Sci Sports Exerc. 2019;51(1):19-26.

ESR1 rs2234693 Polymorphism Is Associated with Muscle Injury and Muscle Stiffness.

Hiroshi Kumagai^{1,2}, Eri Miyamoto-Mikami^{1,3}, Kosuke Hirata³, Naoki Kikuchi⁴, Nobuhiro Kamiya⁵, Seigo Hoshikawa^{1,6}, Hirofumi Zempo⁷, Hisashi Naito¹, Naokazu Miyamoto³, and Noriyuki Fuku¹

¹Graduate School of Health and Sports Science, Juntendo University. ²Research Fellow of Japanese Society for the Promotion of Science. ³Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya. ⁴Department of Training Science, Nippon Sport Science University. ⁵Faculty of Budo and Sport Studies, Tenri University. ⁶Edogawa University. ⁷Faculty of Health and Nutrition, Tokyo Seiei College.

Abstract

Purpose: Muscle injury is the most common sports injury. Muscle stiffness, a risk factor for muscle injury, is lower in females than in males, implying that sex-related genetic polymorphisms influence muscle injury associated with muscle stiffness. The present study aimed to clarify the associations between two genetic polymorphisms (rs2234693 and rs9340799) in the estrogen receptor 1 gene (ESR1) and muscle injury or muscle stiffness.

Methods: In study 1, a questionnaire was used to assess the muscle injury history of 1311 Japanese top-level athletes. In study 2, stiffness of the hamstring muscles was assessed using ultrasound shear wave elastography in 261 physically active young adults. In both studies, rs2234693 C/T and rs9340799 G/A polymorphisms in the ESR1 were analyzed using the TaqMan SNP Genotyping Assay.

Results: In study 1, genotype frequencies for ESR1 rs2234693 C/T were significantly different between the injured and noninjured groups in a C-allele dominant (CC + CT vs TT odds ratio, 0.62; 95%confidence interval, 0.43–0.91) and additive (CC vs CT vs TT odds ratio, 0.70; 95% confidence interval, 0.53–0.91) model in all athletes. In study 2, hamstring muscle stiffness was lower in subjects with the CC + CT genotype than in thosewith the TT genotype; a significant linear trend (CC G CT G TT)was found (r = 0.135, P = 0.029). In contrast, no associations were observed between ESR1 rs9340799 G/A and muscle injury or stiffness.

Conclusions: Our results suggest that the ESR1 rs2234693 C allele, in contrast to the T allele, provides protection against muscle injury by lowering muscle stiffness.