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Educational institutions, at all levels, must justify their use of placement testing 

and confront questions of their impact on students’ educational outcomes to assure all 

stakeholders that students are being enrolled in courses appropriate with their ability in 

order to maximize their chances of success (Linn, 1994; Mattern & Packman, 2009; 

McFate & Olmsted III, 1999; Norman, Medhanie, Harwell, Anderson, & Post, 2011; 

Wiggins, 1989).  The aims of this research were to (1) provide evidence of Content 

Validity, (2) provide evidence of Construct Validity and Internal Consistency Reliability, 

(3) examine the item characteristics and potential bias of the items between males and 

females, and (4) provide evidence of Criterion-Related Validity by investigating the 

ability of the mathematics placement test scores to predict future performance in an initial 

mathematics course. 

Students’ admissions portfolios and scores from the mathematics placement test 

were used to examine the aims of this research.  Content Validity was evidenced through 

the use of a card-sorting task by internal and external subject matter experts.  Results 

from Multidimensional Scaling and Hierarchical Cluster Analysis revealed a congruence 

of approximately 63 percent between the two group configurations.  Next, an Exploratory 

Factor Analysis was used to investigate the underlying factor structure of the 



 

 

 

 

mathematics placement test.  Findings indicated a three factor structure of PreCalculus, 

Geometry, and Algebra 1, with moderate correlations between factors. 

Thirdly, an item analysis was conducted to explore the item parameters (i.e., item 

difficulty, and item discrimination) and to test for gender biases.  Results from the item 

analysis suggested that the Algebra 1 and Geometry items were generally easy for the 

population of interest, while the PreCalculus items presented more of a challenge.  

Furthermore, the mathematics placement test was optimized by removing eleven items 

from the Algebra 1 factor and two items from the PreCalculus factor.  All Internal 

Consistency Reliability estimates remained strong and ranged from .736 to .950. 

Finally, Hierarchical Multiple Linear Regressions were used to examine the 

relationship between students’ total and factor scores from the mathematics placement 

test with students’ performance in their first semester mathematics course.  Findings from 

the four Hierarchical Multiple Linear Regressions demonstrate that the total score 

students’ receive on the mathematics placement test predicts their achievement in their 

initial mathematics course, above and beyond the contributions of their demographic 

information and previous academic background.  More specifically, the Algebra 1 Factor 

Score from the mathematics placement test was the strongest predictor of student success 

among the lower level mathematics courses (i.e., Mathematical Investigations I or II).  

Similarly, both the Algebra 1 and PreCalculus Factor Scores from the mathematics 

placement test were significant predictors of students’ grades in their first upper level 

mathematics course (i.e., Mathematical Investigations III or IV), providing evidence of 

Predictive Validity. 



 

 

The current mathematics placement test and procedures appear appropriate for the 

population of interest given the empirical evidence demonstrated in this research study 

regarding the psychometric properties of the exam. The continued use of the revised 

mathematics placement test in the course placement decision-making process is 

advisable.
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CHAPTER I 

INTRODUCTION 

 In educational measurement, constructs such as achievement, interest, and 

performance are assigned numerical values, through the use of a wide variety of tests and 

assessments, to infer the abilities and proficiencies of students.  The purpose of 

achievement testing is to measure students’ actual knowledge or acquired skills in order 

to reliably distinguish between students who do and do not have some level of the 

construct of interest (Slavin, 2007).  As one of the primary measures used in educational 

research, there is an abundance of literature focused on achievement testing. 

Beginning at the post-secondary level, numerous articles have been published 

regarding the use of placement tests for incoming students.  Many of these articles 

mention the continuing decline of academic standards, specifically in the area of 

mathematics (e.g., Crist, Jacquart, & Shupe, 2002; Hoyt & Sorensen, 2001; Medhanie, 

Dupuis, LeBeau, Harwell, & Post, 2012; Ngo & Kwon, 2015; Parker, 2005; Schmitz & 

delMas, 1991).  Unsurprisingly, the lowered academic standards in math are said to be 

related to students’ scoring lower on mathematics placement tests.  Due to the lower test 

scores, more students are being assigned to take remedial coursework, which has sparked 

a conversation about whether or not students are less prepared for college-level work or if 

the placement tests used are appropriate for this type of decision (Morgan & Michaelides, 

2005). 

More specifically, nearly one-third of all students entering community colleges 

take at least one remedial or developmental course in mathematics (e.g., Bailey, 2009; 



 

2 

 

 

 

Hoyt & Sorensen, 2001; Kowski, 2013; Medhanie et al., 2012; Melguizo, Kosiewicz, 

Prather, & Bos, 2014; Scott-Clayton, 2012).  Not only do these remedial courses lower 

student motivation, but they also add time to student graduation.  Furthermore, the 

additional time students spend taking non-credit courses increases their overall cost to 

attend and lowers retention rates (Medhanie et al., 2012; Melguizo, Hagedorn, & Cypers, 

2008; Ngo & Kwon, 2015; Scott-Clayton, 2012).  Some community colleges have even 

been accused of placing students into these remedial, non-credit courses as a way to 

increase revenue (Armstrong, 2000).  As a result, post-secondary institutions are now 

being asked to provide evidence of the effectiveness of their placement procedures and 

measures to ensure that the negative consequences of misplacement are minimized 

(Armstrong, 2000; Morgan & Michaelides, 2005; Smith & Fey, 2000).  Accurately 

placing students is a necessary, but not sufficient, condition for a placement system as a 

whole to be effective (Sawyer, 1996). 

 A similar theme of remediation appears in the K-12 educational literature on 

achievement testing.  In response to the No Child Left Behind Act (NCLB), schools and 

districts are required to demonstrate a yearly increase in their students’ academic 

performance through the use of a standardized assessment.  Through this measure of 

accountability, it is expected that students from traditionally underrepresented 

populations (i.e., African American, Hispanic, special education, English language 

learners) would no longer be “academically forgotten” (U.S. Department of Education, 

Office of the Secretary, & Office of Public Affairs, 2004).  As anticipated, school and 

teacher resources have been directed towards the lower performing groups of individuals 
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in an effort to simultaneously close the achievement gap and demonstrate adequate yearly 

progress (Gallagher, 2004). 

 With teachers’ time and attention drawn away from the high-achieving students, 

the needs of these gifted children have become (somewhat) overlooked.  Subotnik, 

Olszewski-Kubilius, and Worrell (2011) stated that within the areas of research, program 

funding, policy, and K-12 teacher training, little to no attention is given to the classroom 

environments and/or needs of high-achieving students.  However, the assumption that 

these academically talented children will thrive on their own is a myth (DeLacy, 2004; 

Marshall, McGee, McLaren, & Veal, 2011; Mendoza, 2006; Subotnik et al., 2011).  

Analysts argue that the more recent approach “STEM for all” (i.e., providing all students 

with as much high quality STEM education as possible) is not working and suggest that a 

framework called “All STEM for some” be implemented (Atkinson, 2012; Gonzalez & 

Kuenzi, 2012).  In this framework, students who are most interested in STEM and have 

the potential to do well in STEM are confronted with intensive learning experiences 

encompassing a challenging curriculum and appropriate assessments (National Academy 

of Sciences, National Academy of Engineering, & Institute of Medicine, 2007; National 

Commission on Excellence in Education, 1983).  Thus, if excellence, as well as equity, 

are genuine goals of the American educational system, then there is a dire need for an 

advanced, differentiated curriculum for gifted and talented students (Gallagher, 2004). 

 Over the past forty years, specialized Science, Technology, Engineering, and 

Mathematics (STEM) schools, projects, and programs have been established for gifted 

children.  Within these programs, gifted students are exposed to a challenging college 
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preparatory curriculum with the expectation of majoring in a STEM field.  It has been 

said that the residential schools provide liberating environments where the students can 

learn at a pace suited for their talents while being surrounded by like-minded, intellectual 

peers (Jones, 2009).  However, public state-supported residential schools and other 

STEM programs do not come at a small price.  Thus it is expected, as with any new 

program, that stakeholders (i.e., state legislators and the public) would seek data-driven 

evidence to establish the positive effects of these schools and programs on students’ 

future educational outcomes (Atkinson & Mayo, 2010; Pfeiffer, Overstreet, & Park, 

2010).  More recently, research has identified a shortage of valid and reliable instruments 

to measure the impact and outcomes of these specialized STEM schools and programs 

(Katzenmeyer & Lawrenz, 2006; Scott, 2012).  Some factors contributing to the shortage 

of reliable indicators are the assessment literacy of the educators within these programs, a 

lack of formal training in assessment and measurement techniques, and a need to 

establish partnerships between measurement professionals and K-12 educational 

institutions. 

Assessment literacy can be defined as the ability to design, select, interpret, and 

use assessment results appropriately for future educational decisions (Quilter & Gallini, 

2000).  Prior research has indicated that classroom teachers spend up to fifty percent of 

their instructional time in assessment-related activities such as grading, oral questioning, 

or administering and interpreting tests (Plake & Impara, 1997; Quilter & Gallini, 2000; 

Schafer, 1993; Stiggins, 1991).  While teachers are largely exposed to assessment 

practices, few in-service and pre-service teachers have received formal assessment 
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training (Impara, Plake, & Fager, 1993; Schafer, 1993; Sondergeld, 2014; Stiggins & 

Bridgeford, 1985).  Not only does this gap in training affect teachers’ attitudes towards 

assessment, but it can also affect the students’ educational outcomes. 

For example, many institutions, like the high school in this study, have favored 

the development of their own placement tests over the use of commercialized exams such 

as Compass, Accuplacer, or ALEKS.  One of the reasons for choosing to use an in-house 

exam over other tests is that department-made exams allow faculty to customize the 

topics and content areas that they judge to be most relevant to making their placement 

decisions (Bressoud, Mesa, & Rasmussen, 2015; Flores, 2007).  However, when asked to 

validate the scores on their placement measures, many faculty reported feeling 

unsupported and noted that the policies currently in use were the result of continued 

experimentation (Ngo & Melguizo, 2016).  Due to the time and cost associated with 

professional development, it is unrealistic to expect all teachers to have extensive training 

in evaluation and measurement techniques.  However, educational assessments, if 

designed and used properly, can become instruction-enhancing tools.  As a result, 

stakeholders and other critics are seeking data-driven research to evidence the 

psychometric properties of these placement tests and the effectiveness of their placement 

policies. 

As evident in the literature, a majority of institutions have focused on the latter of 

these two concerns by examining the predictive validity of their assessments (e.g., 

Belfield & Crosta, 2012; Denny, Nelson, & Zhao, 2012; Pike & Saupe, 2002; Roth, 

Crans, Carter, Ariet, & Resnick, 2000; Rueda & Sokolowski, 2004; Schumacher & 
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Smith, 2008; Siegler et al., 2012).  Findings from the research are generally positive and 

support the use of multiple measures in the placement process, but have neglected to 

address concerns of item quality, validity, and reliability.  For this reason, teacher 

organizations and researchers can benefit from establishing more partnerships between 

content experts and assessment professionals.  These partnerships can provide 

opportunities to address issues throughout the test development process and validate the 

scores on the measure while simultaneously highlighting the importance of measurement 

and evaluation.  In the current study, a comprehensive examination of a mathematics 

placement test used at a gifted STEM residential high school was conducted.  The 

measurement process and psychometric evidence provided in this study can help this high 

school and similar institutions be confident in making high-stakes decisions such as 

course placement. 

Rationale 

 In the era of accountability, placement practices and methods that are rigorous 

and defensible are critical for educational institutions at varying levels to justify their use 

and to confront questions of their impact on students’ educational outcomes.  Frisbie 

(1988) stated that when the reliability of scores as accurate measures of student 

achievement are in question, these scores cannot be used to make future educational 

decisions.  Furthermore, one validation study is not sufficient to guarantee the 

psychometric properties of an assessment throughout its lifetime.  Instead, the 

assessment(s) and policies used, in contexts such as placement testing, need to be 

continuously reviewed and evaluated to assure that students are being placed into courses 
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commensurate with their ability in order to maximize the chances of success (Linn, 1994; 

Mattern & Packman, 2009; McFate & Olmsted III, 1999; Norman et al., 2011; Wiggins, 

1989).  Overall, when properly constructed and evaluated, assessments can enhance later 

performance and provide feedback on what has and has not been learned to both the 

student and other interested stakeholders. 

 Secondly, the high school in the current study recognized a need to more formally 

evaluate their mathematics placement exam in an effort to defend the placement policies 

used and to provide evidence that the decisions from the mathematics placement exam 

are enhancing later performance.  Moreover, when there is more variability in student 

scores compared to historically consistent data, then a more thorough investigation is 

warranted.  In other words, if the test scores evidence lower reliability, there is an 

increased likelihood of misrepresenting students’ true level of knowledge leading to a 

decision, which could temporarily or permanently negatively impact, students’ 

educational outcomes (Adedoyin & Mokobi, 2013; Frisbie, 1988; Latterell & Regal, 

2003; Linn, 1994; Norman et al., 2011).  Finally, previous research regarding placement 

exams and their psychometric properties have been conducted at the post-secondary 

level.  This study is unique in extending the research to younger grade levels serving a 

specialized (i.e., gifted) population. 

Research Aims 

 There are four overarching aims of this study: (1) To provide evidence of Content 

Validity, (2) To provide evidence of Construct Validity and Internal Consistency 

Reliability, (3) To examine the item characteristics and potential bias of the items 
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between males and females, and (4) To provide evidence of Criterion-Related Validity by 

investigating the ability of the mathematics placement test scores to predict future 

performance in an initial mathematics course.  Specifically, this study is comprised of 

four manuscripts, each addressing one of the following research questions: 

Research Question 1 (RQ1): What is the Content Validity of the items on a 

mathematics placement test for gifted, residential high school students interested 

in STEM? 

Research Question 2 (RQ2): What are the psychometric properties of the scores 

on a mathematics placement test for gifted, residential high school students 

interested in STEM? 

RQ 2A: What is the Construct Validity of the scores on a mathematics 

placement test for gifted, residential high school students interested in 

STEM? 

RQ 2B: What is the Internal Consistency Reliability of the item scores on 

a mathematics placement test for gifted, residential high school students 

interested in STEM? 

Research Question 3 (RQ3): What are the item characteristics (i.e., item 

parameters and Differential Item Functioning [DIF]) of the mathematics 

placement test for gifted, residential high school students interested in STEM? 

RQ 3A: What are the item parameters (i.e., item difficulty, and item 

discrimination) of the mathematics placement test for gifted, residential 

high school students interested in STEM? 
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RQ 3B: How do the items on a mathematics placement test for gifted, 

residential high school students interested in STEM differ by sex? 

Research Question 4 (RQ4): What is the Criterion-Related Validity of the item 

scores on a mathematics placement test for gifted, residential high school students 

interested in STEM? 

Significance 

 The current investigation’s findings are anticipated to extend beyond the single 

setting used in this study and to be applied to a variety of other educational settings.  As 

mentioned previously, the general scope of this study is to examine the psychometric 

properties of a mathematics placement test used at a gifted, residential high school 

focused on STEM.  The unique contribution is intended to act as a reference for other 

schools with a STEM and/or gifted education focus so that they may begin the validation 

process to further extend and improve upon the educational testing practices at other 

levels of schooling.  Moreover, the same validation process could be adapted to examine 

the identification practices for gifted students across the nation and at varying grade 

levels. 

 Finally, this research seeks to draw attention to the nature and quality of teacher-

developed assessments within the measurement community so that additional support 

and/or training can be provided to both pre-service and in-service teachers who wish to 

improve their classroom assessments.  Both those in teacher education and the 

measurement community agree that assessment of student performance is an important 

skill for teachers to possess, but little is being done to close the gap.  Thus, this research 
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may serve as a blueprint for teachers, administrators, and/or schools to feel empowered to 

begin the process of examining their own assessments and practices. 

 The next section of this document (i.e., Chapter II: Literature Review) provides a 

review of the literature pertinent to this study including topics such as STEM education, 

gifted education, and placement testing.  Chapter Three (i.e., Methodology) provides an 

in-depth description of the methods used to address the research questions of this study 

such as detailed explanations of the measure, variables, and analyses.  The next four 

chapters (i.e., Chapters Four, Five, Six, and Seven) contain manuscripts associated with 

each overarching research question of this study, as mentioned above.  Finally, Chapter 

Eight (i.e., Conclusion) summarizes the four aims of this research study and provides 

some final remarks. 
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CHAPTER II 

LITERATURE REVIEW 

Strengthening education in the disciplines of science and mathematics has been 

emphasized in the United States (U.S.) since the early 1980s.  The historic piece A Nation 

at Risk (National Commission on Excellence in Education, 1983) highlighted that schools 

often times focus too much on the foundational skills of reading and computation at the 

expense of other essential skills such as comprehension, analysis, problem solving, and 

the ability to draw conclusions.  These other essential skills have been deemed critical for 

technology and science fields and are integral to incorporate in STEM education.  Despite 

the criticisms of the report (Stedman, 1994), STEM education addresses these critical 

technology and science field skills has the potential to produce students and eventual 

members of the workforce who are able to solve global challenges such as clean and 

affordable energy, hunger, health, and national security (President's Council of Advisors 

on Science and Technology, 2010). 

Previous research has argued that, specifically in mathematics, U.S. students are 

falling behind those in other nations.  In 2000, high school students completed the 

Programme for International Student Assessment (PISA), which measures students’ 

knowledge and skills in areas such as science, mathematics, and reading (Organisation 

for Economic Co-operation and Development, 2018).  Moreover, the international boards 

of experts that design the assessment framework do so independently to the school 

curricula of the participating countries to emphasize an adolescent’s ability to apply what 
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they have learned in school to real life situations (Hopfenbeck et al., 2018; Sälzer & 

Roczen, 2018). 

Among the nations participating that year (i.e., 2000), Hong Kong-China, Japan, 

and Korea had the highest mean scores in mathematical literacy (Organisation for 

Economic Co-operation and Development, 2018).  Twelve years later, the U.S. 

performed below average on the mathematics portion of the PISA, and was ranked 27th 

out of the 34 participating countries.  However, the PISA assessment is not without 

critique.  Previous research has commented on the PISA’s exclusion of students with 

disabilities from participating in international tests, biasing the sample and impacting 

future educational policies related to educational equity (Hopfenbeck et al., 2018; 

Schuelka, 2013).  While research has warned policy-makers and researchers to be 

cautious about using PISA data as a means for valid comparisons, the PISA can provide 

some descriptive information at the national and international levels (Hopfenbeck et al., 

2018). 

Similarly, students from around the world participate annually in the International 

Mathematical Olympiad (IMO).  Established in 1959, the IMO is considered the “World 

Championship Mathematics Competition” for high school students (International 

Mathematical Olympiad Foundation, 2018).  The U.S. has placed first in this competition 

seven times since their initial participation in 1974, and have accumulated 124 individual 

gold medals (International Mathematical Olympiad Foundation, 2018).  Comparatively, 

China leads the nations with 19 first place winnings (since 1985), and currently holds 151 

individual gold medals.  The difference between the U.S.’s seven first place wins and 
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China’s 19 (and the 124 to 151 individual gold medals, respectively) is not alarming at 

face value.  However, as the U.S. has nearly ten years more of IMO participation 

compared to China, this perspective elucidates that students in the U.S. are falling behind 

other competitive nations, especially within the field of mathematics. 

In an executive report by the President's Council of Advisors on Science and 

Technology (2010), a statement was made arguing that the U.S. now lags behind other 

nations in STEM education at both the elementary and secondary levels.  However, the 

report also mentioned that the gap in STEM education is not only a concern of students’ 

proficiency in STEM, but also the lack of interest in STEM among many Americans.  For 

example, a 2007 report found that the U.S. ranked 29th out of a 109 countries in the 

percentage of 24 year olds with either a mathematics or science degree (Atkinson, Hugo, 

Lundgren, Shapiro, & Thomas, 2007; Pfeiffer et al., 2010).  That same report indicated 

that between 1985 and 2002, the number of U.S. citizens obtaining STEM graduate 

degree increased by a mere 14 percent, while the number of graduate STEM degrees 

awarded to students born outside of the U.S. more than doubled (Atkinson et al., 2007; 

Atkinson & Mayo, 2010).  Previous research has noted, however, that when adolescents 

with interests an talents in mathematics and science are provided an environment with a 

challenging curricula, expert instruction, and peer stimulation, they are more likely to 

pursue STEM at post-secondary institutions (Bloom & Sosniak, 1985; Pyryt, 2000; 

Subotnik, Duschl, & Selmon, 1993; Tai, Liu, Maltese, & Fan, 2006).  Therefore, within 

the U.S. specifically, political and educational leaders have continued to highlight a dire 

need to increase support given to the teaching of science and mathematics. 
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Science, Technology, Engineering, and Mathematics (STEM) Education 

From the critical needs outlined in A Nation at Risk, the National Science 

Foundation (NSF) began a movement focusing on Science, Technology, Engineering, 

and Mathematics (STEM) in order to cultivate a globally-recognized workforce that is 

diverse, creative, and innovative.  Both policymakers and stakeholders agree that 

widespread literacy in STEM, in addition to specific STEM expertise, is a key component 

to developing human capital to compete internationally in the 21st century (Breiner, 

Harkness, Johnson, & Koehler, 2012; Gonzalez & Kuenzi, 2012).  Broadly stated, STEM 

literacy includes both procedural and conceptual skills, abilities, and understandings to 

equip individuals to encounter and address STEM-related personal, social, and global 

problems (Bybee, 2010).  To solve such large issues, researchers have suggested that 

literacy in STEM should be integrative across the four complementary components rather 

than quarantined into individual STEM disciplines (Breiner et al., 2012; Bybee, 2010). 

 While integrating the four STEM components may be easy to conceptualize, 

implementing it is not as straightforward.  As a result, many schools have launched what 

is known as the “STEM for All” approach.  The intent of “STEM for All” is to provide 

high-quality STEM education to all K-12 students throughout their schooling (Atkinson, 

2012; Basham, Israel, & Maynard, 2010).  Applying the “STEM for All” approach 

requires an increase in K-12 STEM teacher quality, the development and application of 

consistent and rigorous STEM standards, and a change to existing STEM curricula to 

better enhance students’ awareness of STEM careers, all of which demand a significant 
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amount of time and money to accomplish (Atkinson, 2012; President's Council of 

Advisors on Science and Technology, 2010). 

Some researchers support a more targeted approach in which STEM teaching and 

learning is dedicated to students who have an interest in STEM (Atkinson, 2012; 

Gonzalez & Kuenzi, 2012; National Academy of Sciences et al., 2007; Olszewski-

Kubilius, 2009).  Within this framework, resources are directed towards specialized 

STEM schools, such as the 86 member institutions of the National Consortium of 

Secondary STEM Schools (National Consortium of Secondary STEM Schools, 2018).  

These types of schools recruit students who are interested in STEM and have 

demonstrated potential to succeed in the field. 

In these specialized STEM schools, students are motivated to “survive” the STEM 

education pipeline, with a challenging curriculum, expert instruction, and stimulation 

from their peers (Bloom & Sosniak, 1985; Pyryt, 2000; Subotnik et al., 1993; Tai et al., 

2006).  Afterwards, students are prepared to contribute to the expanding U.S. economy 

upon entering the workforce (Atkinson, 2012; Gonzalez & Kuenzi, 2012).  However, the 

overall effectiveness and impact of these institutions on various academic outcomes 

remains largely unknown.  As these public, state-supported, residential academies are 

expensive, state legislators and the public demand evidence of their impact prior to 

allocating funds and/or other support (Pfeiffer et al., 2010). 

 Implemented in 2001, the focus of the No Child Left Behind (NCLB) act was to 

provide all children with a quality education and the opportunity to reach their academic 

potential (U.S. Department of Education et al., 2004).  Whether or not this legislation has 
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improved or hindered students’ educational outcomes remains controversial, as NCLB 

has concentrated on those students disadvantaged and at risk for academic problems or 

failures (Gallagher, 2004; U.S. Department of Education et al., 2004).  In response to this 

act and its accountability requirements, teachers began using class time to better prepare 

students to take state-level “high-stakes” assessments (Gallagher, 2004).  However, 

formal assessments such as these tend to be written at a grade-appropriate level, so that 

the reading level and complexity of the test is targeted to the population of interest (Clark 

& Watson, 1995; Gallagher, 2004; Mendoza, 2006; Nitko & Brookhart, 2011).  As a 

result, researchers argue that the needs of gifted students are being overlooked, leaving 

them to work independently and learn on their own (DeLacy, 2004; Gallagher, 2004; 

Mendoza, 2006).  If excellence and equity are goals in the U.S. education system, and 

these gifted students are considered the Nation’s future thinkers, innovators, and leaders, 

an advanced, differentiated curriculum for gifted children is necessary (Gallagher, 2004; 

Grey, 2004; Mendoza, 2006; National Commission on Excellence in Education, 1983). 

Gifted Education 

 Definitions and identification policies and procedures can substantially influence 

which individuals actually receive gifted services; however, no general consensus exists 

in describing and classifying these individuals.  Prior research has defined giftedness as a 

“developmental process that is domain specific and malleable” (Subotnik et al., 2011, p. 

6).  Others emphasize that giftedness is the manifestation of your potential talent through 

outstanding performance, innovation, and accomplishments in the real world (Erwin & 

Worrell, 2012; Subotnik et al., 2011). 
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 Similar to these broad definitions, the National Association for Gifted Children 

states that children are considered gifted when their ability is significantly above the 

norm for their age (National Association for Gifted Children, 2018).  Furthermore, 

McClain and Pfeiffer (2012) remarked that there can be substantial differences in the 

definition and identification of giftedness by individual states.  Since the high school in 

the current study is located in the state of Illinois, the following definition of giftedness is 

applicable: 

“…children and youth with outstanding talent who perform or show the potential 

for performing at remarkably high levels of accomplishment when compared with 

other children and youth of their age, experience, and environment.  A child shall 

be considered gifted and talented in any area of aptitude, and, specifically, in 

language arts and mathematics, by scoring in the top 5% locally in that area of 

aptitude” (General Assemby of the State of Illinois, 2005). 

 As evidenced by the definitions above, the concept of giftedness has always 

included high intelligence and/or exceptional performance.  As a result, the identification 

of gifted students continues to be dominated by the use of achievement and/or IQ test 

scores (Brown et al., 2005; Ford, 1998; Ford & Grantham, 2003).  In fact, 45 of the 50 

U.S. states use an achievement or IQ test score such as the SAT or the Stanford-Binet or 

Wechsler Intelligence scales to screen and identify gifted students (Erwin & Worrell, 

2012; Ford, 1998; McClain & Pfeiffer, 2012).  More specifically, 33 of these states 

mandate the use of intelligence or achievement tests to identify gifted students (McClain 

& Pfeiffer, 2012).  While a majority of states use measures of exceptional performance to 
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identify gifted students, it is unclear whether or not the scores from these assessments are 

the only piece of information used in the identification process. 

The overarching purpose in identifying gifted and talented individuals is to select 

those students who are excelling academically in addition to those students who have the 

potential to do well.  Therefore, researchers have continued to advocate for the use of 

multiple measures so that certain populations do not become over- or under-represented 

in these specialized programs (Brown et al., 2005; Erwin & Worrell, 2012; Ford, 1998; 

Renzulli & Smith, 1977; Schmeiser, 1995; Subotnik et al., 2011).  Furthermore, 

organizations that publish and develop standardized tests recognize the value of 

educational assessments, but still convey the importance of using multiple measures to 

provide complementary or confirmatory information during the decision-making process 

(Harris, 2003; McClain & Pfeiffer, 2012; Wattenbarger & McLeod, 1989). 

Identification processes that use several types and sources of information (i.e., 

quantitative and qualitative) have the potential to be more rigorous in assessing the 

observed and expected abilities of individuals from all backgrounds (Erwin & Worrell, 

2012; Ford, 1998; Renzulli & Smith, 1977).  According to the state of Illinois, schools 

that plan to serve gifted students through specialized programs must demonstrate the use 

of at least three assessment measures, including instruments specifically designed to 

identify gifted students from underrepresented populations (Illinois State Board of 

Education, 2014).  The high school in the current study uses four assessment measures in 

its application process: (1) Student essays describing their interests in STEM, (2) Two 

letters of recommendation, (3) Middle school and/or high school transcripts, and (4) 
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Current SAT (i.e., formerly known as the Scholastic Aptitude Test or the Scholastic 

Assessment Test) scores (College Board, 2018b).  These measures provide those who 

review the applications with multiple sources of information in order to recommend a 

student for acceptance into the high school’s gifted residential program focused on 

STEM. 

Placement Testing 

 Although research has not extensively examined placement testing from middle 

school to high school, a large literature base exists using college and university student 

populations.  In fact, approximately 90% of post-secondary institutions use placement 

tests (Latterell & Regal, 2003).  The near-universal practice of administering placement 

tests emerged due to the incomparability of unknown factors such as the content and rigor 

of courses and the grading scales used at different schools (Kossack, 1942; Linn, 1994; 

Ngo & Kwon, 2015; Noble, Schiel, & Sawyer, 2003).  Within the setting of a post-

secondary institution, students complete placement tests to determine the appropriate 

level of beginning coursework.  In the same way, once students are accepted into the high 

school of the current study, they too must complete a series of placement tests to guide 

their initial course enrollment decisions. 

 The overarching purpose of placement tests is to match students with a level of 

instruction that is appropriate given their previous academic preparations (e.g., Akst & 

Hirsch, 1991; Frisbie, 1982; Marshall & Allen, 2000; Mattern & Packman, 2009; McFate 

& Olmsted III, 1999; Noble et al., 2003; Sawyer, 1996).  Prior research has shown that 

course placement decisions can have a significant impact on a student’s future academic 
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preparation (McDaniel, Roediger, & McDermott, 2007; Morgan & Michaelides, 2005).  

For example, students who begin post-secondary mathematics in a course that is 

appropriate given their background have an increased chance of succeeding in their first 

course in addition to subsequent mathematics courses (Mattern & Packman, 2009; 

Norman et al., 2011; Shaw, 1997).  For this reason, more research is needed to 

thoroughly examine placement tests and procedures to ensure that student success is 

maximized while the consequences of misplacement are minimized.  Although these 

placement tests are typically considered “high-stakes,” the psychometric properties of 

such tests have received relatively little attention (Callahan, 2005; Grubb & Worthen, 

1999; Scott-Clayton, 2012).  As a result, more research is needed to investigate and 

evidence the psychometric properties of placement tests. 

According to the Code of Fair Testing Practices in Education (Joint Committee 

on Testing Practices, 2005), test developers are charged with the responsibility to: (1) 

Provide evidence of what the test measures, its recommended uses, and its strengths and 

limitations, and (2) Provide evidence that the technical quality (i.e., reliability and 

validity) of the test meets its intended uses.  Additional research has recommended that 

colleges and universities consider the rigor and defensibility of the policies and methods 

used to inform placement decisions due to their “high-stakes” classification (Clark & 

Watson, 1995; Morgan & Michaelides, 2005).  Armstrong (1995) stated that both Title V 

and Federal Civil Rights legislation requires institutions to validate the use of assessment 

tests in the placement and referral of students.  Therefore, regardless of educational level, 
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future research should continue to identify the psychometric properties of placement tests 

in order to address questions about the impact of these tests on students and learning. 

Within the context of educational measurement and placement decisions, point-to-

point theory suggests that the best indicator of future behavior/performance is an 

individual’s past behavior/performance (Belfield & Crosta, 2012; Davis & Shih, 2007; 

Erwin & Worrell, 2012; Feldhusen & Jarwan, 1995).  However, one of the major 

concerns in previous literature has been the discrepancy between the cognitive behaviors 

and performances elicited on the placement tests and the cognitive behaviors and 

performances evaluated in the classroom (Armstrong, 2000; Brown & Niemi, 2007; 

Madison et al., 2015; Marsh, Roediger, Bjork, & Bjork, 2007; Schmitz & delMas, 1991).  

For example, if a test forbids the use of a calculator, the score obtained from that test may 

not accurately predict a student’s ability to succeed in a mathematics course that 

encourages the use of calculators (Akst & Hirsch, 1991).  Moreover, point-to-point 

theory postulates that Predictive (i.e., Criterion-Related) Validity is enhanced when the 

correspondence between what is measured on a test is congruent with what is needed to 

succeed in a course (Armstrong, 2000). 

Prior research has attempted to examine this relationship by investigating the 

Predictive Validity of post-secondary placement exams in relation to the course grade 

received.  As previously mentioned, the use of multiple measures is encouraged and 

provides more accurate course placement decisions compared to test scores alone (e.g., 

Armstrong, 1995; Erwin & Worrell, 2012; Marwick, 2004; Ngo & Kwon, 2015; Noble et 

al., 2003).  For example, one study showed that combining the Mathematics SAT exam 
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with either high school GPA (i.e., grade point average) and/or class rank was a better 

predictor of college achievement over test scores alone (Schumacher & Smith, 2008).  

However, other studies have cautioned that the usefulness of the Mathematics SAT exam 

is limited due to the average difference in scores between males and females (Bridgeman 

& Wendler, 1989, 1991; Davis & Shih, 2007; Gallagher & De Lisi, 1994).  More recent 

research has concluded that the accuracy of placement decisions greatly increases when 

placement test scores are combined with measures of high school achievement (i.e., high 

school GPA, high school grades, courses taken; Marwick, 2002; Melguizo et al., 2014; 

Ngo & Kwon, 2015; Pike, 1991; Scott-Clayton, 2012; Wattenbarger & McLeod, 1989).  

Although the use of multiple measures have been demonstrated to enhance placement 

policies and decisions at the post-secondary level, additional research is sought after at 

the high school level. 

Item Bias 

Among other types of analyses, Differential Item Functioning (DIF) can be used 

to detect item bias.  DIF occurs when respondents from two groups (i.e., reference and 

focal group), who are said to be equal on the latent trait, have different probabilities of 

endorsing an item (Crocker & Algina, 2008; De Ayala, 2009; Hays, Morales, & Reise, 

2000).  After matching the two groups on their proficiency of the latent trait, the item 

response function (i.e., item characteristic curve) for each subgroup can be graphed 

simultaneously to determine if an item is biased.  If an item presents with DIF, then there 

will be a separation between the two curves, as shown in Figure 1 below. 
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Figure 1. Differential Item Functioning.  The above figure is an example of an item 

exhibiting bias between the reference and focal groups, favoring the reference group 

(Martinkova, 2016). 

 

In general, instruments such as placement tests should be free from bias due to 

characteristics irrelevant to the construct of interest (i.e., sex, race, ethnicity, socio-

economic status, age) in addition to producing reliable and valid scores (Schmeiser, 

1995).  Mattern and Packman (2009) reaffirmed the importance of examining whether 

placement decisions based on test scores are equally valid for males and females.  

Historically, the field of mathematics has been dominated by men and since the early 

1980s, males have continued to take more advanced mathematics courses in high school 

compared to females (Catsambis, 1994; Pedro, Wolleat, Fennema, & Becker, 1981).  

Additionally, research has found that males outperform females on standardized 
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assessments such as the mathematics subtests of both the SAT and ACT (Bridgeman & 

Wendler, 1989, 1991; Davis & Shih, 2007; Educational Testing Service, 1989; Gallagher 

& De Lisi, 1994).  However, another study concluded that gender differences in middle 

school mathematics coursework and performance on exams was minimal (Gallagher & 

De Lisi, 1994). 

Similar to the placement testing literature, a majority of the research regarding 

item bias has been conducted at institutions of higher education.  Further research is 

needed to examine whether or not there are significant differences in coursework and 

performance on standardized assessments throughout adolescence for characteristics such 

as sex, race, ethnicity, and/or socioeconomic status.  More specifically, at a gifted 

residential STEM high school with a strong commitment to gender equity, additional 

research is needed to examine the presence of item bias on a mathematics placement 

exam. 

Numerous psychometric studies have been conducted to examine individual 

mathematics placement tests for items exhibiting DIF.  If an item presents evidence of 

DIF, further investigation is needed to warrant discarding the item.  On the other hand, if 

item bias is not evidenced throughout the placement test, the exam and the placement 

decisions from the scores are equivalent for both subgroups of the population (i.e., males 

and females).  Although previous literature can provide insight, issues related to item bias 

are specific to the instrument used and the conditions under which it is administered (i.e., 

participants, location, culture, etc.).  For this reason, additional examination of the 
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mathematics placement test used in the current study is critical to determining whether or 

not the items on this particular instrument exhibits DIF. 

Summary 

 This study aims to identify the psychometric properties of a mathematics 

placement test at a residential high school focused on STEM for gifted students.  More 

specifically, this study seeks to provide evidence of reliability and validity, in addition to 

examining the characteristics of the item parameters (i.e., item difficulty, and item 

discrimination) and item bias with regards to sex.  In light of these objectives, this 

chapter reviewed the existing literature related to STEM education, gifted education, and 

placement testing policies and practices, including item bias. 

 A brief history of STEM education was presented and summarized to illustrate the 

origins and more recent movements of the field, which included the development of 

specialized STEM high schools.  In addition, a description of the past and present 

mathematical achievements of the U.S. were discussed to draw attention to the gap in 

STEM education and students’ interest in STEM.  However, by creating enriching 

environments for students interested and talented in science and mathematics, the leak in 

the STEM education pipeline can be minimized. 

Next, the concept of giftedness and gifted education were introduced to 

demonstrate the varied definitions and identification processes that are currently used.  

While previous identification policies were centered about the use of achievement and/or 

IQ test scores, current practices for identifying gifted students have expanded to 
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incorporate the use of multiple measures, similar to the admission and placement 

practices of the high school under study. 

 Lastly, this Literature Review summarized the purposes for and widespread use of 

placement testing.  Several studies indicated the impact of course placement decisions on 

the future academic potential of students and the importance of evaluating the 

psychometric properties of such exams used in the decision-making process.  Finally, 

studies were cited that focus on placement exams at the post-secondary level and 

established the foundation needed to investigate a mathematics placement test used at the 

high-school level.  The following chapter (i.e., Chapter Three) delineates the 

methodology in this study. 

  



27 

 

CHAPTER III 

METHODOLOGY 

The overarching purpose of this study is to investigate the psychometric 

properties of a mathematics placement test at a residential high school focused on 

Science, Technology, Engineering, and Mathematics (STEM) for gifted students.  More 

specifically, the four aims of this study are: (1) To provide evidence of Content Validity, 

(2) To provide evidence of Construct Validity and Internal Consistency Reliability, (3) 

To examine the item characteristics and potential bias of the items between males and 

females and (4) To provide evidence of Criterion-Related Validity by investigating the 

ability of the mathematics placement test scores to predict future performance in an initial 

mathematics course.  Existing data was used to address the following research questions: 

Research Question 1 (RQ1): What is the Content Validity of the items on a 

mathematics placement test for gifted, residential high school students interested 

in STEM? 

Research Question 2 (RQ2): What are the psychometric properties of the scores 

on a mathematics placement test for gifted, residential high school students 

interested in STEM? 

RQ 2A: What is the Construct Validity of the scores on a mathematics 

placement test for gifted, residential high school students interested in 

STEM? 
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RQ 2B: What is the Internal Consistency Reliability of the item scores on 

a mathematics placement test for gifted, residential high school students 

interested in STEM? 

Research Question 3 (RQ3): What are the item characteristics (i.e., item 

parameters and Differential Item Functioning [DIF]) of the mathematics 

placement test for gifted, residential high school students interested in STEM? 

RQ 3A: What are the item parameters (i.e., item difficulty, and item 

discrimination) of the mathematics placement test for gifted, residential 

high school students interested in STEM? 

RQ 3B: How do the items on a mathematics placement test for gifted, 

residential high school students interested in STEM differ by sex? 

Research Question 4 (RQ4): What is the Criterion-Related Validity of the item 

scores on a mathematics placement test for gifted, residential high school students 

interested in STEM? 

The subsequent sections provide background information regarding the context and 

instrument that were used throughout this study.  Following this general information is a 

detailed discussion regarding the participants, procedures, data, and data analyses, if 

applicable, that were used to address each specific research aim listed above. 

Context 

 The current study’s existing data are from one high school campus for 

academically gifted students in the state of Illinois.  Per the mission statement of this 

institution, it strives to be a teaching and learning laboratory that enrolls academically 
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talented Illinois students (i.e., Grades 10 through 12) in its advanced, residential college 

preparatory program with an emphasis in the fields of science and mathematics.  In order 

to attend, students are required to submit an admissions application which includes an 

essay describing the student’s interest in STEM, two letters of recommendation, middle 

school and/or high school transcripts, and current SAT (i.e., formerly known as the 

Scholastic Aptitude Test or the Scholastic Assessment Test) scores.  As such, the 

admissions process is highly competitive as students from around the state of Illinois vie 

for approximately 250 positions each year. 

 For those students who are invited to attend, the high school provides a diverse 

and challenging curriculum designed to prepare students for college.  Not only does the 

curriculum include the core subjects of English, history, social sciences, science, and 

mathematics, but students can also choose to take a course in the fine arts, wellness, or 

one of the six world languages offered.  Additionally, students are provided the 

opportunity to conduct original and compelling research with expert scholars and 

scientists at more than 100 institutions.  As a result, students graduating are well-rounded 

individuals equipped with the personal, social, and academic skills needed to succeed in 

college and beyond. 

Measure 

After the admissions review process, students are mailed either an acceptance, 

waitlist, deferral, or non-acceptance letter.  For those students that are accepted or 

waitlisted, an informational flier is included with their admissions letter detailing when 

and where the mathematics placement test will be administered.  This examination is 
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typically administered around mid-May with two location options.  Students can either 

register to take the placement test on the high school campus or at a location further south 

in the state to reduce travel costs for students living further away.  In either case, the 

mathematics placement test is proctored by either a mathematics faculty member or an 

admissions staff member.  Both exam proctors are given a script to read verbatim to 

students prior to taking the test (see Appendices A and B). 

The mathematics placement test was developed by mathematics faculty members 

of this institution in 1985.  The original and continuing purpose of the mathematics 

placement test is to determine a student’s incoming mathematical knowledge for 

appropriate initial course placement commensurate with ability level.  Thus, generally 

speaking, the placement test assesses mathematical knowledge needed prior to entering 

into a Calculus sequence.  More specifically, the developers of the exam created a two-

part test measuring various content areas of mathematics, such as Algebra, PreCalculus, 

Trigonometry, and Geometry.  However, neither these sections nor the test as a whole 

have been subjected to psychometric evaluation, specifically using more advanced 

quantitative techniques such as Exploratory Factor Analysis (EFA) or Item Response 

Theory (IRT). 

 Part I of the assessment largely measures student’s knowledge of Algebra 1 

content such as simplifying expressions, functions, and exponents.  Students are given 45 

minutes to complete 50 short-answer items, without a calculator.  Assessing higher-level 

abilities such as the ability to solve numerical problems and/or to manipulate 

mathematical symbols and equations necessitates a short-answer question format (Nitko 
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& Brookhart, 2011).  While the short-answer format allows students to show their work, 

the legibility of students’ responses can at times complicate the scoring process. 

All responses are graded by the mathematics faculty members using an answer 

key for dichotomous scoring (i.e., “Correct” or “Incorrect”).  If a grader is unsure of a 

student’s written response, other graders are consulted.  In the event that a student’s 

response cannot be determined, it is marked as an incorrect response.  The possible range 

of scores on Part I is from 0 to 50.  After the allotted time has expired for Part I, exam 

proctors collect any remaining exams and distribute Part II. 

Part II of the assessment measures students’ knowledge of PreCalculus, 

Trigonometry, and Geometry content.  For this portion, students have 85 minutes to 

complete a total of 57 multiple-choice items, again without a calculator.  The multiple-

choice format used on this portion of the test provides students with the correct answer, 

three distractor answers, and a fifth response option of “I don’t know.”  Although not 

explicitly written on the test instructions, mathematics faculty members emphasize the 

use of the “I don’t know” option.  By purposefully mentioning this, it is believed that 

students will not guess, but rather consider using the “I don’t know” response option so 

that they do not accidentally place into a higher course than academically appropriate.  A 

similar argument was made by Prieto and Delgado (1999) who noted that educational 

standards should not be influenced by desired psychometric properties of a test.  Said 

another way, if students are unsure of an answer, it seems more appropriate for them to 

omit the item rather than encouraging them to guess.  After the exam is complete, the 

multiple-choice items are scanned into a grading software program using a scantron 
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reader where all items are scored dichotomously (i.e., “Correct” or “Incorrect”), even if 

the student selected the “I don’t know” option.  The possible range of scores is from 0 to 

57 on Part II. 

Types of Missing Data 

Before detailing each statistical technique by research question, the multiple types 

of missing data in this study are outlined and considered.  Specifically, the following 

paragraphs specify how the missing data were addressed throughout the data analysis 

procedures.  If the issue of missing data is not properly addressed, analysis of these data 

may become biased leading to inaccurate results, conclusions, and implications (e.g., 

Bennett, 2001; Chen, Wang, & Chen, 2012; Robitzsch & Rupp, 2009; Rose, Davier, & 

Xu, 2010). 

 Generally speaking, missing data are present in educational assessments for a 

variety of reasons.  For example, a respondent may forget to return to a skipped item, be 

unwilling to guess, or experience testing fatigue (Ludlow & O’Leary, 1999; Widaman, 

2006).  In this particular study, there are three types of missing data that are discussed – 

omitted items, non-reached items, and the use of “I don’t know” as a response option. 

 Omitted items.  As previously mentioned, the mathematics placement test has 

two parts, short-answer and multiple-choice.  Thus, the classification of omitted items 

were defined in two distinct, but similar ways.  First on the short-answer section, omitted 

items are interpreted as items that have nothing written in the space provided and are 

completely blank.  Similarly, for the multiple-choice section, omitted items are those that 

have no response on the scantron sheet (i.e., none of the “bubbles”/circles next to the 
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response options are filled/marked for a particular item).  Typically, these omitted (i.e., 

blank) items occur within the body of the test and are less likely to occur at the end. 

 When items at the end of a test are left unanswered, these are typically classified 

as non-reached items.  A non-reached item is one in which a respondent does not have 

the opportunity to answer an item, usually due to time constraints, as opposed to an 

omitted item where a respondent skips an item by mistake or consciously decides not to 

provide an answer (Ludlow & O’Leary, 1999).  For this reason, omitted and non-reached 

items are considered to be independent from one another, yet similar in the way they are 

approached statistically.  Consideration of the statistical controls for omitted items are 

presented followed by a description of the non-reached items and the use of the “I don’t 

know” response. 

 One method used to address an omitted item is to score the response as incorrect.  

Various studies have investigated this possibility and have determined that marking 

omitted items as incorrect heavily distorts item parameters (Rose et al., 2010) and may 

negatively bias estimates of ability (Culbertson, 2011).  As a result, researchers suggest 

that omitted items be ignored rather than coded as incorrect (e.g., Culbertson, 2011; 

Custer, Sharairi, & Swift, 2012; De Ayala, Plake, & Impara, 2001; Robitzsch & Rupp, 

2009).  In the current study, omitted items as defined above, are scored as incorrect by 

the mathematics faculty members.  Thus, to remain consistent with the scoring 

procedures used, omitted items were coded as missing “M” and then re-coded as 

incorrect “0” for the selected statistical analyses.  A table detailing the item frequencies 
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and the percentage of omitted responses per item is presented in the third manuscript 

regarding item analysis. 

 Non-reached items.  As noted earlier, the main difference between an omitted 

item and a non-reached item is the location within the test where the non-response 

occurs.  The National Assessment of Educational Progress guideline for non-reached 

items is as follows: “…if the last two or more items are left blank, then the first item of 

the string is to be treated as incorrect (presumably the student was working on it when 

time ran out) and the remaining would be treated as not reached” (Ludlow & O’Leary, 

1999).  This guideline, however, does not take into account the possibility that the 

respondent just completed the item they were working on when time ran out, rendering 

all of the remaining items unreached.  With the assumption that the causes of particular 

response patterns are typically unknown, this study will consider all omitted items at the 

end of each part of the test as non-reached (coded as “NR”).  Similar to omitted items, the 

mathematics faculty members score non-reached items as incorrect.  Thus, although 

initially these items were coded as non-reached (“NR”), they were then re-coded as 

incorrect (“0”) items throughout the various statistical analyses. 

 “I don’t know” response.  The third type of missing data addressed in this study 

is a result of respondents selecting the “I don’t know” option on the multiple-choice 

section of the mathematics placement test.  Since the early 1970s, researchers and 

statisticians alike have continued to argue the advantages and disadvantages of offering 

such a response option.  Some claim that the “I don’t know” response option may be 

informative and thus should be included within the estimation model (Balcombe & 
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Fraser, 2011).  Others propose that the “I don’t know” option is not suitable for tests 

measuring respondent’s optimal performance.  This response option is considered 

unsuitable because when respondents differ in their willingness to guess or to select “I 

don’t know,” respondents with identical levels of knowledge will receive different scores 

(Hanna, 1974; Mondak, 2001).  Furthermore, Mondak (2001) cautioned that to either 

discourage guessing and/or to encourage “I don’t know” responses, is to seek reliability 

at the cost of validity. 

 On the other hand, test developers and administrators will advocate for the use of 

the “I don’t know” option as a way to reduce guessing.  A compromise for this was 

proposed by Zhang (2013) who noted that if it is the intention of the test to minimize 

guessing and measure precise knowledge, then the “I don’t know” option could be used 

within a penalty scoring model.  Another suggestion to address the use of the “I don’t 

know” option was to eliminate the “I don’t know” response on multiple-choice questions 

by using a post-hoc correction (Kline, 1986; Mondak, 2001).  In this post-hoc correction, 

the “I don’t know” responses are randomly assigned to the remaining four choices, 

essentially entering guesses on behalf of the respondents who would not do so themselves 

(Mondak, 2001). 

When a respondent selects the “I don’t know” response option, the mathematics 

faculty members assume that the student is openly admitting to a lack of knowledge on a 

particular item.  Prieto and Delgado (1999) made a similar argument noting that 

educational standards should not be compromised due to the desired psychometric 

properties of a test.  In other words, if a student is not confident about a particular answer, 
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then it seems more appropriate to omit the answer rather than guess.  In the description of 

the measure, the original and continuing purpose of the mathematics placement test is to 

determine students’ incoming mathematical knowledge to make the appropriate course 

placement.  Based on this goal of measuring optimal performance, the post-hoc 

correction or a penalty scoring model are inappropriate due to the differences in 

individuals’ willingness to guess. 

When students vary in their willingness to guess, then two students with the same 

ability level will receive different scores (Culbertson, 2011; Hanna, 1974; Mondak, 2001; 

Pohl, Gräfe, & Rose, 2014).  In this instance, the test is no longer measuring only 

knowledge of mathematics, but also students’ “test-wiseness.”  Furthermore, by using the 

post-hoc correction, the researcher is essentially entering a guess on behalf of those 

students who would not do so themselves (Mondak, 2001).  However, if the intention of 

the placement test is to measure students’ maximum performance in mathematics, then 

all possible sources of measurement error should be reduced to ensure the proper course 

placement. 

As noted previously, the multiple-choice section is scored with a scantron reader 

using dichotomous “Correct”/“Incorrect” scoring, regardless of whether or not the 

respondent chose an incorrect choice or the “I don’t know” option.  For these reasons, the 

“I don’t know” option was ultimately coded as an incorrect response (“0”).  During initial 

data entry, however, the “I don’t know” option was coded as “DK” so that information 

could be collected regarding the frequency of selecting this option per item. 
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 Treatment of missing data.  To summarize, three types of missing data were 

present within this study, namely omitted items, non-reached items, and the use of the “I 

don’t know” response option.  Regardless of the missing data initial classification, each 

type was re-coded as an incorrect response prior to implementing the various statistical 

analyses to remain consistent with the scoring procedures used by the mathematics 

faculty members who graded the placement test.  The following paragraphs summarize 

the research questions and provide a detailed description of each study objective and 

corresponding statistical technique. 

Research Aim 1 

The goal of Manuscript 1 was to provide evidence of Content Validity of the 

mathematics placement exam at a gifted residential high school focused on STEM.  

Content Validity addresses whether or not items on an instrument (i.e., the 

words/statements comprising the items) and the meaning of these items measures a 

performance domain for a construct of interest (Cook & Beckman, 2006; Crocker & 

Algina, 2008; Ebel, 1956; Grant & Davis, 1997; Haynes, Richard, & Kubany, 1995; 

Martone & Sireci, 2009; Sireci, 1998a).  Content Validity contains three subcomponents 

related to the domain: (1) Definition, (2) Representation, and (3) Relevance.  Domain 

definition refers to the operational definition of the content domain describing both the 

content areas of interest and the levels of cognition required (Sireci, 1998a).  The second 

and third subcomponents, Domain representation and Domain relevance, require the 

subjective evaluation of subject matter experts (SMEs).  For Domain representation, 

SMEs are asked to judge whether or not the test items adequately represent the content 
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and cognitive specifications (Sireci, 1998a).  In a similar way, SMEs appraise the 

relevance of each test item to the primary content domain when examining domain 

relevance.  Although previous literature incorporates varying terminology, such as 

content domain sampling, content representation, or content relevance, the related 

definitions remain the same.  Overall, evidence that a test adequately represents the 

underlying content domain remains a vital component to test development and 

construction (Sireci & Geisinger, 1992). 

Former Content Validation studies have used a variety of methods to evaluate 

item similarities and relevance.  Two of the most recognized techniques are item-pairing 

and item-sorting tasks.  In studies by Sireci and Geisinger (1992, 1995), researchers 

asked SMEs to rate the similarity of a given item-pair on a scale from “Highly Similar” 

(Coded 1) to “Highly Dissimilar” (Coded 10).  In a similar way, SMEs were asked to rate 

the degree of each item’s relevance to the content areas listed (Sireci & Geisinger, 1992, 

1995).  One year later, Deville and Prometric (1996) used a similar item-pairing task.  

While the item-pairing technique can provide a more comprehensive examination of 

content domain representation, it can quickly become burdensome for SMEs to judge 

when the number of items become too large.  For example, the mathematics placement 

test in the current study consists of 107 total items.  If the item-pairing task was used, 

SMEs would be asked to rate item-similarities for 5,671 unique item-pairs.  Not only is 

this an unrealistic task for an individual to complete, but it is also detrimental to the 

recruitment of SMEs.  Additionally, prior research has suggested the use of sorting 

procedures requiring SMEs to sort items into a limited number of categories according to 
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their similarities (Sireci & Geisinger, 1995).  The same study also suggested that item-

level data be obtained to determine how Factor Analysis or Multidimensional Scaling 

(MDS) results compare to the dimensions obtained from the SME similarity ratings.  

For these reasons, the current study employed a card-sorting task to gather data on 

the test’s content areas.  Adopted from a study by D’Agostino, Karpinski, and Welsh 

(2011), MDS and Hierarchical Cluster Analysis was used to compare the similarity 

ratings of external SMEs to the similarity ratings of internal SMEs.  Generally, when 

using MDS in Content Validity studies, similarity ratings from SMEs are compared to the 

original test specifications (D’Agostino et al., 2011; Li & Sireci, 2013; Sireci & 

Geisinger, 1992, 1995).  One dilemma in the current study was the absence of test 

specifications.  However, prior research has demonstrated the complementary use of 

MDS and Hierarchical Cluster Analysis in the development of content specifications for 

professional certification exams (Raymond, 1989; Schaefer, Raymond, & Stamps White, 

1992).  Thus, the design of the current study made use of internal SME item-similarity 

ratings to develop the content specifications, which were then compared to external SME 

item-similarity ratings to provide evidence of Content Validity.  A discussion of the 

procedures and data analysis techniques follow. 

Participants 

The recruitment and qualifications of SMEs is an important consideration in any 

Content Validation study.  The number of SMEs needed for a content validation study 

will be driven by the range of representation and experiences desired by the researcher 

(Grant & Davis, 1997).  As described previously, the context of the current study is 
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unique in that it occurs at a gifted residential high school focused on STEM.  With its 

advanced curriculum and residential component, the high school is often times compared 

to an institution of higher education.  However, because the school serves students in 

grades 10 through 12, it is categorized as a high school.  Therefore, to properly assess the 

Content Validity of this school’s mathematics placement test, SMEs at varying levels 

were recruited. 

More specifically, both internal and external SMEs were needed.  The external 

participants in the Content Validation procedures included high school mathematics 

teachers, high school mathematics teachers with experience teaching gifted students, and 

mathematics faculty members from community colleges and four-year institutions from 

across the state of Illinois.  These external SMEs were recruited based on their interests, 

experiences, and contributions to STEM education.  After the list was developed, 

approximately five to ten individuals from each group was contacted via email to be a 

prospective SME.  This email included substantive details about the purpose of the study, 

the confidentiality of their responses and of the test items, the responsibilities of the 

participants (i.e., description of the card-sorting tasks and time required of the 

participant), and the associated risks and/or benefits (see Appendix C for a copy of the 

email invitation and Appendix D for a copy of informed consent).  Additional follow-up 

recruitment emails were sent as needed. 

 Similar to the external SMEs, an email invitation was sent to SMEs within the 

high school.  Since the original test specifications were unknown, judgments from 

internal SMEs were needed to compare responses with external SMEs.  For both external 
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and internal SMEs, demographic information such as gender, race/ethnicity, highest 

degree awarded, number of years teaching, and courses commonly taught was collected 

(Appendix E).  These data allowed for a basic description of group similarities between 

the internal and external SMEs. 

Procedures 

After consenting to participate, the SMEs were mailed rectangular strips of paper 

containing one test item per card (i.e., 107 total cards) along with directions describing 

the item-sorting task.  The directions instructed each SME to place the items into 

meaningful piles or groups based on the similarity of the content of the items.  Consistent 

with the sorting rules described by Trochim (1989), SMEs were advised to: (1) place 

each item or card into only one pile or group, (2) refrain from creating as many piles or 

groups as there are items, and (3) create more than one pile.  Upon completion of the 

content card-sorting task, SMEs were then asked to record the item numbers in each pile 

on a piece of paper and to assign each group of items a group title or name (Appendix E).  

The SMEs then returned their content area groupings and the provided test items on strips 

of paper via a prepaid envelope. 

Upon completion and return of the card-sorting task, each SME’s coding sheet 

was transformed into an individual item-similarity rating matrix where the test item 

numbers were listed for both the rows and the columns.  An entry of “0” indicated that 

the SME did not categorize a specific item-pair together, whereas an entry of “1” 

indicated that the SME did put the item-pair in the same group (D’Agostino et al., 2011). 
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Figure 2. Item-Similarity Matrix for a single subject-matter expert. This figure is an 

example of an item-similarity matrix for a single subject matter expert’s response. 

 

 In Figure 2 (above), the “0” entry for the item-pair (3,2) indicates that through the 

card-sorting task, SME 1 places Items 2 and 3 into different groups or piles.  In contrast, 

the “1” entry for item-pair (1,5) indicates that SME 1 placed Items 1 and 5 into the same 

group or pile.  Furthermore, a “1” entry on the diagonal of the matrix indicates that the 

SME always categorized an item in the same pile or group as itself (D’Agostino et al., 

2011). 

 After each individual item-similarity matrix was created, a group item-similarity 

matrix was constructed by adding the individual item-similarity matrices together 

(D’Agostino et al., 2011).  Values of the group item-similarity matrix ranged from 0 to n, 

where n is the total number of SMEs.  A value of “0” implies that none of the SMEs 

categorized the same item-pair together.  The largest value n, representing the total 

number of SMEs, appears on the diagonal of the group item-similarity matrix indicating 

that all SMEs categorized each item with itself.  Thus, a larger matrix cell value 

Item # 1 2 3 4 5

1 1

2 1 1

3 0 0 1

4 0 1 1 1

5 1 0 1 0 1
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represents a greater consensus of SMEs regarding the similarity of the items (D’Agostino 

et al., 2011). 

 

 

Figure 3. How to create a Group Item-Similarity Matrix. This figure shows how each 

subject matter expert’s item-similarity matrix is combined to create the group item-

similarity matrix needed for analysis. 

 

 For additional clarification, in the above example for SME 1 and SME 2, the “0” 

entry for item-pair (1, 3) signifies that neither SME 1 nor SME 2 placed Items 1 and 3 in 

the same group.  An entry of “2” for item-pair (2, 3) demonstrates that both SME 1 and 

SME 2 placed Items 2 and 3 in the same group.  In a similar way, an entry of “1” for 

item-pair (1, 2) indicates that either SME 1 or SME 2 categorized Items 1 and 2 into the 

same group, while the other SME did not.  Once the group item-similarity matrix was 

compiled for both the internal and external SMEs, each group matrix was further 

transformed prior to Multidimensional Scaling and Hierarchical Cluster Analysis. 

 Since similarity and dissimilarity ratings are inverses of one another, researchers 

have recommended transforming similarity ratings into dissimilarity ratings prior to data 

analysis using SPSS (Jaworska & Chupetlovska-Anastasova, 2009; Kruskal & Wish, 

Item # 1 2 3 Item # 1 2 3 Item # 1 2 3

1 1 1 1 1 2

2 0 1 2 1 1 2 1 2

3 0 1 1 3 0 1 1 3 0 2 2

Item-Similarity Matrix for SME 1 Item-Similarity Matrix for SME 2
Group Item-Similarity Matrix for 

SMEs 1 & 2

+  
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1978).  For the current study’s purposes, the group item-similarity matrices for both 

internal and external SMEs were converted into group item-similarity ratios.  Using a 

scale from 0 to 1, these ratios were transformed into a group item-dissimilarity matrix 

using the calculation of 1 - njk where n is the matrix cell value for the item-pair j and k 

where j ≠ k. 

 

 

Figure 4. How to create a Group Item-Dissimilarity Matrix. This figure displays the ratio 

calculation process in order to transform the group item-similarity matrix into a group-

item dissimilarity matrix. 

 

 As an example, in the above matrices, five out of 20 SMEs categorized Items 1 

and 2 together to obtain the group item-similarity ratio, 5/20 = .25 (Figure 4).  Finally, 

the group item-similarity ratio was transformed into a group item-dissimilarity ratio by 

using a constant, which in this case is 1 (i.e., 1 – .25 = .75).  Thus, the final group item-

dissimilarity matrix was used in the MDS analysis in SPSS. 

Data Analysis 

Multidimensional Scaling (MDS) has been used in a variety of fields such as 

medicine, psychology, psychometrics, and psychophysics due to its ability to 

accommodate various levels of data without restriction of multivariate normality.  MDS 

Item # 1 2 Item # 1 2 Item # 1 2

1 20 1 1 1 0

2 5 20 2 0.25 1 2 0.75 0

Group Item-Similarity 

Matrix for 20 SMEs

Group Item-Similarity 

Ratios for 20 SMEs

Group Item-Dissimilarity 

Ratios for 20 SMEs
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aims to uncover any structure or pattern in data by rescaling a set of similarity or 

dissimilarity measurements into distances assigned to specific coordinates within a spatial 

configuration (Agarwal et al., 2007; Jaworska & Chupetlovska-Anastasova, 2009; Mead, 

1992; Raymond, 1989).  Since MDS strictly relies on judgments of dissimilarity, there 

are no statistical distribution assumptions that must be met (Wilkinson, 2002).  However, 

one must decide which metric will be used to calculate these distances (i.e., Euclidean, 

Minkowski’s p, or City-block).  Since the data in the current study were at the interval 

level, distances were estimated using the traditional Euclidean distance calculation as 

follows: 

𝑑𝑖𝑗 = √∑ (𝑥𝑖𝑟 − 𝑥𝑗𝑟)2
𝑅
𝑟=1                                                       [1] 

where xir and xjr are the coordinates of points i and j, respectively, on dimension r, in a R-

dimensional spatial representation (e.g., Arce & Gärling, 1989; Carroll & Arabie, 1980; 

Davison & Skay, 1991; Giguère, 2006; Jaworska & Chupetlovska-Anastasova, 2009; 

Steyvers, 2002). 

Once the group dissimilarity matrix was analyzed using MDS, the output was 

interpreted.  Interpretation of MDS output includes determining the appropriate number 

of dimensions to retain.  This selection of dimensions is primarily based on three 

considerations: (1) the values of the fit indices, (2) the amount of change in fit indices 

from n to n – 1 dimensions, and (3) the interpretability of the dimensions (Whaley & 

Longoria, 2009).  Each of these were examined in the current study to determine the final 

MDS solution for both internal and external SME responses. 
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The two fit indices that were used were Kruskal’s Stress Function (Kruskal, 1964) 

and the Squared Correlation Index (R2).  Similar to other goodness-of-fit indices, 

Kruskal’s Stress Function is a calculation of the residual sum of squares (Kruskal, 1964).  

As such, smaller values indicate a better fit between the data and the MDS solution.  For 

the purposes of this study, the following stress values were used as guidelines: S = 0 

suggests perfect fit; 0 < S ≤ .025 suggests excellent fit; .025 < S ≤ .05 suggests good fit; 

.05 < S ≤ .10 suggests fair fit; and S ≥ .20 suggests poor fit (Kruskal, 1964).  Secondly, 

R2 values are interpreted as the proportion of variance explained by the disparities (Hair 

Jr, Anderson, Tatham, & Black, 1995; Whaley & Longoria, 2009).  In other words, R2 

measures how well the MDS model fits the original data, implying that higher values 

indicate better fit.  In the current study, the MDS solution was considered an acceptable 

fit if R2 ≥ .60 (Hair Jr et al., 1995; Whaley & Longoria, 2009). 

Next, to examine the amount of change in fit indices from n to n – 1 dimensions, a 

plot similar to Cattell’s Scree Test (Cattell, 1966) was used.  The stress values were 

graphed on the y-axis with the number of dimensions in decreasing order on the x-axis 

(Hoand, 2008; Jaworska & Chupetlovska-Anastasova, 2009; Whaley & Longoria, 2009).  

The resulting graph was analyzed for an “elbow” among the data.  At this point, the 

change in stress between one dimension and the next was considered negligible, 

indicating a possible final MDS solution.  Finally, the interpretability of the MDS 

solution, and its associated number of dimensions, were considered when determining the 

final solution for both internal and external SME responses. 
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After the final MDS solutions had been identified, the item coordinates from 

those solutions were analyzed using Hierarchical Cluster Analysis.  MDS and 

Hierarchical Cluster Analysis are complementary techniques in that MDS graphically 

displays relationships among items, whereas clustering examines which items group 

together and why.  By imposing Hierarchical Cluster Analysis on the MDS solutions, the 

domain structure of the internal SMEs and external SMEs can be compared.  

Additionally, the degree of consensus between the two domain configurations can 

ultimately be determined (D’Agostino et al., 2011; Sireci & Geisinger, 1992). 

Because the purpose of cluster analysis is to group objects (i.e., items or 

responses) according to particular characteristics they possess, the resulting clusters 

should have high internal (within-cluster) homogeneity and high external (between-

cluster) heterogeneity (Hair Jr et al., 1995).  In the current study, a Hierarchical Cluster 

Analysis was conducted using the agglomerative clustering method.  In this method, all 

objects or items are assigned to their own cluster.  Then through an iterative process, the 

two most similar objects, not already in the same cluster, are combined (Hair Jr et al., 

1995; Sarstedt & Mooi, 2014).  This process continues until all objects are in one large 

cluster. 

Similar to the MDS analysis, the Euclidean metric was used to calculate the 

distances between objects within clusters.  Smaller distances suggested a greater 

similarity between objects.  Moreover, the average-linkage clustering algorithm was 

used.  This algorithm defines the distances between two objects as the average distance 

between all pairs of members within the clusters (Hair Jr et al., 1995; Johnson, 1967; 
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Sarstedt & Mooi, 2014).  Thus, this method is less influenced by outliers and the cluster 

boundaries are determined using all members within a cluster rather than a single cluster 

member. 

Similar to previously mentioned analytics procedures, there is some subjectivity 

in determining how many clusters to retain and the interpretation of those clusters.  

Researchers must consider the cluster structure and interpretation in addition to within 

cluster homogeneity (Hair Jr et al., 1995).  Therefore, a dendrogram (i.e., tree graph) was 

analyzed to explore the changes in the distances between clusters.  Additionally, a Scree 

Plot was created by graphing the number of clusters on the x-axis against the distances at 

which the clusters are combined on the y-axis.  Then, similar to the Scree Plot for 

eigenvalues, this plot was examined for an “elbow” to indicate the number of clusters to 

be retained. 

Once the final cluster solutions had been determined for both the internal and 

external SME responses, the two configurations were compared using the Rand and 

adjusted Rand indices.  The Rand index computes the overlap between classification 

schemes, while the adjusted Rand index controls for overlap by chance due to marginal 

distributions (D’Agostino et al., 2011).  Both indices are reported on a scale from 0 to 1, 

with higher values indicating a stronger overlap. 

Research Aim 2 

The goal of Manuscript 2 was to provide evidence of Construct Validity and 

Internal Consistency Reliability.  Construct Validation refers to a process by which a 

judgment is made regarding whether or not an instrument adequately measures the 
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intended construct.  A construct, also referred to as a latent variable, is not directly 

observable and has been defined as “some postulated attribute of people, assumed to be 

reflected in test performance” (Cronbach & Meehl, 1955, p. 283).  Commonly studied 

psychological constructs include anxiety, achievement, and personality.  In order to 

measure a construct of interest, researchers emphasize the need to transform a conceptual 

definition into an operational definition.  The operational definition acts as a bridge to 

connect the conceptual definition to more concrete observations or indicators.  These 

observations are then assigned numbers to represent how much of the construct an 

individual possesses. 

Aspects of Construct Validation are typically reviewed during the instrument 

development phase.  During this time, the construct of interest and its associated content 

are manifested into concrete tasks that individuals must complete.  In the context of 

educational assessment, content standards of a course are translated into performance 

standards which further define “how much of the content standards students must know 

and be able to do to achieve a particular level of competency” (Morgan & Michaelides, 

2005, p. 1).  Four widely used approaches to Construct Validation are: (1) the use of 

correlations between the construct and other variables, (2) differentiation between groups, 

(3) Factor Analysis, and (4) the Multitrait-Multimethod Matrix (Campbell & Fiske, 1959; 

Crocker & Algina, 2008).  In the current study, evidence of Construct Validity was 

obtained through an Exploratory Factor Analysis (EFA). 
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Measure 

The mathematics placement test was developed by mathematics faculty members 

in 1985.  The original and continuing purpose of the mathematics placement test is to 

determine a student’s incoming mathematical knowledge for appropriate initial course 

placement commensurate with ability level.  Thus, generally speaking, the placement test 

assesses mathematical knowledge needed prior to entering into a Calculus sequence. 

 Part I of the assessment mainly measures student’s knowledge of Algebra 1 

content such as simplifying expressions, functions, and exponents.  Students are given 45 

minutes to complete 50 short-answer items, without a calculator.  Assessing higher-level 

abilities such as the ability to solve numerical problems and/or to manipulate 

mathematical symbols and equations necessitates a short-answer question format (Nitko 

& Brookhart, 2011).  While the short-answer format allows students to show their work, 

the legibility of students’ responses can at times complicate the scoring process.  

All responses are graded by the mathematics faculty members using an answer key for 

dichotomous scoring (i.e., “Correct” or “Incorrect”).  If a grader is unsure of a student’s 

written response, other graders are consulted.  In the event that a student’s response 

cannot be determined, it is marked as an incorrect response.  The possible range of scores 

on Part I is from 0 to 50.  After the allotted time has expired for Part I, exam proctors 

collect any remaining exams and distribute Part II. 

The main focus of Part II of the assessment is to measure students’ knowledge of 

both PreCalculus and Geometry content.  For this portion, students have 85 minutes to 

complete 57 multiple-choice items, again without a calculator.  The multiple-choice 
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format used on this portion of the test provides students with the correct answer, three 

distractor answers, and a fifth response option of “I don’t know.”  Although not explicitly 

written on the test instructions, mathematics faculty members and exam proctors 

emphasize the use of the “I don’t know” option.  By purposefully mentioning this, it is 

believed that students will not guess, but rather consider using the “I don’t know” 

response option so that they do not accidentally place into a higher course than 

academically appropriate.  A similar argument was made by Prieto and Delgado (1999) 

who noted that educational standards should not be influenced by desired psychometric 

properties of a test.  Said another way, if students are unsure of an answer, it seems more 

appropriate for them to omit the item rather than encouraging them to guess.  After the 

exam is complete, the multiple-choice items are scanned into a grading software program 

using a scantron reader where all items are scored dichotomously (i.e., “Correct” or 

“Incorrect”), even if the student selected the “I don’t know” option.  The possible range 

of scores is from 0 to 57 on Part II. 

Participants and Procedures 

 Existing data from four cohorts of students was used to examine the research 

questions in this study. These cohorts consisted of students entering the high school their 

sophomore year, beginning in the 2014/2015 academic year and ending in the most recent 

2017/2018 academic year, for which complete data was available. 

Equivalence across the four cohorts was examined for five demographic variables 

using Chi-Square (χ2) Tests of Association and One-Way Analyses of Variance 

(ANOVAs).  Chi-Square Tests of Association were conducted across the four cohorts for 
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the variables of sex and race/ethnicity.  There were no significant differences in the 

proportions between cohort year and either sex or race/ethnicity.  For the three remaining 

variables of socioeconomic status (i.e., median family income), incoming SAT Math 

(SAT_M) subscores, and incoming SAT Evidence Based Reading and Writing 

(SAT_ERW) subscores, ANOVAs were used.  Again, there were no significant 

differences between cohort years for each of the three variables.  Therefore, all four 

cohorts were found to be statistically equivalent and were combined into one sample for 

further analysis. 

Previous research has long debated the appropriate sample size to conduct an 

EFA, with approximately 10 subjects per variable as the general consensus (Comrey & 

Lee, 1992; Costello & Osborne, 2005; Nunnally & Bernstein, 1978).  In the current 

study, there are 107 items from the mathematics placement test that were factor analyzed.  

Using the 10:1 subject to variable ratio guideline, 1,070 cases are needed to conduct the 

EFA.  The sample size of the current study was 1,125 which surpassed the recommended 

10:1 subject to variable ratio. 

Data Analysis 

Pett, Lackey, and Sullivan (2003, p. 2) describe factor analysis as “a complex 

array of structure analyzing procedures used to identify the interrelationships among a 

large set of observed variables and then, through data reduction, to group a smaller set of 

these variables into dimensions or factors that have common characteristics.”  The two 

broad classifications of factor analysis are Exploratory Factor Analysis (EFA) and 

Confirmatory Factor Analysis (CFA).  Researchers use EFA when the underlying factor 



 

53 

 

 

 

structure of the construct of interest is unknown (Pett et al., 2003; Thompson, 2004).  

CFA, on the other hand, is used when the researcher has some knowledge or 

understanding of the underlying factor structure from previous theories of the construct of 

interest.  In the current study, the original factor structure of the mathematics placement 

test is unknown.  Thus, an EFA was conducted using PRELIS and LISREL 9.30. 

Assumptions.  The main underlying assumption of EFA is that the observed 

variables are linear combinations of underlying hypothetical/unobservable factors (Kim 

& Mueller, 1978).  The goal in this analysis is to condense the information contained in 

the original variables into a smaller set of factors with a minimal loss of information 

(Hair Jr et al., 1995). When discussing and analyzing linear combinations, mathematical 

theories and assumptions surrounding matrices are used.  

Another assumption of EFA is univariate/multivariate normality, which refers to 

the shape of the distribution of data and its congruence to a normal distribution curve 

(Hair Jr et al., 1995).  However, these assumptions were not considered within this study 

as the data were dichotomously scored.  Similarly, a third consideration for conducting an 

EFA is the strength of the relationship between two items on an instrument.  This 

information is typically summarized by the Pearson Product-Moment Correlation 

Coefficient Matrix, sometimes referred to as Pearson’s r or the correlation matrix (Pett et 

al., 2003).  Because the data are dichotomous, the strength of the relationship between 

two items on the instrument will be assessed using the Tetrachoric Correlation Matrix.  

Tetrachoric Correlation Coefficients are used when the latent trait underlying the data is 

theoretically continuous, but is measured dichotomously (Bonett & Price, 2005; Lorenzo-
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Seva & Ferrando, 2012; Uebersax, 2006b).  In this study, the underlying latent trait is 

mathematical knowledge, which is conceptualized as a continuous variable.  However, 

this latent trait is scored dichotomously on the mathematics placement exam (i.e., scoring 

“Correct” or “Incorrect”). 

Furthermore, in order to use Tetrachoric Correlations, the following assumptions 

must be met: (1) the latent trait is normally distributed, (2) rating errors are normally 

distributed, (3) the variance is homogeneous across all levels of the latent trait, (4) errors 

are independent between items, and (5) errors are independent between cases (Uebersax, 

2006b).  The primary limitation of using Tetrachoric Correlations is that these 

assumptions cannot be mathematically tested. 

The goal of factor analysis is to explain the interrelationships among variables, 

and it is important to have “acceptable” correlation coefficients.  Various researchers 

have differing opinions on what constitutes an “acceptable” correlation coefficient, which 

is dependent upon the level of measurement of the variables (i.e., nominal, ordinal, 

interval, or ratio) and how the correlation coefficient is calculated.  One generally 

accepted guideline for interpreting the Pearson Product-Moment Correlation Coefficient 

is that correlation values should be greater than or equal to .30 (Costello & Osborne, 

2005; Pett et al., 2003; Stevens, 2012; Tabachnick & Fidell, 2007).  Because the values of 

Tetrachoric Correlations values are interpreted similarly to Pearson’s r, the above stated 

guideline was consulted when examining the Tetrachoric Correlation Matrix in the 

current study. 
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Exploratory factor analysis.  Exploratory Factor Analysis (EFA) is considered 

to be “a complex procedure with few absolute guidelines and many options” (Costello & 

Osborne, 2005, p. 1).  The following paragraphs describe the method of factor extraction, 

rotation, solution refinement, and final interpretation that were used in the current study. 

When conducting an EFA, the determinant of the correlation matrix is evaluated 

to determine if an inverse matrix exists.  If the determinant of the correlation matrix is 

zero, an inverse matrix does not exist, implying that there are no interrelationships 

between the items (Pett et al., 2003).  The correlation matrix would, in this case, not be 

called an identity matrix.  These calculations can all be summarized in what is known as 

Bartlett’s Test of Sphericity (Bartlett, 1950).  In a similar way, the Tetrachoric 

Correlation Matrix calculated with dichotomous data can have a property called non-

positive definiteness (Uebersax, 2006a).  This occurs when one or more eigenvalues are 

negative, suggesting that there are linear dependencies among some items (Lorenzo-Seva 

& Ferrando, 2020).  When linear dependencies are present, this indicates that one or more 

eigenvalues are close to zero, meaning that the matrix is close to being non-invertible 

(Margalit & Rabinoff, 2018; Pett et al., 2003).  Thus, when negative eigenvalues are 

present and the matrix is close to being singular (i.e., non-invertible), then the extraction 

methods of Maximum Likelihood (ML) and Generalized Least Squares (GLS) cannot be 

used because of their reliance on the inverse matrix.  Furthermore, ML and GLS 

extraction methods were not used in this study due to their underlying assumption of 

multivariate normality.  Instead, the factor extraction method of Unweighted Least 
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Squares (ULS) was used since its calculations do not rely on the inverse matrix or 

multivariate normality (Uebersax, 2006a). 

Regarding the number of factors to be extracted, the two prominent methods used 

for EFA include the Kaiser-Guttman Rule for eigenvalues (e.g., Comrey & Lee, 1992; 

Guttman, 1954; Kaiser, 1960; Nunnally & Bernstein, 1994) and the Scree Plot (Cattell, 

1966).  The Kaiser-Guttman Rule tends to be more objective in that this method extracts 

those factors whose eigenvalues are greater than 1.  On the other hand, examining the 

Scree Plot requires more of a subjective decision about where the elbow of the plot is 

located and consequently how many factors should be retained.  For these reasons, 

researchers tend to use a combination of these methods in EFA to guide decisions 

regarding the number of retained factors.  In the current study, the statistical software 

program PRELIS was used due to its ability to handle dichotomous data and calculate the 

Tetrachoric Correlation Matrix.  One limitation of this program is that the Scree Plot 

method is unavailable.  While PRELIS does allow the researcher to specify the number of 

factors to retain, there is little previous research and/or theory to support the number of 

factors to extract in the current study.  Therefore, as EFA is an explanatory, theory-

building data analytic strategy, this study used PRELIS to automatically determine the 

number of factors to extract based on the correlation matrix.  Once the default number of 

extracted factors had been established, then additional iterations of the data specified how 

many factors to extract which were both above and below the defaulted amount. 

The next consideration in model specification was whether or not to rotate the 

extracted factors, which aids in simplifying and clarifying the underlying data structure.  
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The two common approaches in data rotation are orthogonal and oblique, each having 

different underlying assumptions.  An orthogonal rotation assumes that the underlying 

factors are uncorrelated, whereas an oblique rotation assumes the opposite (e.g., Costello 

& Osborne, 2005; Gorsuch, 1983; Pett et al., 2003; Thompson, 2004).  Since the 

underlying latent trait is mathematical knowledge, it was expected that a relationship 

would be present among the underlying factors necessitating an oblique rotation.  Of the 

possible oblique rotation methods (i.e., Direct Oblimin, Promax, Orthoblique), the 

Promax rotation was used in the current study.  One advantage of the Promax rotation is 

that it begins with an orthogonal rotation, allowing for the possibility that the underlying 

factors are in fact uncorrelated (Pett et al., 2003).  Additionally, Gorsuch (1983) argued 

that the Promax rotation ultimately results in stronger correlations between factors and 

achieves a more simple structure.  Accordingly, the oblique rotation method Promax was 

used. 

Using information from the above stated model specifications, the default factor 

extraction solution was examined for its representativeness and overall fit to the data.  

Again, since this was an EFA and the underlying factor structure was unknown, 

additional factor extraction solutions were explored and compared to the initial solution.  

In doing so, the final interpretation of the factor structure was supported through evidence 

from the collection of models, including but not limited to the amount of variance 

explained, the factor loadings, and the correlations between factors. 

Internal consistency reliability.  As noted earlier, reliability refers to the degree 

to which data collection, data analysis, and data interpretations are consistent provided 



 

58 

 

 

 

the surrounding conditions remain constant (Wiersma & Jurs, 2009).  As such, Internal 

Consistency Reliability provides evidence of accuracy of results when the same measure 

is used.  Moreover, “internal consistency” would suggest that the items within a measure 

correlate strongly with one another (Henson, 2001; Kimberlin & Winetrstein, 2008).  In 

selecting the Internal Consistency Reliability method to use, Guttman Split-Half 

(Guttman, 1945), Coefficient Alpha (Cronbach, 1951), or the Kuder-Richardson 

Formulas (Kuder & Richardson, 1937), one consideration is how the items on the single 

test administration are divided.  The following paragraphs provide a brief explanation of 

each reliability estimation method for a single test administration in addition to the 

rationale for the selected method in the current study. 

The first class of methods for estimating the reliability coefficient is generally 

referred to as the Split-Half Methods.  When using this method, the test is divided into 

two subtests of equal length (Crocker & Algina, 2008).  Splitting a test into two equal 

parts can occur a number of ways such as grouping the items by their even or odd 

number, separating the first half from the second half, or by rank ordering the items by 

their difficulties and then assigning matching or similar items to the two halves.  

Regardless of the type of division, the purpose is to create two parallel tests which can 

then be scored individually per examinee.  Afterwards, a correlation of equivalence can 

be calculated to provide an estimate of the reliability coefficient for the full-length test 

(Crocker & Algina, 2008). 

One limitation of the Split-Half Method, however, is that the correlation 

coefficient obtained is usually underestimated as longer tests tend to be more reliable 
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than shorter tests (Crocker & Algina, 2008).  In response to this issue, the Spearman-

Brown Prophecy Formula (Brown, 1910; Spearman, 1910) is used to achieve the 

corrected reliability coefficient estimate of the full-length test.  In a similar way, the 

Guttman Split-Half Method (Guttman, 1945) can be used to estimate the reliability 

coefficient of the full-length test by calculating the score differences between each half-

test.  Overall, the most noteworthy shortcoming of the Split-Half Methods is the non-

unique reliability coefficient estimates (Crocker & Algina, 2008).  There are multiple 

ways to split a test into two halves, each of which will produce a different reliability 

estimate. 

The other category of methods for estimating reliability coefficients are based on 

the item covariances.  Among this classification are the well-known methods that assess 

Internal Consistency Reliability – Coefficient (Cronbach’s) Alpha and the Kuder-

Richardson Formulas (Cronbach, 1951; Kuder & Richardson, 1937).  As shown below, 

previous research has demonstrated the equality of Cronbach’s Alpha and the Kuder-

Richardson Formulas (e.g., Cliff, 1984; Crocker & Algina, 2008; Feldt, 1969; 

Onwuegbuzie & Daniel, 2002) in regards to the case of binary data.  Cortina (1993) 

elaborated further by stating that Cronbach’s Alpha is a more general version than the 

Kuder-Richardson estimate.  Cronbach’s Alpha can be calculated by using the formula 

 ∝̂=  
𝑘

𝑘−1
 (1 − 

∑ �̂�𝑖
2

�̂�𝑋
2 )                                                     [2] 

where k is the number of items on the test, �̂�𝑖
2 is the variance of item i, and �̂�𝑋

2 is the total 

test variance.  Likewise, with a simple substitution of pq for the variance of item i, the 

Kuder-Richardson estimate is calculated as follows: 
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However, when items are dichotomously scored, although equal, the Kuder-Richardson 

Formula (KR-20) is preferred over Cronbach’s Alpha. 

Researchers Kuder and Richardson (1937) developed two formulas for estimating 

internal consistency reliability, namely the KR-20 and the KR-21.  While computed 

similarly, the KR-20 and KR-21 formulas differ in their assumption of item difficulties.  

If each item is assumed to have the same level of difficulty, then the KR-21 formula can 

be used (Crocker & Algina, 2008; Kuder & Richardson, 1937; Onwuegbuzie & Daniel, 

2002).  The mathematics placement test in the current study was constructed to broadly 

measure the content areas of Algebra 1, PreCalculus, Trigonometry, and Geometry.  

Moreover, regardless of the factor structure results obtained in the EFA, Algebra 1 is 

generally viewed as prerequisite knowledge to PreCalculus.  Thus, the current study 

assumed that the item difficulties vary, which necessitates calculating KR-20 as the 

estimate of internal consistency reliability. 

Considerable attention has been given to the “acceptable” value range for 

Cronbach’s Alpha or KR-20 indices.  While an internal consistency reliability estimate of 

.70 may be “acceptable” in some contexts of exploratory research (Nunnally & Bernstein, 

1978), L. Ding and Beichner (2009) suggested that the value of KR-20 be greater than or 

equal to .80.  For Coefficient (Cronbach’s) Alpha, researchers have continually 

emphasized the need for higher reliability estimates in educational settings.  More 

specifically, when a particular test score is used for important clinical and/or educational 

decisions (e.g., course placement), the estimates of internal consistency reliability should 



 

61 

 

 

 

have a minimum value of .90, with .95 considered desirable (e.g., Henson, 2001; 

Hopkins, 1998; Nunnally & Bernstein, 1994; Oosterhof, 2001; Rossi, Lipsey, & 

Freeman, 2003).  That is, when circumstances require a higher degree of confidence in 

the accuracy of interpretations, more evidence will be needed to demonstrate the internal 

consistency of a measure (Cook & Beckman, 2006).  Since Cronbach’s Alpha is equal to 

KR-20 with binary data, the abovementioned guidelines for “acceptable” values were 

used in this study.  Therefore, a minimum internal consistency reliability estimate of .90 

was considered the standard for the Mathematics Placement Test in the current study. 

Finally, the term internal consistency suggests that items measuring the same 

construct should to some degree correlate with one another (Crocker & Algina, 2008; L. 

Ding & Beichner, 2009; Henson, 2001; Kimberlin & Winetrstein, 2008).  Clark and 

Watson (1995) recommend that the average inter-item correlation coefficient be between 

.15 and .20 for scales measuring broad characteristics and between .40 and .50 for those 

measuring narrower characteristics.  Since the relationships between items are unknown, 

inter-item correlation coefficients ranging from .15 to .50 were considered acceptable in 

the current study. 

Research Aim 3 

The goal of research question 3 was to examine the item characteristics and 

potential bias of the items between males and females.  Item analysis is a general term 

used to define the investigation of statistical properties of examinees’ responses to test 

items (Crocker & Algina, 2008).  While many times used during the instrument 

development phase, item analysis can provide useful insight about item characteristics to 
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better understand the quality of the test.  More specifically, Item Response Theory (IRT) 

uses a collection of mathematical equations to analyze item-level data which provides 

information about the differences among individuals on a given construct or latent 

variable (De Ayala, 2009; Edelen & Reeve, 2007; Hays et al., 2000; Stone & Zhang, 

2003).  In order to do so, IRT assumes that the underlying latent trait (e.g., mathematical 

knowledge) is considered to be continuous in nature and can be represented by assigning 

numerical values to observed variables. 

In the context of this study, item analysis included analyzing item parameters 

such as difficulties (i.e., the percentage of respondents endorsing a positive response for 

dichotomously scored items) and item discrimination indices through the use of the Two-

Parameter Logistic (2PL) model.  In essence, the 2PL model is the ordinary logistic 

regression of the observed dichotomous responses on the unobservable person location 

and item characterizations (De Ayala, 2009).  This analysis was conducted within the 

IRTPRO 4.2 for Windows computer program, which makes use of the marginal 

maximum likelihood estimation method to examine the two parameters described above 

(Bock & Aitkin, 1981; Cai, Thissen, & duToit, 2011). 

Item analysis in this study also included an examination of Differential Item 

Functioning (DIF).  The purpose of DIF is to determine whether or not a particular item 

is biased.  In order examine DIF, respondents are split into groups, each of which are 

equal on the latent trait (e.g., males versus females).  If each group has a different 

probability of endorsing the item, then that item is exhibiting DIF (Crocker & Algina, 

2008; De Ayala, 2009; Hays et al., 2000). 
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Measure 

The mathematics placement test was developed by mathematics faculty members 

in 1985.  The original and continuing purpose of the mathematics placement test is to 

determine a student’s incoming mathematical knowledge for appropriate initial course 

placement commensurate with ability level.  Thus, generally speaking, the placement test 

assesses mathematical knowledge needed prior to entering into a Calculus sequence.  

More specifically, the developers of the exam created a two-part test measuring three 

content areas of mathematics, namely Algebra 1, PreCalculus, and Geometry, as 

previously determined through an Exploratory Factor Analysis (Manuscript 2). 

 Part I of the assessment mainly measures student’s knowledge of Algebra 1 

content such as simplifying expressions, functions, and exponents.  Students are given 45 

minutes to complete 50 short-answer items, without a calculator.  Assessing higher-level 

abilities such as the ability to solve numerical problems and/or to manipulate 

mathematical symbols and equations necessitates a short-answer question format (Nitko 

& Brookhart, 2011).  While the short-answer format allows students to show their work, 

the legibility of students’ responses can at times complicate the scoring process.  

All responses are graded by the mathematics faculty members using an answer key for 

dichotomous scoring (i.e., “Correct” or “Incorrect”).  If a grader is unsure of a student’s 

written response, other graders are consulted.  In the event that a student’s response 

cannot be determined, it is marked as an incorrect response.  The possible range of scores 

on Part I is from 0 to 50.  After the allotted time has expired for Part I, exam proctors 

collect any remaining exams and distribute Part II. 
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The main focus of Part II of the assessment is to measure students’ knowledge of 

both PreCalculus and Geometry content.  For this portion, students have 85 minutes to 

complete 57 multiple-choice items, again without a calculator.  The multiple-choice 

format used on this portion of the test provides students with the correct answer, three 

distractor answers, and a fifth response option of “I don’t know.”  Although not explicitly 

written on the test instructions, mathematics faculty members and exam proctors 

emphasize the use of the “I don’t know” option.  By purposefully mentioning this, it is 

believed that students will not guess, but rather consider using the “I don’t know” 

response option so that they do not accidentally place into a higher course than 

academically appropriate.  A similar argument was made by Prieto and Delgado (1999) 

who noted that educational standards should not be influenced by desired psychometric 

properties of a test.  Said another way, if students are unsure of an answer, it seems more 

appropriate for them to omit the item rather than encouraging them to guess.  After the 

exam is complete, the multiple-choice items are scanned into a grading software program 

using a scantron reader where all items are scored dichotomously (i.e., “Correct” or 

“Incorrect”), even if the student selected the “I don’t know” option.  The possible range 

of scores is from 0 to 57 on Part II. 

Participants and Procedure 

Existing data from four cohorts of students were used in this study.  These cohorts 

included students entering the high school their sophomore year, beginning in the 

2014/2015 academic year and ending in the most recent 2017/2018 academic year for 

which data were available. 
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Equivalence across the four cohorts was examined for five demographic variables 

using Chi-Square (χ2) Tests of Association and One-Way Analyses of Variance 

(ANOVAs).  Chi-Square Tests of Association were conducted across the four cohorts for 

the variables of sex and race/ethnicity.  There were no significant differences in the 

proportions between cohort year and either sex or race/ethnicity.  For the three remaining 

variables of socioeconomic status (i.e., median family income), incoming SAT Math 

(SAT_M) subscores, and incoming SAT Evidence Based Reading and Writing 

(SAT_ERW) subscores, ANOVAs were used.  Again, there were no significant 

differences between cohort years for each of the three variables.  Therefore, all four 

cohorts were approximately statistically equivalent and were combined into one sample 

for further analysis. 

Both De Ayala (2009) and Ding and Beichner (2009) mention that when 

calibrating test items of high-stakes assessments, reasonably accurate results are obtained 

when instruments contain 20 or more items and a sample size of at least 500 participants.  

With regards to test construction, Nunnally and Bernstein (1978) recommend five times 

as many subjects as items or at least 200 to 300 subjects, whichever is larger.  In the 

current study, there are a total of 107 items and approximately 300 students in each of the 

four cohorts.  Thus the approximate total population of 1,200 students is greater than the 

recommendations by De Ayala (2009), L. Ding and Beichner (2009), and Nunnally and 

Bernstein (1978). 

 As the multiple-choice section had a fifth response option of “I don’t know,” the 

data were coded in such a way as to distinguish between incorrect answers and missing 
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data.  More specifically, the coding format was as follows: “1” for a correct response, “0” 

for an incorrect response, “DK” for selecting the “I don’t know” option on the multiple-

choice section, and “M” for a missing response (i.e., an item that was left blank).  The 

response frequencies for each item are displayed in Table 5 in the results section below.  

Prior to analysis, all responses of “I don’t know” were recoded as an incorrect response 

“0” to align with the grading procedures implemented by the mathematics faculty 

members. 

Data Analysis 

The Two-Parameter Logistic (2PL) model suggests that the probability of a 

correct response is both a function of the distance between the person and the item and 

the ability of the item to differentiate among individuals with varying levels of the latent 

trait (De Ayala, 2009; Edelen & Reeve, 2007; Hays et al., 2000). 

In order to use the 2PL model, three assumptions must be tenable.  First, the data 

for the 2PL model must be dichotomous.  In the current study, the individual responses of 

the mathematics placement test were dichotomously scored (i.e., “Correct” or 

“Incorrect”), satisfying the first assumption of the 2PL model. Secondly, the 2PL model 

assumes unidimensionality.  The term unidimensionality implies that the observations 

obtained from the item responses are a function of only one continuous latent variable 

(e.g., Crocker & Algina, 2008; De Ayala, 2009; L. Ding & Beichner, 2009; Edelen & 

Reeve, 2007; Hays et al., 2000; Kirisci, Tarter, & Hsu, 1994).  That is, unidimensionality 

of the mathematics placement test suggests that the scores obtained from the assessment 

are a direct representation of only students’ mathematical knowledge.  If the test is 
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multidimensional, this may indicate that there are factors representing other content 

domain areas or that both students’ mathematical knowledge and reading literacy are 

being measured.  Prior to conducting item analysis, factor analytic procedures were used 

on the mathematics placement test data.  Thus, this assumption was tested, and based on 

the final factor solution of three factors, each dimension was assessed separately to 

satisfy the unidimensionality assumption. 

The final assumption of the 2PL model is local independence.  Local 

independence is defined as the absence of a relationship between the participant’s 

responses from one item to another, while taking into account the participant’s level of 

the latent trait (Crocker & Algina, 2008; De Ayala, 2009; Edelen & Reeve, 2007; Hays et 

al., 2000; Kirisci et al., 1994).  In other words, the success or failure when answering an 

item should not be dependent upon the response to another item (Bond & Fox, 2007).  

This assumption can be violated on both teacher-made and high-stakes assessments.  On 

a mathematics test, a teacher may divide a longer question into multiple parts (e.g., the 

answer to item 3c is dependent upon the answer calculated in 3a).  Likewise, high-stakes 

assessments often violate this assumption when they ask various questions about a 

particular reading passage.  Again, local independence was upheld in the current study 

because the mathematics placement test consists of 107 mutually exclusive items. 

Model specification.  As previously mentioned, the purpose of IRT, and more 

specifically the 2PL model, is to examine the item-level characteristics to provide 

additional information regarding the quality of an instrument.  Among these 
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characteristics are item difficulties and item discrimination indices, and an item bias 

investigation, each of which are discussed below. 

Item difficulty is defined as the proportion of examinees who correctly answered 

the item (Crocker & Algina, 2008).  When item responses have been dichotomously 

scored (i.e., “Correct” or “Incorrect”), then the item difficulty value is the same as the 

mean item score.  Generally denoted as 𝑝𝑖 = 
𝑅𝑖

𝑇𝑖
 , where Ri is the number of correct 

responses for item i and Ti is the total number of responses for item i, the values of the 

proportion pi can range from 0 to 1 for each item i (Crocker & Algina, 2008; Quaigrain & 

Arhin, 2017).  Previous research suggests that item difficulty values ranging from .20 to 

.90 are considered acceptable, with the maximum information being obtained when pi = 

.50 (Crocker & Algina, 2008; L. Ding & Beichner, 2009; Quaigrain & Arhin, 2017).  

Additionally, Quaigrain and Arhin (2017) suggest that difficulty indices less than .20 

(i.e., the items are too difficult) or greater than .90 (i.e., the items are too easy) be 

examined further for item revision or deletion.  However, when considering an item for 

revision or deletion, additional factors should be reviewed in addition to item difficulty. 

A second consideration in the 2PL model is the ability of an item to discriminate 

among individuals with varying levels of the latent trait.  That is, the item discrimination 

index, denoted by D, measures the ability of an item to distinguish between high-

achieving and low-achieving individuals for the latent trait of interest (i.e., mathematical 

knowledge in the current study) (Adedoyin & Mokobi, 2013; Crocker & Algina, 2008; 

De Ayala, 2009; L. Ding & Beichner, 2009; Ferketich, 1991).  Furthermore, the value of 
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the item discrimination index directly corresponds to the slope of the Item Characteristic 

Curve (ICC). 

An ICC graphically displays the relationship between the probability of answering 

an item correctly and the underlying latent trait (Crocker & Algina, 2008; De Ayala, 

2009; Hays et al., 2000).  Moreover, the differences in the item difficulties discussed 

above are evidenced by the horizontal movement of the ICCs.  Items with a higher 

probability of being endorsed (i.e., easier items such as Item 1 in Figure 5 below) are 

located further left on the scale of the latent trait whereas items with a lower probability 

of being endorsed (i.e., harder items such as Item 5 in Figure 5 below) are located further 

right on the scale of the latent trait. 

 

 

Figure 5. Example of an Item Characteristic Curve. This figure represents an item 

characteristic curve of five dichotomous items, each with a different level of difficulty 

(Bradley, 2018). 
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Generally speaking, the ICC has an S-shaped relationship (i.e., Sigmoid function) 

indicating that as the respondent’s latent trait level increases, so does the probability of 

answering correctly.  From Figure 5 above, the S-shaped function has a steeper slope near 

the middle of the curve implying that a small change in the latent trait level corresponds 

to a large change in the chance of endorsing the item (Crocker & Algina, 2008; De Ayala, 

2009; Edelen & Reeve, 2007; Hays et al., 2000).  This larger slope, or a higher 

discrimination index value (D), provides evidence of item sensitivity, and can detect 

differences among respondents with varying latent trait levels.  Psychometric research 

provides guidelines for values that are considered “high” or “strong” discrimination 

indices.  The current study used guidelines developed by De Ayala (2009) where the item 

is determined to be functioning satisfactorily if .8 ≤ D ≤ 2.5. 

Other considerations include the direction of the discrimination index.  If the 

discrimination index is negative, the item is performing in a counterintuitive manner 

(Crocker & Algina, 2008; De Ayala, 2009).  In other words, individuals with higher 

levels of the latent trait are less likely to endorse an easier item compared to individuals 

with lower levels of the latent trait.  In this case, the item with a negative discrimination 

index should be examined further for possible sentence structure, phrasing of words, 

and/or a miscoded answer key. 

Model fit.  Difficulty and discrimination indices can provide useful information at 

the item level; however, both the individual item fit and the overall model-data fit should 

be examined.  By assessing these fit statistics, the researcher can explore whether or not 

an individual is responding in such a way that is consistent with the general model.  
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Considering the placement test in this study, mathematics progresses such that an 

individual typically should understand Algebra concepts before applying them in a 

PreCalculus setting.  Thus, if an examinee responded correctly to the PreCalculus items 

towards the end of the exam, then it is expected that he/she responded correctly to the 

previous Algebra items.  If this is not the case, then this examinee’s responses do not 

follow the expected model.  A closer look at the examinee’s responses may indicate a 

minor error on the previous Algebra item or possibly a case of academic dishonesty. 

In order to assess the item fit and the model-data fit obtained in the 2PL model, 

this study examined the item-level diagnostic statistics (i.e., S – χ2) developed by Orlando 

and Thissen (2000), the M2 fit statistic developed by Maydeu-Olivares and Joe (2005), 

and the Root-Mean-Square-Error of Approximation (RMSEA) by Steiger and Lind 

(1980), each of which are described briefly below.  At times, the G2 statistic, also known 

as the Likelihood Ratio Statistic, is calculated to examine the model fit.  According to 

Maydeu-Olivares (2013), the G2 statistic is used when the expected frequencies are 

greater than five.  However, as the number of possible response patterns increases, the 

expected frequencies decrease and therefore the G2 statistics is often times not computed 

due to the sparse observed data, as was the case in the current study. 

Again, the Goodness-of-Fit information provide an estimate of how close an 

individual’s predicted response or the model is to the actual observed response or the data 

(Crocker & Algina, 2008; De Ayala, 2009; Maydeu-Olivares, 2013).  That is, the 

hypothesis is tested that the fitted model is the same as the data-generating model 

(Maydeu-Olivares, 2013).  Thus, if the researcher fails to reject the null hypothesis, then 
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there is more confidence in the interpretations and inferences drawn from the fitted 

model. 

As mentioned, the first fit statistic examined is the item-level diagnostic statistic S 

– χ2 which was developed by Orlando and Thissen (2000).  This statistic represents the fit 

of each individual item to the overall model.  When examining these values, an 

acceptable model-data fit includes no statistically significant differences between the 

observed and modeled item frequencies. 

Similarly, the M2 fit statistic was used as a measure of overall model-data fit.  

Developed by Maydeu-Olivares and Joe (2005), the Mn statistic is asymptotically equal 

to χ2.  This implies that the M2 fit statistic can be interpreted like χ2, without the influence 

of sample size.  As previously noted, the χ2 test null hypothesis states that there are no 

significant differences between the observed and expected values (Dimitrov, 2013).  If 

the null hypothesis is rejected, then the observed values are significantly different than 

the expected values, indicating that the model does not represent the data.  Thus, for the 

two goodness-of-fit statistics described above, if the model represents the data, then a 

larger (i.e., non-significant) p-value is desired. 

For these analyses and others, an experiment-wise alpha level of .05 was used.  In 

an article by Labovitz (1968), eleven criteria were provided to assist researchers in 

selecting an appropriate level of significance, some of which include: concerns of 

practical consequences, conventional levels of the field of research, sample size, and 

degree of research design control.  Furthermore, while the Mathematics Placement Test is 

a higher-stakes assessment, the exam was developed by faculty members without 
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knowledge and training in assessment design and advanced quantitative techniques.  In 

considering these criteria in the current study, the conventional .05 level of significance 

within the field of education was used. 

Lastly, the RMSEA fit statistic measures the extent of differences between the 

observed and expected for each degree of freedom within the model (Browne & Cudeck, 

1992; Steiger, 2016).  According to previous literature, RMSEA values less than .05 

indicate good model fit, and values between .05 and .08 indicate an acceptable model fit 

(Browne & Cudeck, 1992; Maydeu-Olivares, 2013; Maydeu-Olivares & Joe, 2014; 

Steiger, 2016).  If the RMSEA statistic is greater than or equal to .1, this suggests an 

unacceptable level of model fit.  In this case, it is suggested that alternative models that 

better represent the data be considered. 

Differential item functioning.  To identify which items, if any, exhibit DIF, the 

TSW Likelihood Ratio Test developed by Thissen, Steinberg, and Wainer (1988) was 

used.  The null hypothesis for this test states that there are no group differences in the 

item parameter estimates (De Ayala, 2009).  This calculation follows the χ2 distribution 

and is represented by 𝑇𝑆𝑊 − ∆𝐺2 = 𝐺2
2 − 𝐺1

2 where 𝐺1
2 and 𝐺2

2 are likelihood ratios.  

Thus, a significant 𝑇𝑆𝑊 − ∆𝐺2 indicates the presence of DIF for that particular item.  

Similar to before, the significance level was .05. 

For the purposes of this study, group comparisons by sex (i.e., male versus 

female) were conducted.  As it was mentioned in the literature review chapter, there is 

little to no difference in student coursework and performance at the 8th grade level for 

males and females (Catsambis, 1994).  However, males tend to take more advanced 
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mathematics courses in high school and show a higher achievement in mathematics by 

age 17 (Catsambis, 1994; Educational Testing Service, 1989; Pedro et al., 1981).  It is 

hypothesized that this lower performance on mathematics exams may cause females to 

shy away from highly quantitative courses and/or fields of study.  In a more recent study 

by Beede et al. (2011), it was shown that women hold less than a quarter of the jobs in 

STEM fields nationally.  The concerns of women being underrepresented in the STEM 

fields calls for research to examine why these sex differences in test performance exist so 

that intervention efforts can be made to change the current trends.  Moreover, since the 

high school of the current study is focused on equal representation of sex (i.e., admittance 

of approximately fifty percent males and females each year), it is imperative that the 

mathematics placement test be examined for possible biases and to determine whether or 

not the placement decisions are equally valid for males and females. 

Research Aim 4 

The goal of Research Question 4 was to provide evidence of Criterion-Related 

Validity and to investigate the ability of the test scores to predict future performance in a 

mathematics course. 

Criterion-Related Validity draws an inference from an individual’s current exam 

score to performance on some external criterion of practical importance (Crocker & 

Algina, 2008; Hambleton, Swaminathan, Algina, & Coulson, 1978).  This type of validity 

can be evidenced either concurrently or predictively.  Procedures for concurrent 

validation are used when the data collected for both the test and the criterion occur at or 

about the same point in time (Crocker & Algina, 2008; Wiersma & Jurs, 2009).  On the 
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other hand, procedures for predictive validity require a gap in time between when the test 

was given and when the criterion data are collected (Crocker & Algina, 2008).  

Additionally, the purpose of predictive validity is to determine whether or not test scores 

have the ability to predict specified future performance.  Thus, the current study sought to 

evidence Criterion-Related Validity (i.e., Predictive Validity) for the mathematics 

placement test using Multiple Regression. 

More specifically, Multiple Regression was used to investigate the relationship 

between students’ mathematical knowledge, as measured by the mathematics placement 

test, and students’ subsequent performance, as measured by their grade (i.e., a percentage 

score between zero and 100) in their first semester mathematics course. 

Measure 

The mathematics placement test was developed by mathematics faculty members 

in 1985.  The original and continuing purpose of the mathematics placement test is to 

determine a student’s incoming mathematical knowledge for appropriate initial course 

placement commensurate with ability level.  Thus, generally speaking, the placement test 

assesses mathematical knowledge needed prior to entering into a Calculus sequence.  

More specifically, the developers of the exam created a two-part test measuring three 

content areas of mathematics, namely Algebra 1, PreCalculus, and Geometry, as 

previously determined through an Exploratory Factor Analysis (Manuscript 2). 

 In Manuscript 3, an item analysis was conducted to examine the item parameters 

(i.e., item difficulties and item discrimination indices) and differential item functioning 

within each factor.  As a result of the study, some items were deleted from the exam.  The 
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Algebra 1 factor had a KR-20 reliability estimate of .895 for 45 items and measured 

student’s knowledge of content such as simplifying expressions, functions, and 

exponents.  The Geometry factor had the lowest reliability estimate (KR-20 = .736) and 

the fewest number of items (n = 14).  These items assessed concepts such as right triangle 

trigonometry, properties of congruent angles and triangles, and characteristics of a circle.  

Finally, the PreCalculus factor had a KR-20 reliability estimate of .95 for 35 items and 

measured student’s knowledge of content such as evaluating and graphing quadratic and 

exponential functions, finding the roots of functions, laws of sines and cosines, and 

combinatorics.  Students’ performance on the exam is noted by a raw subscore for each 

factor (i.e., Algebra 1, Geometry, and PreCalculus) and a total exam score. 

Participants and Procedures 

Existing data from four cohorts of students were used to examine Research 

Question 4 in this study.  These cohorts consisted of students entering the high school 

their sophomore year, beginning in the 2014/2015 academic year and ending in the most 

recent 2017/2018 academic year, for which data was available. 

Additionally, group equivalence across the four cohorts was examined and 

reported for the population information listed above (e.g., gender and race/ethnicity) 

using Chi-Square Tests of Association.  Furthermore, the four cohort means of students’ 

median family incomes (SES), incoming SAT Mathematics scores, and the SAT 

Evidence-Based Reading and Writing scores were examined for significant differences 

using the parametric One-Way Analyses of Variance.  No significant differences were 

identified for the five demographic variables and the four cohorts were combined into 
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one sample for subsequent data analysis.  However, due to incomplete and inaccessible 

data, the final analysis included two of the four cohorts for which the most complete data 

were available. 

Data Analysis 

As part of the General Linear Model family of statistical techniques, Multiple 

Regression is used to explain or predict a criterion (i.e., dependent) variable with more 

than one predictor (i.e., independent) variable (e.g., Ebel, 1965; Hair Jr et al., 1995; 

Osborne, 2000; Petrocelli, 2003; Rubio, Berg-Weger, Tebb, Lee, & Rauch, 2003; 

Stevens, 2012; Wampold & Freund, 1987).  There are many types of regression analyses 

(i.e., Linear, Logistic, Polynomial), which is dependent upon the measurement level of 

the outcome variable.  In the current study, the dependent variables are continuous (i.e., 

interval level), so a Multiple Linear Regression was used.  Although it can be argued that 

mathematical knowledge may follow a different type of curve, a linear regression model 

was selected due to the limited time lapse between the start of testing and the completion 

of their initial mathematics course (i.e., approximately six to eight months). 

Furthermore, regression analyses differ in the manner and order in which the 

independent variables are entered into the model (e.g., simultaneously, stepwise, 

hierarchically).  Hierarchical entry in Multiple Regression allows the researcher to select 

the order of the entered predictor variables based on previous research and/or theory.  

When Hierarchical entry is used, the focus is on the change in predictability that is 

associated with the variables entered later in the analysis, above and beyond the 

contribution of the previously entered variables (Petrocelli, 2003).  Thus, Hierarchical 
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Multiple Regression was used in the current study to allow the researcher to approximate 

the reality of placement practices in the high school under study. 

Outlier detection.  The Hierarchical Multiple Regression was conducted using 

SPSS.  Before running the regression analyses, the data was examined for potential 

influential data points, leverage points, and/or outliers.  The presence of influential data 

points can significantly affect the overall analysis.  An influential data point is one where 

if deleted, it would produce a substantial change in the value of at least one regression 

coefficient (Stevens, 2012).  To detect influential data points, Cook’s distance (Cook, 

1977) and DFBETAS (Hahs-Vaughn, 2016; Stevens, 2012) were used.  Cook’s distance 

(Cook, 1977) measures the amount of change in the regression coefficients that would 

occur if a particular case was omitted.  Typically, if Cook’s D > 1, it is determined that 

there is an influential data point.  While Cook’s D is a composite measure of influence, 

the DFBETAS indicate which specific coefficients are being most influential by 

providing information on the change in the predicted value when a specific case is 

deleted from the model (Hahs-Vaughn, 2016; Stevens, 2012).  Thus, when any DFBETA 

value is outside the range of [-2, 2], this indicates a sizeable change and needs to be 

examined further. 

Next, the predictor variables were investigated for possible outliers using leverage 

values and Mahalanobis distances.  Leverage values are used to quickly identify 

participants that differ from the rest of the sample on a particular set of predictor 

variables (Stevens, 2012).  The current study used the calculation of  
3𝑝

𝑛
, where p is the 

number of predictors plus 1 and n is the sample size, suggested by Stevens (2012) and 
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adapted from Hoaglin and Welsch (1978).  In this case, if the leverage value > 
3𝑝

𝑛
, then 

this data point was examined further. 

Additionally, Mahalanobis distances were used to measure how far each case was 

from the mean of the independent variable for the remaining cases (Hahs-Vaughn, 2016; 

Stevens, 2012).  To determine whether or not a large enough difference existed, which 

would indicate a possible outlier, the χ2 distribution table was used to find the critical 

value for 11 predictor variables with α = .001.  If the Mahalanobis distance exceeded the 

critical value, the case was further investigated. 

To find outliers on the criterion variable (y), this study examined the standardized 

residuals (ri).  Standardized residuals allow the researcher to identify subjects whose 

predicted score is different from the actual criterion score (Stevens, 2012).  Generally 

speaking, standardized residuals follow a normal distribution with approximately 95% of 

the standardized residual values falling within two standard deviations of the mean 

(Stevens, 2012).  Thus, if ri > |2|, then that data point was carefully examined (Hair Jr et 

al., 1995; Stevens, 2012). 

Each of the above situations (i.e., influential data points, leverage points, and 

outliers) were considered in the current study so that the appropriate corrective actions 

could be made, if needed. 

Assumptions.  After detecting influential data points, leverage points, and/or 

outliers, the statistical assumptions of regression must be examined and addressed.  These 

assumptions include: Independence of Errors (i.e., Residuals), Linearity, Normality, and 

Homoscedasticity (Hahs-Vaughn, 2016; Hair Jr et al., 1995; Stevens, 2012).  Although 
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sometimes not described as an explicit assumption, data used in multiple regression 

analyses should also be examined for multicollinearity. 

Multicollinearity exists when there is a strong correlation between some or all of 

the independent variables (Hair Jr et al., 1995; Stevens, 2012; Wampold & Freund, 

1987).  If present, multicollinearity reduces the unique explained variance of each 

predictor variable while increasing the shared prediction, complicating the interpretation 

of a predictor variable (Hair Jr et al., 1995; Stevens, 2012).  To test multicollinearity, the 

tolerance, variance inflation factors (VIF), and collinearity diagnostics were examined. 

Tolerance is measured as 1 minus the proportion of variance explained in the 

variable of interest by the other predictor variables (Hair Jr et al., 1995).  Thus, a lower 

tolerance value (i.e., less than .10) suggests that the variable of interest is accounted for 

by the other variables, suggesting possible multicollinearity problems (Hahs-Vaughn, 

2016).  By taking the reciprocal of tolerance, the VIF is produced and values greater than 

10 are indicative of threats to multicollinearity (Hair Jr et al., 1995). 

Lastly, the eigenvalues of the collinearity diagnostics were examined.  When 

multiple eigenvalues are close to zero, this indicates that some independent variables 

have strong intercorrelations and may present concerns of multicollinearity (Hahs-

Vaughn, 2016).  In this case, the condition index can be calculated using the square root 

of the ratio between the largest eigenvalue to each preceding eigenvalue, to ensure that no 

values exceed 10 (Hahs-Vaughn, 2016).  If multicollinearity is suspected in any of the 

above situations, it is recommended that either one or more of the highly correlated 

variables be eliminated from the model or consolidated into a single measure. 
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Revisiting the statistical assumptions of multiple regression, the first assumption 

regarding Independence of Errors (i.e., residuals) assumes that each participant’s 

responses are not dependent upon the response of another individual (Stevens, 2012).  If 

violated, it is possible to identify variables as statistically significant, when in fact they 

are not (Keith, 2014).  In the current study, each student completed their placement exam 

under the supervision of an exam proctor, implying that the assumption of independence 

is tenable.  Furthermore, the assumption of independence of errors was examined by 

plotting the studentized residuals against the unstandardized predicted values. 

The second assumption of Linearity describes the degree to which a change in the 

criterion variable associated with the predictor variable is constant across the range of 

values for the predictor variable (Hair Jr et al., 1995; Keith, 2014).  Using partial 

regression plots, each predictor variable was examined with the criterion variable for the 

presence of a linear relationship. 

The next assumption, Normality, requires that each continuous variable (i.e., 

independent and dependent) follow a normal distribution of data (Hair Jr et al., 1995; 

Stevens, 2012).  Normality was checked by creating and examining both a histogram of 

unstandardized residual values in relation to the normal distribution curve and normal 

probability plots, generally referred to as Q-Q Plots (Hair Jr et al., 1995; Keith, 2014).  

The skewness and kurtosis of the unstandardized residuals was also examined. 

The final assumption, Homoscedasticity suggests the presence of equal error 

variances (Hair Jr et al., 1995; Keith, 2014; Stevens, 2012).  Similar to previous 

assumptions, violation of homoscedasticity can affect the standard errors, which in turn 
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will impact the statistical significance of variables.  To test for homoscedasticity, residual 

plots of the predictor variables against the criterion variable were used to identify 

whether or not a relatively random display of points was present. 

One additional consideration in this multiple regression analysis was the sample 

size.  In the current study, an a priori power analysis was conducted in G*Power 3.1.9.4 

for the “Linear Multiple Regression: Fixed Model, R2 Deviation from Zero” (Faul, 

Erdfelder, Lang, & Buchner, 2007).  For the two regressions involving students’ total 

score on the mathematics placement exam, the software yielded a minimum total sample 

size of 114 to detect a medium effect given a significant level of .05, power of .80, and 

nine predictor variables (Cohen, 1988).  Likewise, for the two regressions involving 

students’ Algebra 1, Geometry, and PreCalculus subscores, the software tool yielded a 

minimum total sample size of 123 to detect a medium effect given a significance level of 

.05, power of .80, and eleven predictor variables. 

Correlations.  Prior to conducting the multiple regression analysis, correlations 

were investigated to look at the relationship between the independent and dependent 

variables.  Phi correlations were computed for the relationship between the variables of 

gender and race/ethnicity, as both are measured on a nominal (i.e., dichotomous) scale.  

For the case where a nominal variable was correlated with a continuous (i.e., interval 

level) variable, the Point Biserial correlation was calculated.  Finally, the Pearson 

correlation was calculated to examine the relationship between two continuous (i.e., 

interval level) variables.  The correlation matrix summarizing the information above was 

reported and included indicators for significant correlational values. 
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Variables.  As stated previously, Hierarchical Multiple Regression was used to 

explore the relationship between students’ mathematical knowledge and their subsequent 

performance in their first semester mathematics course.  In any multivariate analysis, the 

careful selection of variables is important for statistical conclusion validity.  When 

selecting variables for inclusion, the final decision should be based on either theoretical 

or conceptual grounds (Hair Jr et al., 1995).  The variables considered in this study are 

provided in Table 1 below. 
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Table 1 

Hierarchical Multiple Linear Regression Model Predictors - Level of Measurement and 

Coding 

 

Variable Name Level of Measurement Code 

(1) Demographic Covariates 

 Sex Nominal (Dichotomous)   

  Male  0 

  Female  1 
 Race Nominal Race 1 (r1) Race 2 (r2) 

  Asian  1 0 

  White  0 1 

  Other  0 0 
 Socioeconomic Status Interval (Continuous) - 

  Median Family Income   

(2) Incoming Performance Covariates 

 SAT Math Score Interval (Continuous) - 

 SAT Critical Reading Score Interval (Continuous) - 

 Algebra 1 GPA Nominal (Dichotomous)  

  3.0 or below  0 

  4.0  1 

 Geometry GPA Nominal (Dichotomous)   

  3.0 or below  0 

  4.0  1 

 Took an Algebra 2 Course Nominal (Dichotomous)   

  No  0 

  Yes  1 

(3) Main Predictor Variables 

 Mathematics Placement Test Interval (Continuous) - 

  Total Score    

  Algebra 1 Subscore    

  Geometry Subscore    

  PreCalculus Subscore    

(4) Criterion Variable 

 Grade in 1st Semester Math Course Interval (Continuous) - 

  Lower Level Math Course    

  Upper Level Math Course    
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Over the past two decades, numerous articles have detailed the uses, 

consequences, and challenges of placement exams (e.g., Denny et al., 2012; Farley, 2007; 

Foley-Peres & Poirier, 2008; Haeck, Yeld, Conradie, Robertson, & Shall, 1997; Rueda & 

Sokolowski, 2004; Schmitz & delMas, 1991).  However, the vast majority of these 

studies were within the context of a community college or university.  Thus, the predictor 

variables chosen for inclusion in the current study were from similar studies containing 

varying contexts. 

For each of the four regressions conducted in the current study, the first block of 

the Hierarchical Multiple Regression included student demographic information such as 

sex, race/ethnicity, and socioeconomic status (SES).  A variety of studies have been 

conducted examining demographic variables and their impact on educational outcomes, 

specifically math achievement.  For example, in a study by Roth et al. (2000), racial 

differences in mathematics achievement did not exist after controlling for previous 

coursework in mathematics.  Another study mentioned that regardless of racial group, 

SES was unrelated to gender differences in mathematics achievement or attitudes 

(Catsambis, 1994).  Moreover, Pugh and Lowther (2004) found that regardless of 

students’ race, SES, or type of high school, the greatest indicator of college achievement 

was the mathematics course(s) taken. 

Conversely, additional research has demonstrated SES, especially income, to be 

an important predictor in mathematics achievement and career decisions, especially for 

females (Gonzalez & Kuenzi, 2012; Oakes, 1990).  Moreover, research has shown that 
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Black and Hispanic students are less than half as likely to be in gifted education programs 

compared to White students (Callahan, 2005).  The same study also concluded that nine 

percent of students enrolled in gifted and talented programs were categorized in the 

bottom quartile of family income (Callahan, 2005).  Other studies have concluded that 

both SES and race/ethnicity strongly correlate with academic performance and account 

for a significant amount of variance in students’ test scores (Sirin, 2005; White et al., 

2016).  Although the nature of the impact of race/ethnicity and SES on educational 

achievement is ongoing, these variables have not been considered in the context of a 

gifted residential high school focused on STEM. 

The second block in the regression analyses contained incoming academic 

information including students’ SAT mathematics subscore, SAT Evidence-Based 

Reading and Writing subscore, students’ grades in previous coursework (i.e., GPA of 

Algebra 1 and Geometry) and whether or not the student had reached an Algebra 2 level 

course.  In a study by Sheel, Vrooman, Renner, and Dawsey (2001), high school GPA, 

SAT mathematics score, and the student’s final grade received in high school Algebra 2 

were the most influential predictors of students’ college mathematics placement test 

scores.  Similarly, Latterell and Regal (2003) found that other predictors such as high 

school courses and the grades received in those courses were often stronger predictors of 

college course success than an incoming placement test score.  These variables are 

similar to others in previous studies, but the context was at the post-secondary level 

rather than at a high school (Latterell & Regal, 2003; Pugh & Lowther, 2004; Sheel et al., 

2001). 
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The third and final block of the analysis included the high school mathematics 

placement test scores, one using the total score and another using subscale score of 

Algebra, Geometry, and PreCalculus.  The placement test was positioned last in the 

Hierarchical Multiple Regression as the amount of variance the placement test explains, 

over and above the variables in the previous blocks, was central to addressing the fourth 

research question in this study. 

Finally, the criterion (i.e., outcome) variables in this study were students’ 

percentage grades received in their first semester mathematics course, which were 

divided into lower and upper level courses.  Based on the placement exam score, students 

enter into one of four mathematics courses – Mathematical Investigations I, II, III, or IV.  

Thus, Mathematical Investigations I and II were categorized as lower level courses with 

Mathematical Investigations III and IV being categorized as upper level courses.  While 

some students begin the math sequence in either Geometry or BC Calculus I, these 

decisions are not determined through the use of the placement exam, and thus were not 

included in the study sample. 

Summary 

 This study aims to identify the psychometric properties of a mathematics 

placement test at a residential high school focused on STEM for gifted students.  More 

specifically, this study seeks to provide evidence of reliability and validity, in addition to 

examining the characteristics of the item parameters (i.e., item difficulty, and item 

discrimination) and item bias with regards to sex.  In light of these objectives, this 

chapter reviewed the research aims of this study and the related methodologies to answer 
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each of the four research questions.  The following chapters (i.e., Four, Five, Six, and 

Seven) consist of manuscripts for each of the research questions described above.  

Chapter Eight (i.e., Conclusions) summarizes the four manuscripts and their implications 

for one another. 
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CHAPTER IV – MANUSCRIPT 1 

CONTENT VALIDITY USING MULTIDIMENSIONAL SCALING AND 

HIERARCHICAL CLUSTER ANALYSIS: A PRACTICAL APPROACH 

Abstract 

 Educational assessments, when properly constructed, can provide valuable 

feedback regarding content that has or has not been learned.  However, such test results 

can only be meaningfully interpreted if there is an adequate alignment between the items 

on the assessment and the local curriculum.  For this reason, providing evidence of 

Content Validity remains an issue of paramount importance throughout the test 

development process.  The current study examined the Content Validity of a mathematics 

placement test at a Science, Technology, Engineering, and Mathematics (STEM) gifted 

residential high school.  Data were collected from internal and external subject matter 

experts using a card-sorting technique replicated from a study by D’Agostino et al. 

(2011) and were analyzed using Multidimensional Scaling and Hierarchical Cluster 

Analysis.  Results demonstrate preliminary evidence of congruence between the two 

configurations. 

Keywords: Content Validity, Multidimensional Scaling, Hierarchical Cluster Analysis, 

STEM Education

Introduction 

 Over the past forty years, specialized Science, Technology, Engineering, and 

Mathematics (STEM) projects and programs have been developed for gifted children.  

Within these programs, gifted students are exposed to an ambitious college preparatory 
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curriculum with the expectation of majoring in a STEM field.  While students undergo a 

competitive and challenging application and acceptance process, the effects of these 

specialized programs remain relatively unknown. 

 More recently, research has identified a shortage of valid and reliable instruments 

to measure the impact and outcomes of these specialized STEM programs (Katzenmeyer 

& Lawrenz, 2006; Scott, 2012).  Additionally, in the era of accountability, it is critical 

that educational institutions at varying levels maintain rigorous and defensible placement 

practices and methods in order to justify their use and to confront questions of their 

impact on students’ educational outcomes.  Frisbie (1988) stated that when the reliability 

of scores as accurate measures of student achievement are in question, these scores 

cannot be used to make future educational decisions.  Furthermore, one validation study 

is not sufficient to guarantee the psychometric properties of an assessment throughout its 

lifetime.  Instead, the assessment and policies used, in contexts such as placement testing, 

need to be continuously reviewed and evaluated to assure that students are being placed 

into courses commensurate with their ability in order to maximize the chances of success 

(Linn, 1994; Mattern & Packman, 2009; McFate & Olmsted III, 1999; Norman et al., 

2011; Wiggins, 1989).  Overall, when properly constructed and evaluated, assessments 

can provide feedback on what has and has not been learned to both the student and other 

interested stakeholders. 

The purpose of this study was to demonstrate evidence of Content Validity on a 

mathematics placement test at a Science, Technology, Engineering, and Mathematics 

(STEM), gifted, residential high school.  Previous research on placement exams have 
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been conducted at the post-secondary level; however, this study extends the research to 

younger grade levels serving a specific, gifted population.  Furthermore, this study sought 

to replicate an efficient and innovative card-sorting technique by D’Agostino et al. (2011) 

using the complementary techniques of Multidimensional Scaling (MDS) and 

Hierarchical Cluster Analysis (HCA) within a new context. 

Literature Review 

 Although prior research has not extensively examined placement testing from 

middle school to high school, a large literature base exists using college and university 

student populations.  Approximately 90% of post-secondary institutions use placement 

tests (Latterell & Regal, 2003).  The near-universal practice of administering placement 

tests emerged due to the incomparability of unknown factors such as the content and rigor 

of courses and the grading scales used at different schools (Kossack, 1942; Linn, 1994; 

Ngo & Kwon, 2015; Noble et al., 2003).  Within the setting of a post-secondary 

institution, students complete placement tests to determine the appropriate level to begin 

coursework.  In the same way, upon acceptance into the high school in the current study, 

students must complete a series of placement tests to guide their initial course enrollment. 

 The overarching purpose of placement tests is to match students with a level of 

instruction that is appropriate given their previous academic preparations (e.g., Akst & 

Hirsch, 1991; Frisbie, 1982; Marshall & Allen, 2000; Mattern & Packman, 2009; McFate 

& Olmsted III, 1999; Noble et al., 2003; Sawyer, 1996).  Prior research has shown that 

course placement decisions can have a significant impact on a student’s future academic 

preparation (McDaniel et al., 2007; Morgan & Michaelides, 2005).  For example, 
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students who begin post-secondary mathematics in a course that is appropriate given their 

background have an increased chance of succeeding in their first course and subsequent 

mathematics courses (Mattern & Packman, 2009; Norman et al., 2011; Shaw, 1997).  For 

this reason, more research is needed to thoroughly examine placement tests and 

procedures to ensure that student success is maximized while the consequences of 

misplacement are minimized.  Although these placement tests are typically considered 

“high-stakes,” the psychometric properties of such tests have received relatively little 

attention (Callahan, 2005; Grubb & Worthen, 1999; Scott-Clayton, 2012).  As a result, 

more research is needed to investigate and evidence the psychometric properties of 

placement tests. 

 Validity is typically defined as the extent to which an instrument measures what it 

is intended to measure (Wiersma & Jurs, 2009).  While this definition is somewhat 

accurate, it is often times misleading.  That is, the instrument itself is not validated, rather 

the conclusions and interpretations drawn from the scores have validation evidence 

(Cook & Beckman, 2006; Ebel, 1956; Kimberlin & Winetrstein, 2008; Messick, 1995; 

Moss, 1992; Schmitz & delMas, 1991).  Using these details, validation is defined by 

Cronbach (1971) as an evidence-collecting process to support the inferences made from 

the test scores. 

Content Validity addresses if the wording/phrasing and meaning measures a set of 

performance tasks for a construct of interest (Cook & Beckman, 2006; Crocker & Algina, 

2008; Ebel, 1956; Grant & Davis, 1997; Haynes et al., 1995; Martone & Sireci, 2009; 

Sireci, 1998a).  Content Validity contains three components related to the domain: (1) 
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Definition, (2) Representation, and (3) Relevance.  The first component, Domain 

definition, refers to the operational definition of the content domain describing both the 

content area(s) of interest and the level(s) of cognition required (Sireci, 1998a).  This 

component typically occurs during the design stage before test items have been created or 

selected. 

The second and third components (i.e., Domain representation and Domain 

relevance) are generally examined after the test’s development.  Both Domain 

representation and Domain relevance require the subjective evaluation of subject matter 

experts (SMEs).  For Domain representation, SMEs are asked to judge whether or not the 

test items adequately represent the content and cognitive specifications (Sireci, 1998a).  

In a similar way, SMEs appraise the relevance of each test item to the primary content 

domain when examining Domain relevance.  Overall, evidence that a test adequately 

represents the underlying content domain remains a vital component to test development 

and construction (Sireci & Geisinger, 1992). 

Former Content Validation studies have used a variety of methods to evaluate 

item similarities and relevance.  Two of the most recognized techniques are item-pairing 

and item-sorting tasks.  In studies by Sireci and Geisinger (1992, 1995), researchers 

asked SMEs to rate the similarity of a given item-pair on a scale from “Highly Similar” 

(Coded 1) to “Highly Dissimilar” (Coded 10).  In a similar way, SMEs were asked to rate 

the degree of each item’s relevance to the content areas listed (Sireci & Geisinger, 1992, 

1995).  One year later, Deville and Prometric (1996) used a comparable item-pairing task.  

While the item-pairing technique can provide a more comprehensive examination of 
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content domain representation, it can quickly become burdensome for SMEs when the 

number of items become too large.  For example, the mathematics placement test in the 

current study consists of 107 total items.  If the item-pairing task was used, SMEs would 

be asked to rate item-similarities for 5,671 unique item-pairs.  Not only is this an 

unrealistic task for an individual to complete, but it is also detrimental to the recruitment 

of SMEs.  Additionally, prior research has suggested the use of sorting procedures 

requiring SMEs to sort items into a limited number of categories according to their 

similarities (Sireci & Geisinger, 1995).  The same study also suggested that item-level 

data be obtained to determine how Factor Analysis or Multidimensional Scaling (MDS) 

results compare to the dimensions obtained from the SME similarity ratings. 

For these reasons, the current study employed a card-sorting task to gather data on 

the content areas of the exam.  Replicated from a study by D’Agostino et al. (2011), 

MDS and HCA were used to compare the similarity ratings of external SMEs to the 

similarity ratings of internal SMEs.  Generally, when using MDS in Content Validity 

studies, similarity ratings from SMEs are compared to the original test specifications 

(D’Agostino et al., 2011; Li & Sireci, 2013; Sireci & Geisinger, 1992, 1995).  In the 

current study, there were no formal test specifications.  However, prior research has 

demonstrated the complementary use of MDS and HCA in the development of content 

specifications for professional certification exams (Raymond, 1989; Schaefer et al., 

1992).  Thus, the design of the current study made use of internal SME item-similarity 

ratings to develop the content specifications, which were then compared to external SME 

item-similarity ratings to provide evidence of Content Validity. 
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In educational assessment, evaluating inferences drawn from test scores begins 

with evaluating the test itself (Sireci, 1998a).  Achievement tests, like the mathematics 

placement exam, should represent the intended domain without the presence of material 

external to that domain.  The current study examined the Content Validity of a 

mathematics placement test at a STEM gifted residential high school using a card-sorting 

technique adopted from D’Agostino et al. (2011).  Existing research on placement exams 

has focused on the post-secondary level; however, this study extends the literature base to 

younger grade levels serving a specific, gifted population. 

Methods 

 The following sections describe the methods used to examine the Content 

Validity of a mathematics placement test. 

Participants 

 The recruitment and qualifications of SMEs is an important consideration in any 

Content Validation study.  The number of SMEs needed for a content validation study 

will be driven by the range of representation and experiences desired by the researcher 

(Grant & Davis, 1997).  As described previously, the context of the current study was 

unique in that it occurred at a gifted residential high school focused on STEM.  With its 

advanced curriculum and residential component, the high school is often times compared 

to an institution of higher education.  However, because the school serves students in 

grades 10 through 12, it is categorized as a high school.  Therefore, to properly assess the 

Content Validity of this school’s mathematics placement test, SMEs at varying levels 

(i.e., high school, community college, four-year post-secondary institutions) were 



96 

 

 

 

recruited from across the state of Illinois.  Additionally, the external SMEs were selected 

for recruitment based on their interests, experiences, and/or contributions to mathematics 

and STEM education. 

Final study participants included nine internal SMEs and eight external SMEs.  Of 

the 17 total participants, seven majored in mathematics education and four majored in 

mathematics.  A summary of the internal and external SME samples for which data were 

collected is presented in Table 2 below. 

 

Table 2 

 

Subject Matter Expert Demographics 

 

Characteristic Internal External 

Gender   

 Male 5 5 

 Female 4 3 

Education  
 

 Bachelors 0 1 

 Masters 5 3 

 Doctorate 4 4 

Grade Level Taught  
 

 High School 9 3 

 Community College 0 2 

 4-year University 0 3 

Average Number of Years Teaching 18.17 (SD 11.55) 22.25 (SD 10.50) 

 

Measure 

 Developed in 1985, the continuing purpose of this placement test is to determine a 

student’s incoming mathematical knowledge for appropriate course placement 

commensurate with ability level.  The developers of the exam created a two-part test 
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measuring mathematical knowledge needed prior to entering into a Calculus sequence.  

However, like most teacher-made tests, the items were constructed by the mathematics 

faculty members at the high school without being subjected to formal psychometric 

evaluation. 

 Part I of the assessment measures student’s knowledge of content such as 

simplifying expressions, functions, and exponents.  Students are given 45 minutes to 

complete 50 short-answer items, without a calculator, and are encouraged to show their 

work.  The second part of the exam gives students 85 minutes to complete 57 multiple-

choice items, without a calculator, related to topics such as functions, graphing, 

Trigonometry, and Geometry.  The multiple-choice items used have the following 

response options: the correct answer, three distractor answers, and a fifth response option 

of “I don’t know.”  All responses of the assessment are graded by the mathematics 

faculty members using an answer key for dichotomous scoring (i.e., “Correct” or 

“Incorrect”).  Thus, the possible range of scores on the mathematics placement test is 

from 0 to 107. 

Procedure 

 After consenting to participate, the SMEs were mailed a card-sort packet 

including cards for the 107 items and a response sheet to record their groupings.  The 

cover page of the response sheet asked each individual to report their demographic 

information such as current employer, grade level(s) taught, highest degree earned, major 

of the highest degree earned, and total number of years teaching.  At the top of the second 

page, participants were provided the directions for the card-sorting task which instructed 
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each SME to place the 107 items into meaningful piles or groups based on the similarity 

of the content of the items.  Consistent with the sorting rules described by Trochim 

(1989), SMEs were advised to: (1) place each item or card into only one pile or group, (2) 

refrain from creating as many piles or groups as there are items, and (3) create more than 

one pile.  Upon completion of the card-sorting task, SMEs recorded the item numbers in 

each pile and assigned each group of items a group title or name (Appendix E).  All 

materials were then returned to the Principal Investigator via a prepaid envelope.  On 

average, the task took between 30 to 45 minutes to complete. 

Data Analysis 

Each SME’s coding sheet was transformed into an individual item-similarity 

rating matrix where the test item numbers were listed for both the rows and the columns.  

An entry of “0” indicated that the SME did not categorize a specific item-pair together, 

whereas an entry of “1” indicated that the SME did put the item-pair in the same group 

(D’Agostino et al., 2011).  The diagonal of the square-symmetric matrix contained 1’s, 

representing that an item was always categorized with itself. 

After each individual item-similarity matrix was created, two group item-

similarity matrices were constructed by adding the individual internal and external item-

similarity matrices together, respectively (D’Agostino et al., 2011).  Values of the 

internal group item-similarity matrix range from 0 (no SME chose the item-pair) to 9 (all 

SMEs placed the two items in the same group).  Similarly, values of the external group 

item-similarity matrix ranged from 0 to 8.  Thus, a larger cell value within the matrix 

represented a greater consensus of SMEs regarding the similarity of the items. 
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Since similarity and dissimilarity ratings are inverses of one another, researchers 

have recommended transforming similarity ratings into dissimilarity ratings prior to data 

analysis (Jaworska & Chupetlovska-Anastasova, 2009; Kruskal & Wish, 1978).  For the 

purpose of the current study, the group item-similarity matrices for both internal and 

external SMEs were first converted into group item-similarity ratios.  Using a scale from 

0 to 1, these ratios were then transformed into a group item-dissimilarity matrix using the 

calculation of 1 - njk where n is the matrix cell value for the item-pair j and k where j ≤ k. 

Using SPSS version 24, each group item-dissimilarity matrix was subjected to 

multidimensional scaling (MDS) based on the method by Kruskal and Wish (1978).  The 

two fit indices used were Kruskal’s Stress Function (Kruskal, 1964) and the Squared 

Correlation Index also known as Tucker’s Coefficient of Congruence (Moroke, 2014).  

Similar to other goodness-of-fit indices, Kruskal’s Stress Function is a calculation of the 

residual sum of squares (Kruskal, 1964).  As such, smaller values indicate a better fit 

between the data and the MDS solution.  For the purposes of this study, the following 

stress values were used as guidelines: S = 0 suggests perfect fit; 0 < S ≤ .025 suggests 

excellent fit; .025 < S ≤ .05 suggests good fit; .05 < S ≤ .10 suggests fair fit; and S ≥ .20 

suggests poor fit (Kruskal, 1964).  Secondly, Tucker’s Coefficient of Congruence (T) 

values are interpreted as the proportion of variance explained by the disparities (Hair Jr et 

al., 1995; Moroke, 2014; Whaley & Longoria, 2009).  In other words, T measures how 

well the MDS model fits the original data, implying that higher values indicate better fit.  

In the current study, the MDS solution was considered an acceptable fit if T ≥ .60 (Hair Jr 

et al., 1995; Whaley & Longoria, 2009).  To support interpretation, Euclidean distances 
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for each item were saved on eight dimensions.  The selection of dimensions was 

primarily based on three considerations: (1) the values of the fit indices, (2) the amount of 

change in fit indices from n to n – 1 dimensions, and (3) the interpretability of the 

dimensions (Whaley & Longoria, 2009). 

Next, the item scale coordinates for both internal and external SMEs were 

analyzed using hierarchical cluster analysis (HCA) within SPSS.  The goal of HCA is to 

find the simplest structure possible that still represents homogeneous groupings (Hair Jr 

et al., 1995).  Moreover, by imposing HCA on the MDS solutions, the domain structure 

of the internal SMEs and external SMEs can be compared and the degree of consensus 

between the two domain configurations can be determined (D’Agostino et al., 2011; 

Sireci & Geisinger, 1992).  In this study, HCA was conducted using the agglomerative 

clustering method with Euclidean distances and the average-linkage clustering algorithm 

(Hair Jr et al., 1995; Johnson, 1967; Sarstedt & Mooi, 2014).  Finally, the fit of various 

cluster solutions were analyzed by exploring the results of several validity indices. 

After the final cluster solutions were determined for both the internal and external 

SME responses, the two configurations were compared using the Rand and adjusted Rand 

indices.  The Rand index (RI) computes the overlap between classification schemes, 

while the adjusted Rand index (ARI) controls for overlap by chance due to marginal 

distributions (Hubert & Arabie, 1985; Rand, 1971).  The Rand index was calculated as 

follows: 

𝑅𝐼𝑖𝑗 = 
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
       [4] 
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where 

 a is the number of pairs of items that are placed in the same cluster for both 

internal and external SMEs; 

 b is the number of pairs of items that are placed in the same cluster for the internal 

SMEs, but not in the same cluster for the external SMEs; 

 c is the number of pairs of items that are placed in the same cluster for the 

external SMEs, but not in the same cluster for the internal SMEs; 

 d is the number of pairs of items that are placed in different clusters for both 

internal and external SMEs (D'Ambrosio, Amodio, Iorio, Pandolfo, & Siciliano, 

2020; Rand, 1971; Warrens, 2008). 

Using the same definitions as in equation 4, the adjusted Rand index (ARI) can be 

computed as: 

𝐴𝑅𝐼𝑖𝑗 = 
2(𝑎𝑑−𝑏𝑐)

(𝑎+𝑏)(𝑏+𝑑)+(𝑎+𝑐)(𝑐+𝑑)
      [5] 

In equation 5, the ARI gives a potential score between -1 and 1, such that a score greater 

than zero would indicate that the probability of a link being present between the two 

clusters is greater than random chance (Hoffman, Steinley, & Brusco, 2015).  However, 

in each instance, a higher value closer to 1 indicates a stronger overlap. 

Results 

 The current study used two data analysis techniques to examine the Content 

Validity of a mathematics placement test at a gifted, STEM residential high school.  

Results for each data analysis technique used are described below. 
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Multidimensional Scaling 

 Upon subjecting each item-dissimilarity matrix to a multidimensional analysis, 

the stress indices and proportions of variance explained were compared for the 

configurations of six to nine dimensions.  The fit indices for each of the four 

configurations are in Table 3 below. 

 

Table 3 

 

Fit Indices for Multidimensional Scaling Analysis 

 

Number of Dimensions Internal SMEs External SMEs 
 S T S T 

6 0.12542 0.99210 0.13417 0.99096 

7 0.11681 0.99315 0.11328 0.99356 

8 0.09656 0.99533 0.09704 0.99528 

9 0.08645 0.99626 0.08649 0.99625 

Note. S = Kruskal’s Stress (Stress-I), T = Tucker’s Coefficient of Congruence 

 

Taking into account the interpretability of the dimensions with the above information, the 

final solution for both Internal and External SMEs was eight dimensions.  The 

coordinates in eight dimensions were saved for each of the final solutions for further 

analysis using HCA. 

Hierarchical Cluster Analysis 

 To examine the domain structure of the internal and external SME solutions, the 

final item coordinates for each of the eight dimensional solutions were entered into a 

HCA.  To begin, the number of clusters were allowed to range from a minimum of 1 to a 

maximum of 106 in each analysis.  In order to determine how many clusters to retain, a 

Scree Plot was created by graphing the number of possible clusters on the x-axis against 
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the distances at which the clusters were combined on the y-axis.  The scree plot was then 

visually examined for a bend (i.e., departure from parallel to the y-axis to perpendicular) 

to indicate a possible solution for how many clusters to retain.  Similarly, a dendrogram 

(i.e., tree graph) was analyzed alongside the agglomeration schedule to identify large 

differences between two subsequent groupings in the analysis.  When large distances are 

present between two cluster groupings, this implies that two non-similar groups are 

combined, which suggests a possible final solution. 

 The largest difference of .169 in the external SME analysis occurred between 

items 98 and 99 suggesting an eight cluster solution.  In a similar way, the largest 

difference in the internal SME analysis was .122 between items 103 and 104, indicating a 

three cluster solution.  Due to the large number of items on the mathematics placement 

test (107 items), a three-cluster solution was determined to be insufficient.  Moreover, 

one of the goals of using HCA was to compare the two domain structures between 

internal and external SMEs, implying that each of the final solutions needed to contain 

the same number of clusters.  Next, an eight-cluster solution was examined for the 

internal SMEs.  However, the distance between internal SME items 98 and 99 was small 

with a difference of .021. 

 Since a three- and eight-cluster solution were inadequate for both internal and 

external SMEs, the second largest change in distances was examined.  The second largest 

difference for the internal SME analysis was .094, which occurred between items 100 and 

101 suggesting a six-cluster solution.  Although the second largest difference did not 

occur between items 100 and 101 for the external SMEs, there was still a notable change 
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of .05.  Therefore, based on the cluster structure and interpretability, it was determined 

that a six-cluster solution would be retained for both internal and external SMEs.  When 

possible, the most frequently cited group title was used.  Therefore, the final six clusters 

were: (1) Algebraic Operations, (2) Solving Equations, (3) Graphing Functions, (4) 

Evaluating Functions, (5) Trigonometry, and (6) Geometry. 

 Lastly, to quantify the degree of concordance between the internal and external 

SME configurations, the Rand index (RIij) and adjusted Rand index (ARIij) were 

calculated.  These indices are reported on a scale from 0 to 1, with higher values 

indicating a stronger overlap.  Thus, a Rand index of .63 suggests an agreement between 

the two classifications of approximately 63%.  An adjusted Rand index of .13 indicates 

that there is some congruence between the two domain definitions, providing initial 

Content Validity evidence. 

Discussion 

 In the process of Content Validation, two readily recognizable techniques for 

evaluating item similarities and relevance are item-pairing and card-sorting tasks.  Item-

pairing tasks, while useful for a more comprehensive examination of content domain 

representation, can be burdensome for the SMEs as the number of test items increase.  

D’Agostino et al. (2011) proposed a novel approach by combining the methods of Sireci 

and Geisinger (1992, 1995) and Trochim (1989), which provided an efficient method for 

exploring domain configurations.  This efficiency was further evidenced in the current 

study as SMEs categorized 107 test items in less than 45 minutes. 
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 The current study further extended these methods by drawing on the research of 

Raymond (1989) and Schaefer et al. (1992).  Through their demonstration of developing 

content specifications using both MDS and HCA, this study was able to make use of the 

internal SME ratings to create the content specifications.  The resulting models for the 

internal and external SMEs suggested a virtually unanimous agreement regarding the 

Trigonometry and Geometry items, but differed in their groupings and the level of detail 

related to Algebra and other items.  The average number of card-sorting groups for the 

internal SMEs was approximately 16.7, compared to approximately 19.1 for the external 

SMEs. 

While internal and external SMEs often grouped two items similarly, the final 

cluster solutions differed partly due to the level of detail.  For example, one external SME 

placed items 75, 80, and 93 in one pile and named it “Basic Trig” with items 76 – 79 and 

81 – 87 in another pile named “Advanced Trig.”  Several other SMEs categorized these 

same items together and provided a similar group name such as “Trigonometry.”  

Another example of the differences in categorization is demonstrated between internal 

SME #4 and external SME #7.  Internal SME #4 labeled one of their larger item 

groupings as “Exponents and Polynomials.”  Rather than having one overarching 

category of polynomials, external SME #7 listed more detailed item groupings such as 

“Operations with Polynomials,” “Factoring Polynomials,” and “Polynomial Functions.”  

Due to this discrepancy between the internal and external SMEs, many item pairs were 

grouped similarly, but ultimately ended up in different clusters. 
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 It is important to note that the two methods used, MDS and HCA, were 

complementary to one another in this study.  The purpose was not to provide alternative 

ways to view and describe the data, but rather to use HCA as a way to visually represent 

the MDS configurations.  Additionally, the clustering was conducted on the unweighted 

item coordinates of the MDS solutions, thus assuming that each dimension was 

considered equally important to the SMEs.  Furthermore, by comparing the internal and 

external SME ratings, these two approaches provided initial evidence of Content Validity 

by identifying groups of items perceived to be similar by both the internal and external 

experts. 

Implications 

Validity is context- and population-specific implying that assessments designed 

for the general student population can produce biased results without further 

psychometric scrutiny and documentation (Schmidt & Hunter, 1977).  Evidencing the 

necessary psychometric support for the sample used and the context of the study through 

rigorous Content Validation procedures is needed to ultimately produce reliable and valid 

scores resulting in unbiased study results.  Data collected from a card-sorting task 

indicated that the quality and appropriateness of items on the mathematics placement test 

were perceived similarly by internal and external SMEs.  Therefore, faculty members and 

educational administrators of the high school in the current study can be reassured that 

the mathematics placement test adequately measures the mathematical domain of interest.  

Additional research in this area can provide further insight regarding the knowledge and 

skills measured by the mathematics placement test and how the larger domain of 
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mathematical knowledge may be further subdivided to provide information that is more 

specific.  Finally, use of the content validation procedures from D'Agostino and 

colleagues (2011) has implications for researchers in measurement.  The application of 

this technique in a new context, and with a test lacking definitive specifications, can 

provide researchers with another example and extension to evidence content validity. 

Limitations and Future Research 

 Although the current study supports initial evidence of Content Validity, there 

were some limitations.  Within the final six-cluster solution, the third cluster (i.e., 

Graphing Functions) had no overlapping items between the internal and external SMEs.  

Cluster 3 for the internal SMEs included items on sequences and series, combinatorics, 

and vectors, most of which appeared in Cluster 1 for the external SMEs.  Comparatively, 

Cluster 3 for the external SMEs included items such as linear, exponential, and 

logarithmic functions and graphs.  Upon further examination of the individual SME 

responses to the card-sorting task, it was determined that both the internal and external 

SMEs tended to group sequences and series, combinatorics, and vectors into single card 

piles.  Thus, while the two SME groups were in agreement, it is possible that the 

discrepancy in the average number of card-sorting groups for internal and external SMEs 

influenced how these items were ultimately clustered.  Moreover, when debriefing with 

the internal SMEs, a few individuals made mention that the current structure of their 

curriculum directly influenced how they categorized items during the card-sorting task.  

Future research may consider using both past and present internal SMEs to potentially 

negate the biasing effects of the current curriculum. 
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 Another limitation of the current study was the small sample size obtained for 

both the internal and external SMEs.  Grant and Davis (1997) stated that the number of 

SMEs needed for a content validation study is driven by the range of representation and 

experience desired by the researcher.  While a wide range of experience and contribution 

was sought through the use of email recruitment and subsequent reminders, this study had 

a response rate of about 65%.  Additional research should consider other sampling 

methods and tools for recruitment to obtain larger sample sizes both internally and 

externally. 

 As previously mentioned, Content Validity contains three components related to 

the domain: (1) Definition, (2) Representation, and (3) Relevance.  Moreover, the first 

component, Domain definition, refers to the operational definition of the content domain 

describing both the content area(s) of interest and the level(s) of cognition required 

(Sireci, 1998a).  A final limitation of the current study was the absence of an examination 

regarding the level(s) of cognition required for the various items on the mathematics 

placement test.  Future research may consider extending the current study by asking 

subject matter experts to rate the level(s) of cognition required for each item using a 

framework such as Bloom’s Taxonomy (Bloom, Engelhart, Furst, Hill, & Krathwohl, 

1956).  In doing so, faculty and administrators can examine whether the level(s) of 

cognition required of students within the mathematics courses is in alignment with the 

level(s) of cognition being assessed on the mathematics placement test. 
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Conclusions 

 Previous research surrounding placement exams and their psychometric properties 

have been largely conducted at the post-secondary level.  However, in an era of 

accountability, it is recommended that educational institutions be able to defend their 

placement practices through rigorous examination of the corresponding tests, as these 

decisions have a significant impact on students’ future educational outcomes (Mattern & 

Packman, 2009; McDaniel et al., 2007; Morgan & Michaelides, 2005; Norman et al., 

2011; Shaw, 1997).  This study provides a first step in encouraging other schools with a 

STEM and/or gifted education focus to begin the validation process and extend and 

improve upon the educational testing practices at other levels of schooling. 

Results from the current study supported preliminary evidence of Content 

Validity for a mathematics placement test at a gifted, residential STEM school using 

MDS and HCA.  Future research should further examine the psychometric properties of 

this exam including, but not limited to, Construct Validity, Criterion-Related Validity, 

Reliability, and a more detailed Item Analysis.  
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CHAPTER V – MANUSCRIPT 2 

EXAMINING THE VALIDITY AND RELIABILITY OF A MATHEMATICS 

PLACEMENT EXAM AT A SCIENCE, TECHNOLOGY, ENGINEERING, AND 

MATHEMATICS (STEM) GIFTED RESIDENTIAL HIGH SCHOOL 

Abstract 

Post-secondary institutions administer placement exams due to the 

incomparability of unknown factors such as the content and rigor of previous courses and 

the grading scales used at different schools (Kossack, 1942; Linn, 1994; Ngo & Kwon, 

2015; Noble et al., 2003).  The primary objective of placement testing is to determine a 

student’s incoming knowledge for appropriate course placement commensurate with 

ability level.  Before entering the decision-making process, institutions must provide 

evidence regarding the psychometric properties of their assessment(s). 

The current study examined the Construct Validity and Internal Consistency 

Reliability of a mathematics placement test at a Science, Technology, Engineering, and 

Mathematics (STEM) gifted residential high school.  Existing data from four cohorts 

were obtained and analyzed using Exploratory Factor Analysis and the Kuder-Richardson 

(KR-20) Formula for internal consistency reliability.  Results indicated that the 

mathematics placement test is comprised of three factors, namely PreCalculus, Geometry, 

and Algebra 1.  Strong Internal Consistency Reliabilities suggest that the items in each 

factor are related to one another and that they are measuring the same construct.  

Therefore, this study demonstrated evidence of Construct Validity and Internal 
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Consistency Reliability for the population of interest and can be used in the decision-

making process of course placement. 

Keywords: Exploratory Factor Analysis, Internal Consistency Reliability, Mathematics 

Placement Test, STEM Education 

Introduction 

In educational measurement, constructs such as achievement, interest, and 

performance are assigned numerical values, through the use of a wide variety of tests and 

assessments, to infer the abilities and proficiencies of students.  The purpose of 

achievement testing is to measure students’ actual knowledge or acquired skills in order 

to reliably distinguish between students who do and do not have some level of the 

construct of interest (Slavin, 2007).  As one of the primary measures used in educational 

research, there is an abundance of literature focused on achievement testing. 

Beginning at the post-secondary level, numerous articles have been published 

regarding the use of placement tests for incoming students.  Many of these articles 

mention the continuing decline of academic standards, specifically in the area of 

mathematics (e.g., Crist et al., 2002; Hoyt & Sorensen, 2001; Medhanie et al., 2012; Ngo 

& Kwon, 2015; Parker, 2005; Schmitz & delMas, 1991).  Unsurprisingly, the lowered 

academic standards in math are said to be related to students’ scoring lower on 

mathematics placement tests.  Due to the lower test scores, more students are being 

assigned to take remedial coursework, which has sparked a conversation about whether 

or not students are less prepared for college-level work or if the placement tests used are 

appropriate for this type of decision (Morgan & Michaelides, 2005).  
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More specifically, nearly one-third of all students entering community colleges 

take at least one remedial or developmental course in mathematics (e.g., Bailey, 2009; 

Hoyt & Sorensen, 2001; Kowski, 2013; Medhanie et al., 2012; Melguizo et al., 2014; 

Scott-Clayton, 2012).  Not only do these remedial courses lower student motivation, but 

they also add time to student graduation.  Furthermore, the additional time students spend 

taking non-credit courses increases their overall cost to attend and lowers retention rates 

(Medhanie et al., 2012; Melguizo et al., 2008; Ngo & Kwon, 2015; Scott-Clayton, 2012).  

Some community colleges have even been accused of placing students into these 

remedial, non-credit courses as a way to increase revenue (Armstrong, 2000).  As a 

result, post-secondary institutions are now being asked to provide evidence of the 

effectiveness of their placement procedures and measures to ensure that the negative 

consequences of misplacement are minimized (Armstrong, 2000; Morgan & Michaelides, 

2005; Smith & Fey, 2000).  After all, accurately placing students is a necessary, but not 

sufficient, condition for a placement system as a whole to be effective (Sawyer, 1996). 

In the era of accountability, placement practices and methods that are rigorous 

and defensible are critical for educational institutions at varying levels to justify their use 

and to confront questions of their impact on students’ educational outcomes.  Frisbie 

(1988) stated that when the reliability of scores as accurate measures of student 

achievement are in question, these scores cannot be used to make future educational 

decisions.  Furthermore, one validation study is not sufficient to guarantee the 

psychometric properties of an assessment throughout its lifetime.  Instead, the 

assessment(s) and policies used, in contexts such as placement testing, need to be 



113 

 

 

 

continuously reviewed and evaluated to assure that students are being placed into courses 

commensurate with their ability in order to maximize the chances of success (Linn, 1994; 

Mattern & Packman, 2009; McFate & Olmsted III, 1999; Norman et al., 2011; Wiggins, 

1989).  Overall, when properly constructed and evaluated, assessments can enhance later 

performance and provide feedback on what has and has not been learned to both the 

student and other interested stakeholders. 

The purpose of this study was to provide evidence of Construct Validity and 

Internal Consistency Reliability of a mathematics placement test at a Science, 

Technology, Engineering, and Mathematics (STEM), gifted, residential high school.  

Previous research on placement exams have been conducted at the post-secondary level; 

however, this study extends the research to younger grade levels serving a specific, gifted 

population. 

Literature Review 

Although research has not extensively examined placement testing from middle 

school to high school, a large literature base exists using college and university student 

populations.  In fact, approximately 90% of post-secondary institutions use placement 

tests (Latterell & Regal, 2003).  The near-universal practice of administering placement 

tests emerged due to the incomparability of unknown factors such as the content and rigor 

of courses and the grading scales used at different schools (Kossack, 1942; Linn, 1994; 

Ngo & Kwon, 2015; Noble et al., 2003).  Within the setting of a post-secondary 

institution, students complete placement tests to determine the appropriate level of 

beginning coursework.  In the same way, once students are accepted into the high school 
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of the current study, they too must complete a series of placement tests to guide their 

initial course enrollment decisions. 

 The overarching purpose of placement tests is to match students with a level of 

instruction that is appropriate given their previous academic preparations (Akst & Hirsch, 

1991; Frisbie, 1982; Marshall & Allen, 2000; Mattern & Packman, 2009; McFate & 

Olmsted III, 1999; Noble et al., 2003; Sawyer, 1996).  Prior research has shown that 

course placement decisions can have a significant impact on a student’s future academic 

preparation (McDaniel et al., 2007; Morgan & Michaelides, 2005).  For example, 

students who begin post-secondary mathematics in a course that is appropriate given their 

background have an increased chance of succeeding in their first course in addition to 

subsequent mathematics courses (Mattern & Packman, 2009; Norman et al., 2011; Shaw, 

1997).  For this reason, more research is needed to thoroughly examine placement tests 

and procedures to ensure that student success is maximized while the consequences of 

misplacement are minimized.  Although these placement tests are typically considered 

“high-stakes,” the psychometric properties of such tests have received relatively little 

attention (Callahan, 2005; Grubb & Worthen, 1999; Scott-Clayton, 2012).  As a result, 

more research is needed to investigate and evidence the psychometric properties of 

placement tests. 

Validity 

Validity is typically defined as the extent to which an instrument measures what it 

is intended to measure (Wiersma & Jurs, 2009).  While this definition is somewhat 

accurate, it is often times misleading.  That is, the instrument itself is not validated, rather 
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the conclusions and interpretations drawn from the scores have validation evidence 

(Cook & Beckman, 2006; Ebel, 1956; Kimberlin & Winetrstein, 2008; Messick, 1995; 

Moss, 1992; Schmitz & delMas, 1991).  Using this specificity, validation is defined by 

Cronbach (1971) as an evidence collecting process in order to support the inferences 

being made from the test scores.  The three major types of validity are Content Validity, 

Construct Validity, and Criterion-Related Validity, with Construct Validity being the 

focus of the current study. 

Construct Validation refers to a process by which a judgment is made regarding 

whether or not an instrument adequately measures the intended construct.  A construct, 

also referred to as a latent variable, is not directly observable and has been defined as 

“some postulated attribute of people, assumed to be reflected in test performance” 

(Cronbach & Meehl, 1955, p. 283).  Commonly studied psychological constructs include 

anxiety, achievement, and personality.  In order to measure a construct of interest, 

researchers emphasize the need to transform a conceptual definition into an operational 

definition.  The operational definition acts as a bridge to connect the conceptual 

definition to more concrete observations or indicators.  These observations are then 

assigned numbers to represent how much of the construct an individual possesses. 

Aspects of Construct Validation are typically reviewed during the instrument 

development phase.  During this time, the construct of interest and its associated content 

are manifested into concrete tasks that individuals must complete.  In the context of 

educational assessment, content standards of a course are translated into performance 

standards which further define “how much of the content standards students must know 
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and be able to do to achieve a particular level of competency” (Morgan & Michaelides, 

2005, p. 1).  Four widely used approaches to Construct Validation are: (1) the use of 

correlations between the construct and other variables, (2) differentiation between groups, 

(3) Factor Analysis, and (4) the Multitrait-Multimethod Matrix (Campbell & Fiske, 1959; 

Crocker & Algina, 2008).  In the current study, evidence of Construct Validity was 

obtained through an Exploratory Factor Analysis (EFA). 

Internal Consistency Reliability 

Broadly stated, reliability measures the consistency or accuracy of the research 

and provides evidence to the extent to which the research can be repeated (e.g., Cook & 

Beckman, 2006; Cronbach, 1951; Nunnally & Bernstein, 1978; Rossi et al., 2003; 

Wiersma & Jurs, 2009).  There are multiple different types of reliability (i.e., Test-Retest, 

Alternate Forms, and Internal Consistency) each of which have their specific uses.  A 

discussion regarding the various types of reliability is beyond the scope of this study, and 

readers are encouraged to refer to measurement focused textbooks such as those by Allen 

and Yen (2001) or Crocker and Algina (2008) for further information. 

In the current study, Internal Consistency Reliability was examined, which 

provides evidence that the items on an instrument are all related and measure the same 

construct (Cook & Beckman, 2006; Crocker & Algina, 2008; Henson, 2001; Kimberlin & 

Winetrstein, 2008; Wiersma & Jurs, 2009).  This form of reliability only requires a single 

test administration (i.e., compared to forms of reliability requiring multiple 

administrations such as Test-Retest or Alternate Forms), which was appropriate to 
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examine in the current study since the mathematics placement test was only administered 

once to students (Feldt, Woodruff, & Salih, 1987).  

At many institutions, the stated intention of placement testing is to prevent 

students from enrolling in courses for which they are inadequately prepared and/or 

unlikely to succeed.  However, a common concern is that placement instruments may 

prevent “able” students from taking courses that they are actually prepared and capable to 

complete (Flores, 2007).  Prior to discussing the effectiveness of the decision-making 

process, institutions must first provide evidence regarding the psychometric properties of 

their assessments.  The purpose of the current study was to examine the Construct 

Validity and Internal Consistency Reliability of a mathematics placement test used at a 

STEM, gifted, residential high school. 

Methods 

The following sections describe the methods used to examine the Construct 

Validity and Internal Consistency Reliability of a mathematics placement test. 

Participants and Procedures 

Existing data from four cohorts of students were used to examine the research 

questions in this study.  These cohorts consisted of students entering the high school their 

sophomore year, beginning in the 2014/2015 academic year and ending in the most recent 

2017/2018 academic year, for which complete data were available. 

Equivalence across the four cohorts was examined for five demographic variables 

using Chi-Square (χ2) Tests of Association and One-Way Analyses of Variance 

(ANOVAs).  Chi-Square Tests of Association were conducted across the four cohorts for 
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the variables of sex and race/ethnicity.  There were no significant differences in the 

proportions between cohort year and either sex or race/ethnicity.  For the three remaining 

variables of socioeconomic status (i.e., median family income), incoming SAT Math 

(SAT_M) subscores, and incoming SAT Evidence Based Reading and Writing 

(SAT_ERW) subscores, ANOVAs were used.  Again, there were no significant 

differences between cohort years for each of the three variables.  Therefore, all four 

cohorts were found to be statistically equivalent and were combined into one sample for 

further analysis. 

Measure 

The mathematics placement test was developed by mathematics faculty members 

in 1985.  The original and continuing purpose of the mathematics placement test is to 

determine a student’s incoming mathematical knowledge for appropriate initial course 

placement commensurate with ability level.  Thus, generally speaking, the two-part 

placement exam assesses mathematical knowledge needed prior to entering into a 

Calculus sequence.  However, neither of these parts nor the test as a whole have been 

subjected to psychometric evaluation, specifically using more advanced quantitative 

techniques such as Exploratory Factor Analysis (EFA). 

Part I of the assessment measures student’s knowledge of content such as 

simplifying expressions, functions, and exponents.  Students are given 45 minutes to 

complete 50 short-answer items, without a calculator.  All responses are graded by the 

mathematics faculty members using an answer key for dichotomous scoring (i.e., 

“Correct” or “Incorrect”).  Thus, the possible range of scores on Part I is from 0 to 50. 
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After the allotted time has expired for Part I, exam proctors collect any remaining exams 

and distribute Part II. 

The second portion of the exam gives students 85 minutes to complete 57 

multiple-choice items, without a calculator, covering content such as graphing and 

evaluating functions, laws of exponents and logarithmic functions, right triangle 

trigonometry, and law of sines and cosines.  The multiple-choice format used on this 

portion of the test provides students with the correct answer, three distractor answers, and 

a fifth response option of “I don’t know.” 

Although not explicitly written on the test instructions, exam proctors emphasize 

the use of the “I don’t know” option.  By purposefully mentioning this, it is believed that 

students will not guess, but rather consider using the “I don’t know” response option so 

that they do not accidentally place into a higher course than academically appropriate.  A 

similar argument was made by Prieto and Delgado (1999) who noted that educational 

standards should not be influenced by desired psychometric properties of a test.  Said 

another way, if students are unsure of an answer, it seems more appropriate for them to 

omit the item rather than encouraging them to guess.  After the exam is complete, the 

multiple-choice items are scanned into a grading software program using a scantron 

reader where all items are scored dichotomously (i.e., “Correct” or “Incorrect”), even if 

the student selected the “I don’t know” option.  The possible range of scores is from 0 to 

57 on Part II. 
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Data Analysis 

In the current study, evidence of Construct Validity was obtained through an 

Exploratory Factor Analysis (EFA).  Pett et al. (2003, p. 2) describe factor analysis as “a 

complex array of structure analyzing procedures used to identify the interrelationships 

among a large set of observed variables and then, through data reduction, to group a 

smaller set of these variables into dimensions or factors that have common 

characteristics.”  The two broad classifications of factor analysis are Exploratory Factor 

Analysis (EFA) and Confirmatory Factor Analysis (CFA).  Researchers use EFA when 

the underlying factor structure of the construct of interest is unknown (Pett et al., 2003; 

Thompson, 2004).  CFA, on the other hand, is used when the researcher has some 

knowledge or understanding of the underlying factor structure from previous theories of 

the construct of interest.  In the current study, the original factor structure of the 

mathematics placement test was unknown.  Thus, an EFA was conducted using PRELIS 

and LISREL 9.30. 

Moreover, previous research has long debated the appropriate sample size to 

conduct an EFA, with approximately 10 subjects per variable as the general consensus 

(Comrey & Lee, 1992; Costello & Osborne, 2005; Nunnally & Bernstein, 1978).  In the 

current study, there were 107 items from the mathematics placement test that were factor 

analyzed.  Using the 10:1 subject to variable ratio guideline, 1,070 cases are needed to 

conduct the EFA.  As previously mentioned, each of the four cohorts contained 

approximately 280 students, which led to a final sample size of 1,125.  Therefore, the 



121 

 

 

 

sample size of the current study surpassed the recommended 10:1 subject to variable 

ratio. 

Assumptions.  The main underlying assumption of EFA is that the observed 

variables are linear combinations of underlying hypothetical/unobservable factors (Kim 

& Mueller, 1978).  The goal in this analysis is to condense the information contained in 

the original variables into a smaller set of factors with a minimal loss of information and 

simplest method of interpretation (i.e., parsimony; Hair Jr et al., 1995; Harman, 1976).  

That is, EFA, as an exploratory analytical technique, is used to understand the nature of 

the relationships between observed variables and factors and to account for the 

covariation between observed variables (Tucker & MacCallum, 1997).  When discussing 

and analyzing linear combinations, mathematical theories and assumptions surrounding 

matrices are used. 

Another assumption of EFA is univariate/multivariate normality, which refers to 

the shape of the distribution of data and its congruence to a normal distribution curve 

(Hair Jr et al., 1995).  However, the current study data were dichotomously scored, and 

thus, this assumption was not examined.  Similarly, a third consideration for conducting 

an EFA is the strength of the relationship between two items on an instrument.  This 

information is typically summarized by the Pearson Product-Moment Correlation 

Coefficient Matrix, sometimes referred to as Pearson’s r or the correlation matrix (Pett et 

al., 2003).  Because the data are dichotomous, the strength of the relationship between 

two items on the instrument was assessed using the Tetrachoric Correlation Matrix.  

Tetrachoric Correlation Coefficients are used when the latent trait underlying the data is 
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theoretically continuous, but is measured dichotomously (Bonett & Price, 2005; Lorenzo-

Seva & Ferrando, 2012; Uebersax, 2006b).  In this study, the underlying latent trait was 

mathematical knowledge, which can be conceptualized as a continuous variable.  

However, this latent trait is scored dichotomously on the mathematics placement exam 

(i.e., scoring “Correct” or “Incorrect”). 

Furthermore, in order to use Tetrachoric Correlations, the following assumptions 

must be met: (1) the latent trait is normally distributed, (2) rating errors are normally 

distributed, (3) the variance is homogeneous across all levels of the latent trait, (4) errors 

are independent between items, and (5) errors are independent between cases (Uebersax, 

2006b).  The primary limitation of using Tetrachoric Correlations is that these 

assumptions cannot be mathematically tested. 

The goal of factor analysis is to explain the interrelationships among variables, 

and it is important to have “acceptable” correlation coefficients.  Various researchers 

have differing opinions on what constitutes an “acceptable” correlation coefficient, which 

is dependent upon the level of measurement of the variables (i.e., nominal, ordinal, 

interval, or ratio) and how the correlation coefficient is calculated.  One generally 

accepted guideline for interpreting the Pearson Product-Moment Correlation Coefficient 

is that correlation values should be greater than or equal to .30 (Costello & Osborne, 

2005; Pett et al., 2003; Stevens, 2012; Tabachnick & Fidell, 2007).  Because the values of 

Tetrachoric Correlations values are interpreted similarly to Pearson’s r, the above stated 

guideline was consulted when examining the Tetrachoric Correlation Matrix in the 

current study. 
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Exploratory factor analysis.  Exploratory Factor Analysis (EFA) is considered 

to be a complex process that has many options and few absolute guidelines (Costello & 

Osborne, 2005).  The following paragraphs describe the methods of factor extraction, 

rotation, solution refinement, and final interpretation used in the current study. 

When conducting an EFA, the determinant of the correlation matrix is evaluated 

to determine if an inverse matrix exists.  If the determinant of the correlation matrix is 

zero, an inverse matrix does not exist, implying that there are no interrelationships 

between the items (Pett et al., 2003).  The correlation matrix would, in this case, not be 

called an identity matrix.  These calculations can all be summarized in what is known as 

Bartlett’s Test of Sphericity (Bartlett, 1950).  In a similar way, the Tetrachoric 

Correlation Matrix calculated with dichotomous data can have a property called non-

positive definiteness (Uebersax, 2006a).  This occurs when one or more eigenvalues are 

negative, suggesting that there are linear dependencies among some items (Lorenzo-Seva 

& Ferrando, 2020).  When linear dependencies are present, this indicates that one or more 

eigenvalues are close to zero, meaning that the matrix is close to being non-invertible 

(Margalit & Rabinoff, 2018; Pett et al., 2003).  Thus, when negative eigenvalues are 

present and the matrix is close to being singular (i.e., non-invertible), then the extraction 

methods of Maximum Likelihood (ML) and Generalized Least Squares (GLS) cannot be 

used because of their reliance on the inverse matrix.  Furthermore, ML and GLS 

extraction methods were not used in this study due to their underlying assumption of 

multivariate normality.  Instead, the factor extraction method of Minimum Residuals 

(MINRES), which is equivalent to Unweighted Least Squares (ULS), was used since its 
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calculations do not rely on the inverse matrix or multivariate normality (Jöreskog, 2003; 

Uebersax, 2006a). 

Regarding the number of factors to be extracted, the two prominent methods used 

for EFA include the Kaiser-Guttman Rule for eigenvalues (e.g., Comrey & Lee, 1992; 

Guttman, 1954; Kaiser, 1960; Nunnally & Bernstein, 1994) and the Scree Plot (Cattell, 

1966).  The Kaiser-Guttman Rule tends to be more objective in that this method extracts 

those factors whose eigenvalues are greater than 1.  On the other hand, examining the 

Scree Plot requires more of a subjective decision about where the elbow of the plot is 

located and consequently how many factors should be retained.  For these reasons, 

researchers tend to use a combination of these methods in EFA to guide decisions 

regarding the number of retained factors. 

In the current study, the statistical software program PRELIS was used due to its 

ability to handle dichotomous data and calculate the Tetrachoric Correlation Matrix.  

However, Scree Plots are not rendered using this program.  Previous research has 

indicated that results obtained through a Hierarchical Cluster Analysis (HCA) are similar 

to those obtained through factor analytic procedures (Capra, 2005; Revelle, 1979).  For 

this reason, EFAs were conducted using existing cluster solutions (i.e., examined in 

Manuscript 1), as a guide for the number of factors to extract.  Therefore, as EFA is an 

explanatory, theory-driven data analytic strategy, additional iterations of the data were 

conducted with a specific number of factors to extract that were both above and below 

the previous amounts. 
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The next consideration when planning an EFA is rotation of the extracted factors, 

which aids in simplifying and clarifying the underlying data structure (i.e., to obtain 

simple structure).  Simple structure is attained when there are high item loadings on one 

factor and smaller item loadings on the remaining factors, resulting in a “cleaner” factor 

solution that is more easily interpreted (Costello & Osborne, 2005; Williams, Onsman, & 

Brown, 2010).  The two common approaches in data rotation are orthogonal and oblique, 

each having different underlying assumptions. 

An orthogonal rotation assumes that the underlying factors are uncorrelated, 

whereas an oblique rotation assumes the opposite (e.g., Costello & Osborne, 2005; 

Gorsuch, 1983; Pett et al., 2003; Thompson, 2004).  Since the underlying latent trait is 

mathematical knowledge, a relationship among the underlying factors was expected, 

necessitating the use of an oblique rotation.  Of the possible oblique rotation methods 

(i.e., Direct Oblimin, Promax, Orthoblique), the Promax rotation was used in the current 

study.  One advantage of the Promax rotation is that it begins with an orthogonal rotation, 

allowing for the possibility that the underlying factors are in fact uncorrelated (Pett et al., 

2003).  Additionally, Gorsuch (1983) argued that the Promax rotation ultimately results 

in stronger correlations between factors and achieves a more simple structure.  

Accordingly, the oblique rotation method Promax was used. 

Using information from the above mentioned model specifications, the default 

factor extraction solution was examined for its representativeness and overall fit to the 

data.  Again, since this was an EFA and the underlying factor structure was unknown, 

additional factor extraction solutions were explored and compared to the initial solution.  
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In doing so, the final interpretation of the factor structure was supported through evidence 

from the collection of models, including but not limited to the amount of variance 

explained, the factor loadings, and the correlations between factors. 

Internal consistency reliability.  Reliability refers to the degree to which data 

collection, data analysis, and data interpretations are consistent provided the surrounding 

conditions remain constant (Wiersma & Jurs, 2009).  As such, Internal Consistency 

Reliability provides evidence of accuracy of results when the same measure is used.  

Moreover, “internal consistency” would suggest that the items within a measure correlate 

strongly with one another (Henson, 2001; Kimberlin & Winetrstein, 2008). 

Two well-known methods that assess Internal Consistency Reliability are 

Coefficient (Cronbach’s) Alpha and the Kuder-Richardson Formulas (Cronbach, 1951; 

Kuder & Richardson, 1937).  As shown below, previous research has demonstrated the 

equality of Cronbach’s Alpha and the Kuder-Richardson Formulas (e.g., Cliff, 1984; 

Crocker & Algina, 2008; Feldt, 1969; Onwuegbuzie & Daniel, 2002) for binary data.  

Cortina (1993) elaborated further by stating that Cronbach’s Alpha is a more general 

version than the Kuder-Richardson estimate.  Cronbach’s Alpha can be calculated by 

using the formula 

 ∝̂=  
𝑘

𝑘−1
 (1 − 

∑ �̂�𝑖
2

�̂�𝑋
2 )      [6] 

where k is the number of items on the test, �̂�𝑖
2 is the variance of item i, and �̂�𝑋

2 is the total 

test variance.  Likewise, with a simple substitution of pq for the variance of item i, the 

Kuder-Richardson estimate is calculated as follows: 
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 𝐾𝑅20 = 
𝑘

𝑘−1
 (1 − 

∑𝑝𝑞

�̂�𝑋
2 )       [7] 

However, when items are dichotomously scored, although equal, the Kuder-Richardson 

Formula (KR-20) is preferred over Cronbach’s Alpha. 

Researchers Kuder and Richardson (1937) developed two formulas for estimating 

internal consistency reliability, namely the KR-20 and the KR-21.  While computed 

similarly, the KR-20 and KR-21 formulas differ in their assumption of item difficulties.  

If each item is assumed to have the same level of difficulty, then the KR-21 formula can 

be used (Crocker & Algina, 2008; Kuder & Richardson, 1937; Onwuegbuzie & Daniel, 

2002).  However, the current study assumes that the item difficulties vary, which 

necessitates calculating KR-20 as the estimate of internal consistency reliability. 

Considerable attention has been given to the range of generally accepted values 

for Cronbach’s Alpha and KR-20 indices.  While an internal consistency reliability 

estimate of .70 may be advisable in some contexts of exploratory research (Nunnally & 

Bernstein, 1978), Ding and Beichner (2009) suggested that the value of KR-20 be greater 

than or equal to .80.  More specifically, when a particular test score is used for important 

clinical and/or educational decisions (e.g., course placement), the estimates of internal 

consistency reliability should have a minimum value of .90, with .95 considered desirable 

(e.g., Henson, 2001; Hopkins, 1998; Nunnally & Bernstein, 1994; Oosterhof, 2001; Rossi 

et al., 2003).  Therefore, a minimum internal consistency reliability estimate of .90 was 

considered the standard for the Mathematics Placement Test in the current study. 

Finally, the term internal consistency suggests that items measuring the same 

construct should to some degree correlate with one another (Crocker & Algina, 2008; 
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Ding & Beichner, 2009; Henson, 2001; Kimberlin & Winetrstein, 2008).  Clark and 

Watson (1995) recommend that the average inter-item correlation coefficient range 

between .15 and .20 for scales measuring broad characteristics and .40 and .50 for those 

measuring narrower characteristics.  Since the relationships between items are unknown, 

inter-item correlation coefficients ranging from .15 to .50 was considered acceptable in 

the current study. 

Results 

 An Exploratory Factor Analysis (EFA) using Minimum Residuals (MINRES) and 

oblique (Promax) rotation was conducted to examine the internal structure of the 

mathematics placement exam.  In the final sample (N = 1,125), 472 (42.0%) were Male, 

468 (41.6%) were Female, with the remaining 185 (16.4%) not reported at the time of 

testing.  The following race/ethnicities were represented in the EFA sample: Asian (n = 

383), Black or African American (n = 69), Hispanic or Latino (n = 80), Two or More 

Races (n = 53) and White (n = 355).  According to the data, students had an average 

incoming SAT Math subscore of 680.60 (SD = 78.94) and an average incoming SAT 

Evidence-Based Reading and Writing subscore of 642.46 (SD = 65.31). 

The Tetrachoric Correlation Matrix was examined to identify the degree of the 

relationships between item pairs (available upon request).  Interpreted similarly to 

Pearson’s r, if a Tetrachoric correlation coefficient was greater than or equal to .30, it was 

considered acceptable.  Positive correlation coefficients ranged from .002 to .929, while 

the negative correlation coefficients ranged from -.189 to -.002.  Examining the 107 

items, fifteen of the items had a weak correlation with a majority of the other items.   
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However, most item pairs displayed Tetrachoric correlations above .30, suggesting that a 

factor analysis is appropriate for these data. 

Exploratory Factor Analysis 

 Previous research has indicated that results obtained through a Hierarchical 

Cluster Analysis (HCA) are similar to those obtained through factor analytic procedures 

(Capra, 2005; Revelle, 1979).  For this reason, EFAs were conducted using the existing 

cluster solutions (i.e., examined in Manuscript 1) for the number of factors to extract.  

The factor analysis results for three, eight, and six factors were explored and compared in 

order to identify the best underlying structure.  In both the eight and six factor solutions, 

Heywood cases were found and removed prior to conducting additional iterations 

(Lorenzo-Seva & Ferrando, 2020). 

 The final factor solution revealed the presence of three related components.  The 

correlation between factors ranged from .449 (Factors 1 and 2) to .618 (Factors 1 and 3).  

Factors 2 and 3 also had a moderate correlation value of .531.  Analysis of the Rotated 

Factor Loading Matrix demonstrated that a majority of the items had a moderate to strong 

relationship with at least one of the factors and more often than not, values exceeded .400 

(see Table 4 below).  Factor loadings on the first factor ranged from .141 (FR2) to .888 

(MC45).  Factor 2 had a minimum factor loading of .270 (FR46) and a maximum factor 

loading of .855 (MC53).  The third factor had the smallest overall factor loading of -.191 

(FR11) and a maximum factor loading of .884 (FR28). 
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Table 4 

 

Promax - Rotated Factor Matrix 

 

Item PreCalculus Geometry Algebra 1 Unique Variance 

FR1 0.142 0.186 0.218 0.793 

FR2 0.141 0.028 0.066 0.958 

FR3 0.066 0.050 0.337 0.831 

FR4 0.014 0.033 0.456 0.767 

FR5 0.113 -0.145 0.688 0.518 

FR6 -0.034 -0.109 0.771 0.511 

FR7 0.263 0.076 0.525 0.418 

FR8 0.123 0.006 0.599 0.531 

FR9 0.024 0.092 0.599 0.554 

FR10 0.195 -0.102 0.719 0.356 

FR11 0.065 0.092 -0.191 0.979 

FR12 0.107 -0.017 0.475 0.710 

FR13 0.067 0.087 0.668 0.419 

FR14 0.123 0.093 0.299 0.802 

FR15 0.023 0.023 0.635 0.561 

FR16 -0.182 0.099 0.707 0.558 

FR17 0.200 -0.005 0.688 0.321 

FR18 0.182 0.065 0.683 0.285 

FR19 -0.079 0.120 0.547 0.673 

FR20 0.029 0.140 0.586 0.525 

FR21 0.118 0.021 0.689 0.392 

FR22 -0.030 0.176 0.572 0.560 

FR23 0.251 0.014 0.473 0.555 

FR24 0.130 0.001 0.497 0.655 

FR25 0.052 0.061 0.447 0.733 

FR26 0.043 -0.007 0.787 0.344 

FR27 -0.140 -0.027 0.793 0.507 

FR28 0.042 -0.198 0.884 0.326 

FR29 0.200 -0.129 0.761 0.304 

FR30 0.000 -0.067 0.750 0.486 

FR31 0.167 0.035 0.399 0.709 

FR32 0.017 0.019 0.589 0.628 

FR33 0.360 -0.133 0.732 0.138 

FR34 0.317 -0.050 0.628 0.304 
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FR35 0.116 0.226 0.349 0.657 

FR36 -0.084 0.127 0.597 0.611 

FR37 0.076 -0.090 0.640 0.583 

FR38 0.151 0.037 0.504 0.603 

FR39 0.275 -0.009 0.388 0.647 

FR40 0.006 0.085 0.590 0.586 

FR41 -0.057 0.206 0.548 0.583 

FR42 0.093 0.122 0.147 0.909 

FR43 0.136 0.177 0.478 0.530 

FR44 0.102 -0.035 0.605 0.572 

FR45 -0.105 0.095 0.568 0.682 

FR46 -0.129 0.270 0.259 0.841 

FR47 -0.104 0.074 0.462 0.800 

FR48 0.133 0.123 0.262 0.806 

FR49 0.184 -0.016 0.619 0.456 

FR50 -0.054 0.071 0.320 0.891 

MC1 0.516 -0.223 0.232 0.641 

MC2 0.301 0.104 0.059 0.838 

MC3 0.160 0.221 0.483 0.451 

MC4 0.425 -0.009 0.561 0.219 

MC5 0.141 -0.003 0.655 0.438 

MC6 0.194 -0.108 0.522 0.632 

MC7 0.232 0.064 0.580 0.386 

MC8 0.315 -0.009 0.668 0.203 

MC9 0.134 -0.041 0.609 0.541 

MC10 0.680 -0.116 0.190 0.422 

MC11 0.476 0.055 0.152 0.625 

MC12 0.489 0.217 0.265 0.328 

MC13 0.505 -0.052 0.462 0.289 

MC14 0.359 0.071 0.259 0.642 

MC15 0.468 0.035 0.261 0.536 

MC16 0.395 -0.089 0.608 0.258 

MC17 0.634 0.001 0.226 0.369 

MC18 0.624 -0.087 0.359 0.279 

MC19 0.480 -0.064 0.397 0.428 

MC20 0.667 -0.194 0.414 0.207 

MC21 0.476 0.080 0.429 0.260 

MC22 0.475 0.099 0.318 0.400 
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MC23 0.612 0.133 0.170 0.352 

MC24 0.555 -0.007 0.174 0.547 

MC25 0.204 0.322 0.181 0.655 

MC26 0.805 -0.036 0.069 0.307 

MC27 0.809 0.125 -0.031 0.273 

MC28 0.722 0.010 0.094 0.378 

MC29 0.832 -0.001 0.081 0.219 

MC30 0.809 -0.009 0.107 0.235 

MC31 0.757 -0.086 0.141 0.339 

MC32 0.696 -0.068 0.218 0.334 

MC33 0.690 -0.043 0.099 0.459 

MC34 0.728 -0.025 0.091 0.397 

MC35 0.787 0.103 0.119 0.154 

MC36 0.790 0.027 0.065 0.286 

MC37 0.784 0.149 0.051 0.198 

MC38 0.423 0.220 0.157 0.546 

MC39 0.529 0.094 0.066 0.613 

MC40 0.558 -0.002 0.271 0.430 

MC41 0.607 0.112 0.169 0.384 

MC42 0.664 0.329 -0.122 0.382 

MC43 0.614 0.179 -0.090 0.569 

MC44 0.502 0.125 0.103 0.588 

MC45 0.888 0.137 -0.320 0.378 

MC51 -0.107 0.804 0.015 0.408 

MC52 -0.096 0.560 0.083 0.679 

MC53 0.016 0.855 -0.112 0.347 

MC54 -0.127 0.469 0.136 0.752 

MC55 -0.027 0.629 0.081 0.562 

MC56 0.127 0.467 -0.167 0.794 

MC57 0.178 0.847 -0.404 0.405 

MC58 0.000 0.527 0.089 0.665 

MC59 -0.066 0.773 -0.192 0.549 

MC60 0.050 0.451 0.029 0.757 

MC61 -0.053 0.380 0.277 0.701 

MC62 -0.025 0.343 0.188 0.791 
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The naming conventions for each factor were determined by examining the items 

with the highest factor loadings on each component.  The four highest loadings on Factor 

1 were .888 (MC45), .832 (MC29), and .809 (MC27 and MC30), which covered content 

such as polar graphs and trigonometry typically found in an upper level PreCalculus 

course.  Factor 2 had three prominent factor loadings of .855 (MC53), .847 (MC57), and 

.804 (MC51).  The content of these items covered topics generally found in a Geometry 

course such as congruent triangles, using the properties of angles for two parallel lines 

cut by a transversal, and proving two angles are congruent.  Lastly, some of the highest 

loadings on Factor 3 were .884 (FR28), .793 (FR27), and .771 (FR6).  These three items 

asked students to manipulate polynomials using their knowledge of the laws of exponents 

(i.e., multiply, expand, and factor).  Based on this information along with the all of the 

factor loadings displayed above, the final three factors were determined to be 

PreCalculus, Geometry, and Algebra 1, respectively.  Additionally, evidence of simple 

structure was shown as revealed that several items had a factor loading of .70 or higher 

on a single factor and only four items had a strong cross-loading between factors (i.e., the 

factor loading for a single item was greater than or equal to .400 on more than one 

factor). 

Internal Consistency Reliability 

Once the final factor structure was determined, the Internal Consistency 

Reliability estimates were calculated for each factor: PreCalculus KR-20 = .950, 

Geometry KR-20 = .736, and Algebra 1 KR-20 = .910.  The internal consistency within 

factors was strong, even on the second factor (i.e., Geometry) which only consisted of 14 



134 

 

 

 

items.  Overall, the information obtained through the EFA suggests that the items on the 

mathematics placement test can be represented by three underlying factors.  Due to the 

moderate correlations among factors, the instrument adequately measures the larger 

construct of students’ mathematical knowledge, providing preliminary evidence of 

Construct Validity. 

Discussion 

 The purpose of this study was to provide evidence of Construct Validity and 

Internal Consistency Reliability of a mathematics placement test at a specialized STEM 

high school.  Using Exploratory Factor Analysis (EFA) and the Kuder-Richardson 

Formula (KR-20), the psychometric properties of the exam were evidenced. 

Exploratory Factor Analysis 

EFA was used to examine the underlying factor structure of the mathematics 

placement test based on the students’ responses to the 107 items.  Using a large sample 

size (N = 1,125), an EFA with Promax rotation was conducted.  The initial number of 

factors to extract was guided by the results of a Hierarchical Cluster Analysis (HCA) 

(Capra, 2005; Revelle, 1979).  Factor solutions for eight and six factors were analyzed, 

but due to the presence of Heywood cases and a lack of simple structure, other factor 

solutions were explored. 

The final iteration revealed three distinct factors with 37 items loading on Factor 

1, 14 items on Factor 2, and 56 items on Factor 3.  After examining the items that loaded 

highest on each factor, the factor labels were developed using the most prominent content 



135 

 

 

 

found within those items.  Thus, the three final factor labels were PreCalculus, Geometry, 

and Algebra 1, respectively. 

The labels assigned to each of the three factors were similar to the original content 

areas of interest as determined by the faculty members who created the exam.  Recall that 

the mathematics placement test is a two-part exam measuring students’ mathematical 

knowledge needed prior to entering into a Calculus sequence.  Part I of the assessment 

consists of 50 short-answer items covering content such as simplifying expressions, 

functions, and exponents.  As can be seen from the EFA results above, the strongest 

loading for the vast majority of these items (i.e., FR1 – FR50) occurred on Factor 3 

which was labeled as Algebra 1.  The second part of the exam was developed to measure 

students’ knowledge of topics such as evaluating and graphing functions of higher order, 

using the properties and laws of sine and cosine, and providing evidence to show the 

congruence of either two angles or two triangles.  As determined through the EFA, there 

was a distinct division between the Geometry content and the former items encompassing 

functions and trigonometry, which were more broadly labeled as PreCalculus. 

Internal Consistency Reliability 

 The reliability of each factor was calculated using the Kuder-Richardson (KR-20) 

Formula (Kuder & Richardson, 1937).  Due to the high-stakes nature of this exam and its 

use in course placement decisions, this study considered a minimum reliability estimate 

of .90 to be acceptable.  Thus, the two factors of PreCalculus (KR-20 = .950) and Algebra 

1 (KR-20 = .910) were determined to have acceptable values for reliability while the 

Geometry factor (KR-20 = .736) was lower than expected.  From the literature it is noted 
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that reliability has a direct relationship with the number of items being examined such 

that as the number of items increase, so does the reliability estimate (Cortina, 1993; 

Crocker & Algina, 2008; Wiersma & Jurs, 2009).  This was evidenced in the current 

study as the Geometry factor had the lowest reliability for its 14 items compared to the 

PreCalculus and Algebra 1 factors, which had acceptable reliability estimates given their 

37 and 56 items, respectively. 

 Overall, the EFA and Internal Consistency Reliability results provide evidence 

that the mathematics placement test is a valid and reliable measure.  More specifically, 

higher total scores on the mathematics placement test indicates more mathematical 

knowledge prior to Calculus. 

Implications 

In the context of large-scale testing (e.g., course placement), psychometric 

analysis is essential in determining the quality of the test and the information it generates 

(Adedoyin & Mokobi, 2013).  By critically examining the mathematics placement test 

and its psychometric properties, all stakeholders can be assured that the inferences drawn 

from the educational assessment are accurate (Harris, 2003; Linn, 1994). 

The overarching purpose of placement testing is to enroll students in courses that 

are commensurate with their ability in order to maximize the chances of success and 

minimize the unintended, negative consequences (Linn, 1994; Mattern & Packman, 2009; 

McFate & Olmsted III, 1999; Norman et al., 2011; Wiggins, 1989).  By providing 

evidence of Construct Validity, both students and their parents can be confident in 

knowing that this assessment measures students’ incoming mathematical knowledge 
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leading up to a Calculus sequence so that proper course placement decisions can be 

made.  Furthermore, demonstrating evidence of strong Internal Consistency Reliability 

suggests that students’ true level of mathematical knowledge is consistently represented 

by the items, again decreasing the number of inappropriate course placement decisions 

being made and minimizing the temporary and lasting negative effects on students 

(Frisbie, 1988). 

Secondly, the results of this study have practical benefits for the faculty and 

educational administrators at the gifted residential high school.  Every year, students 

entering the high school have increased cultural diversity, life experiences, family 

influences, and their level of preparedness for a challenging college-preparatory 

curriculum.  Thus, by continually demonstrating evidence of validity and reliability, 

mathematics faculty members can confidently rely on the scores from the mathematics 

placement test as accurate measures of achievement and can use the scores to make 

important course placement decisions.  Moreover, when faculty become equipped with 

such diagnostic information, they can better distinguish between students who do or do 

not need additional academic assistance in their initial mathematics course (Betts, Hahn, 

& Zau, 2011). 

Evidence-based research in education emphasizes evaluating the outcomes of 

programs and the processes that lead to these outcomes (Slavin, 2007).  Additionally, the 

Code of Fair Testing Practices in Education (Nitko & Brookhart, 2011) calls test 

developers to provide evidence that the technical quality, including validity and 

reliability, of the test aligns with its intended uses.  This study provides an initial step in 
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demonstrating the psychometric properties of the mathematics placement test to both 

statewide and local stakeholders.  Furthermore, this study emphasizes the importance of 

educational assessment in the hopes that administrators and faculty alike will use this 

study as a “template” in additional departments within the high school and similar 

contexts. 

Finally, the implications from this study extend beyond the local context.  

Placement exams that are valid and reliable are vital to both post-secondary institutions 

and other gifted STEM residential high schools like the one in the current study.  

Although the average high school may not have sufficient resources to conduct similar 

research, there is still a need to have solid and defensible placement tests and practices.  

The current study can act as a blueprint for similar high schools to begin the assessment 

validation process at their own institutions. 

Limitations and Future Research 

This study included data from four cohorts of students applying to a residential 

STEM high school for gifted children.  As such, the content measured on the specific 

mathematics placement test used in this study, as well as the scores obtained from the 

assessment, are unique to the school and are not generalizable to other STEM high 

schools.  However, if other similar high schools seek to examine the psychometric 

properties of their placement exams, the procedures used in this study could be 

replicated. 

Construct Validity was evidenced in the current study using Exploratory Factor 

Analysis.  Since the underlying factor structure was unknown, the number of factors to 
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extract could not be supported by previous theoretical evidence on the construct of 

interest.  Instead, the current study used results from a Hierarchical Cluster Analysis 

(Manuscript 1) to determine how many factors to extract in the initial EFA solutions.  

While this method is supported in the literature, future research should examine the 

congruencies among HCA and EFA solutions (Capra, 2005; Revelle, 1979). 

Comparing the results from the HCA (Manuscript 1) and EFA, the following 

observations were noted.  The Geometry cluster from the HCA had a direct relationship 

to the Geometry factor of the EFA (i.e., the same items in both).  Likewise, all items (i.e., 

except one) from the HCA Trigonometry cluster loaded the highest on the PreCalculus 

factor of the EFA.  This relationship between the Trigonometry cluster and the 

PreCalculus factor was expected based on the sequence and design of the high school 

mathematics courses. 

Next, the items in the first two clusters of the HCA (i.e., Algebraic Operations and 

Solving Equations) were mainly located in the Algebra 1 factor of the EFA.  However, 

the clusters of Graphing and Evaluating Functions were split between the Algebra 1 and 

the PreCalculus factor.  The distinction between the two factors appeared to be related to 

the placement of the items on the exam.  Since mathematical knowledge is hierarchical in 

nature, meaning that you need to know Algebra first before completing PreCalculus, the 

majority of the earlier items on the exam loaded on the Algebra 1 factor.  Conversely, the 

items that loaded highest on the PreCalculus factor from clusters three and four were the 

items involving graphing and evaluating higher order functions.  Therefore, there appears 

to be reasonable evidence to support the similarity of results between the HCA and the 
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EFA, but a more thorough investigation is needed to further confirm the presence and 

relationship between Content and Construct Validity. 

Another limitation of the current study was the presence of negative variance 

estimates (i.e., Heywood cases) in the eight and six factor solutions.  Heywood cases can 

appear for a variety of reasons, such as insufficient sample size compared to the number 

of variables, a large percentage of missing data, or attempting to extract more factors than 

necessary (Steinberg, 2010).  The sample size of the current study was sufficient 

according to the guidelines of ten subjects per variable for EFA (Comrey & Lee, 1992; 

Costello & Osborne, 2005; Nunnally & Bernstein, 1978).  Additionally, there was only a 

small percentage of missing data due to the high-stakes nature of the mathematics 

placement test.  Thus, it is possible that extracting eight or six factors were more than 

what was necessary for the current study.  Future research could examine the impact of 

statistical corrections involving the Heywood cases to determine the appropriate factor 

solution. 

As previously discussed, the final factor structure revealed a three-factor solution 

of PreCalculus (37 items), Geometry (14 items), and Algebra 1 (56 items).  These study 

results suggest a dramatically imbalanced factor structure, which may warrant further 

examination.  While not all factors need to include the same number of items, it appears 

from the analysis that Geometry concepts are underrepresented on the mathematics 

placement test.  Additionally, four items from the assessment (i.e., MC4, MC13, MC20, 

and MC21) cross-loaded between the PreCalculus and Algebra 1 factors, suggesting a 

possible overlap in content.  Future research could include an item analysis to investigate 
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the item characteristics and potential local dependence between item pairs.  By using 

Item Response Theory techniques, the mathematics placement test can be optimized for 

future administrations. 

Conclusions 

This study examined the psychometric properties (i.e., Construct Validity and 

Internal Consistency Reliability) of the scores on the mathematics placement test used at 

a gifted residential high school focused on STEM.  Mathematics faculty members 

developed this assessment in 1985 with the intention of measuring students’ incoming 

mathematical knowledge prior to Calculus so that they could properly assign students to 

their initial mathematics course.  Using Exploratory Factor Analysis, it was determined 

that the mathematics placement test is comprised of three underlying factors, namely 

PreCalculus, Geometry, and Algebra 1, providing evidence of Construct Validity.  

Moreover, strong Internal Consistency Reliability, using the Kuder-Richardson (KR-20) 

Formula, suggest that the items on each factor are related and measuring the same 

construct. 

These results demonstrate that the mathematics placement test is valid and 

reliable for the population of interest.  Therefore, this assessment can be used in the 

course placement process to measure students’ mathematical knowledge leading up to 

Calculus.   Not only is this study important for the educational institution involved, but it 

is also relevant to other similar STEM high schools for gifted students.  In a world of 

evidence-based practice, this study can act as a catalyst for educational institutions, at all 

levels, to conduct assessment research and provide evidence regarding the effectiveness 
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of their placement procedures and measures.  In doing so, all stakeholders can be assured 

that the consequences of misplacement have been minimized while enhancing students’ 

future educational outcomes.  
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CHAPTER VI – MANUSCRIPT 3 

A PSYCHOMETRIC ANALYSIS OF A MATHEMATICS PLACEMENT EXAM: 

ITEM RESPONSE THEORY AND DIFFERENTIAL ITEM FUNCTIONING 

Abstract 

The near universal use of placement testing at the post-secondary level arose due 

to an assortment of unknown factors that could not be directly compared such as the 

content and rigor of previous courses and the grading scales used at different schools 

(Kossack, 1942; Linn, 1994; Ngo & Kwon, 2015; Noble et al., 2003).  The overarching 

purpose of placement testing is to determine a student’s incoming knowledge for 

appropriate course placement given their previous coursework.  However, to be useful, 

empirical evidence must come from psychometric analysis of the items to demonstrate 

that they are well constructed and unambiguous (R. F. Burton, 2005). 

The current study examined the item parameters (i.e., item difficulty, and item 

discrimination) and Differential Item Functioning (DIF) of a mathematics placement test 

at a Science, Technology, Engineering, and Mathematics (STEM) gifted residential high 

school.  Existing data from four cohorts were obtained and analyzed using Item Response 

Thoery (IRT), specifically the Two-Parameter Logistic (2PL) Model.  Results indicated 

that the exam was generally “easy” (i.e., the majority of students correctly answered a 

large number of items on the test) for the population of interest, and may not adequately 

discriminate among students with varying levels of mathematical knowledge.  Items 

recommended for revision and concerns of item bias are discussed. 



144 

 

 

 

Keywords: Item Response Theory, Differential Item Functioning, STEM Education, 

Mathematics Placement Testing 

Introduction 

Validity, reliability, comparability, and fairness are just a few of the important 

elements involved in psychometric appraisal.  These terms are not just measurement 

principles, but are also considered social values that have significant meaning and impact 

when evaluative judgments and decisions are made (Messick, 1995).  As a result, 

educational institutions using placement exams must address questions about the uses and 

interpretations of tests and their scoring methods.  In order to do so, measurement 

professionals must first begin with evaluating the test itself to ensure that the items are 

well constructed, unambiguous, and free of bias (Adedoyin & Mokobi, 2013; R. F. 

Burton, 2005; Sireci, 1998b).  Once the quality of the test has been analyzed and 

professionals are confident in the characteristics of the test scores, then stakeholders can 

be assured that the outcomes of the assessment do not lead to uneven or unfair treatment 

of students, allowing more accurate inferences to be made. 

One major limitation, however, is the lack of resources available to examine such 

characteristics of test scores.  While most institutions of higher education have 

individuals with expertise in assessment, evaluation, and/or measurement, independent 

schools and schools at the secondary educational level often times do not.  As a result, 

teachers are left to create their own assessments, including placement tests, without 

having adequate formal training in measurement techniques (Ryan, 2018).  For this 

reason, STEM (i.e., Science, Technology, Engineering, and Mathematics) teacher 
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organizations and researchers both agree that stronger partnerships between K-12 

educational entities and institutions of higher education can be formed to further guide 

the test development and evaluation process (Sondergeld, 2014). 

Using the abovementioned partnership, the current study analyzed the 

psychometric properties of a mathematics placement test at a gifted, residential STEM 

high school.  More specifically, the purpose of this study was to examine the item 

parameters (i.e., item difficulty, and item discrimination) and Differential Item 

Functioning (DIF) of the mathematics placement test using the Two-Parameter Logistic 

(2PL) Model from Item Response Theory. 

Literature Review 

The primary objective of achievement testing is to measure students’ actual 

knowledge or acquired skills in order to reliably distinguish between students who do and 

do not have some level of the construct of interest (McFate & Olmsted III, 1999; Schmitz 

& delMas, 1991; Slavin, 2007).  As such, course placement has become a typical and 

important use of achievement tests.  This is evidenced by the near-universal use of 

placement tests at the post-secondary level, which emerged due to the difficulty in 

comparing factors such as the content and rigor of courses and the grading scales used at 

different schools (Kossack, 1942; Linn, 1994; Ngo & Kwon, 2015; Noble et al., 2003).  

Environments such as post-secondary education and specialized high schools with 

varying student experiences and backgrounds can benefit from having a standardized 

assessment that allows for comparisons to be made among students. 
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The overarching purpose of placement testing is to match students with an 

appropriate level of instruction and course material given their previous academic 

preparations (e.g., Akst & Hirsch, 1991; Frisbie, 1982; Marshall & Allen, 2000; Mattern 

& Packman, 2009; McFate & Olmsted III, 1999; Noble et al., 2003; Sawyer, 1996).  For 

the process of placement testing administration and score use to be considered successful, 

it must demonstrate increased accurate placement decisions and a minimal number of 

inaccurate placement decisions (Harris, 2003; Linn, 1994; Schmitz & delMas, 1991).  

Undoubtedly, a greater amount of inaccurate placements can be problematic for 

institutions when underprepared students enroll in, and ultimately fail, a course (McFate 

& Olmsted III, 1999). 

Prior research has shown that course placement decisions can have a significant 

impact on a student’s future academic preparation (McDaniel et al., 2007; Morgan & 

Michaelides, 2005).  For example, students who begin post-secondary mathematics in a 

course that is appropriate given their background have an increased chance of succeeding 

in their first course in addition to subsequent mathematics courses (Latterell & Regal, 

2003; Mattern & Packman, 2009; Morgan & Michaelides, 2005; Norman et al., 2011; 

Shaw, 1997).  However, when nearly one-third of all students entering community 

colleges are assigned to take at least one remedial or developmental mathematics course, 

students experience lower levels of motivation along with increased time and cost to 

graduation (e.g., Bailey, 2009; Hoyt & Sorensen, 2001; Kowski, 2013; Medhanie et al., 

2012; Melguizo et al., 2008; Melguizo et al., 2014; Ngo & Kwon, 2015; Scott-Clayton, 

2012).  For these reasons, more research is needed to thoroughly examine the 
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psychometric properties of placement tests to ensure that student success is maximized 

while the consequences of misplacement are minimized. 

Reviewing the psychometric properties of the items and the test also includes an 

examination of item bias.  Instruments such as placement tests should be free from bias 

related to characteristics irrelevant to the construct of interest (i.e., sex, race, ethnicity, 

socio-economic status, age; Schmeiser, 1995).  Specific to gender differences and item 

bias, research has revealed the importance of ensuring that placement decisions based on 

test scores are equally valid for males and females (Mattern & Packman, 2009). 

Historically, the field of mathematics has been dominated by men and since the 

early 1980s, males have continued to take more advanced mathematics courses in high 

school compared to females (Catsambis, 1994; Pedro et al., 1981).  Additionally, research 

has found that males outperform females on standardized assessments such as the 

mathematics subtests of both the SAT and ACT (Bridgeman & Wendler, 1989, 1991; 

Davis & Shih, 2007; Educational Testing Service, 1989; Gallagher & De Lisi, 1994).  

Even among the high-achieving math students, males have a consistent advantage over 

females, who are underrepresented in both upper level math courses and subsequent 

STEM careers. 

While that narrative still persists, some research suggests that the gender 

achievement gap in mathematics may be narrowing.  For example, more recent meta-

analyses have reported that gender differences in mathematics scores on standardized 

assessments are minimal and non-significant, concluding that girls have reached parity 

with boys (Else-Quest, Hyde, & Linn, 2010; Hyde, Lindberg, Linn, Ellis, & Williams, 
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2008; Lindberg, Hyde, Petersen, & Linn, 2010; Reilly, Neumann, & Andrews, 2015).  

Other studies demonstrate that girls outperform boys in terms of their grades received in 

their mathematics courses (Arslan, Canli, & Sabo, 2012; Ding, Song, & Richardson, 

2006; Gherasim, Butnaru, & Mairean, 2013; Wang & Degol, 2017).  In the majority of 

studies, these conclusions have been drawn from substantive studies of mean 

achievement differences for boys versus girls.  Fewer psychometric studies exist that 

address concerns of item bias on these assessments. 

As previously mentioned, placement tests should be free from bias with respect to 

characteristics such as sex, race/ethnicity, and age to ensure that placement decisions and 

progression through mathematics courses is determined by ability alone (Hope, 

Adamson, McManus, Chis, & Elder, 2018; Mattern & Packman, 2009; Schmeiser, 1995).  

When bias is evidenced on a test, respondents with equal underlying abilities receive 

different scores.  Thus, the interpretations made using these test scores are unreliable for 

the population under study (Bauer, 2017; Hope et al., 2018; Lee & Kim, 2017; O'Neill & 

McPeek, 1993). 

Examining bias is important because the items could actually be valid and reliable 

questions with scores denoting real, substantive differences between various groups (e.g., 

males and females).  Conversely, the questions may actually be biased relative to various 

item characteristics, and changes in the question content and/or properties may need to be 

explored to achieve accurate measurement and eventual equitable outcomes.  Differential 

Item Functioning (DIF) as one analytical strategy can help explain any sex differences 

when responding to mathematics items so that appropriate psychometric interventions 
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can be proposed.  Specific to the educational institution in this study, the high school 

admits approximately fifty percent males and females each year.  A thorough 

investigation of the mathematics placement test for potential biases is important to ensure 

that the exam is fair, and the placement decisions are accurate for both males and 

females.  Therefore, the aim of this study was to examine the item parameters (i.e., item 

difficulty, and item discrimination) and DIF of the mathematics placement test using Item 

Response Theory’s Two-Parameter Logistic (2PL) Model. 

Methods 

The following sections describe the methods used to examine the item parameters 

and DIF of the mathematics placement test. 

Context 

 The data in the current study are from one high school campus for academically 

gifted students in the state of Illinois.  Per the mission statement of this institution, it 

strives to be a teaching and learning laboratory that enrolls academically talented Illinois 

students (i.e., Grades 10 through 12) in its advanced, residential college preparatory 

program with an emphasis in the fields of science and mathematics. 

 In order to attend, students are required to submit an admissions application 

which includes an essay describing the student’s interest in STEM, two letters of 

recommendation, middle school and/or high school transcripts, and current SAT (i.e., 

formerly known as the Scholastic Aptitude Test or the Scholastic Assessment Test) 

scores.  As such, the admissions process is highly competitive as students from around 

the state of Illinois vie for approximately 250 positions each year. 
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 For those students that are invited to attend, the high school provides a diverse 

and challenging curriculum designed to prepare students for college.  Not only does the 

curriculum include the core subjects of English, history, social sciences, science, and 

mathematics, but students can also choose to take a course in the fine arts, wellness, or 

one of the six world languages offered.  Additionally, students are provided the 

opportunity to conduct original and compelling research with expert scholars and 

scientists at more than 100 institutions.  As a result, students graduating are well-rounded 

individuals equipped with the personal, social, and academic skills needed to succeed in 

college and beyond. 

Participants and Procedure 

Existing data from four cohorts of students were used in this study.  These cohorts 

included students entering the high school their sophomore year, beginning in the 

2014/2015 academic year and ending in the most recent 2017/2018 academic year for 

which data was available. 

Equivalence across the four cohorts was examined for five demographic variables 

using Chi-Square (χ2) Tests of Association and One-Way Analyses of Variance 

(ANOVAs). Chi-Square Tests of Association were conducted across the four cohorts for 

the variables of sex and race/ethnicity.  There were no significant differences in the 

proportions between cohort year and either sex or race/ethnicity.  For the three remaining 

variables of socioeconomic status (i.e., median family income), incoming SAT Math 

(SAT_M) subscores, and incoming SAT Evidence Based Reading and Writing 

(SAT_ERW) subscores, ANOVAs were used.  Again, there were no significant 
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differences between cohort years for each of the three variables.  Therefore, all four 

cohorts were found to be statistically equivalent on the demographic variables noted 

above and were combined into one sample for further analysis. 

Measure 

Mathematics faculty members developed the mathematics placement test in 1985.  

The original and continuing purpose of the mathematics placement test is to determine a 

student’s incoming mathematical knowledge for appropriate initial course placement 

commensurate with ability level.  Thus, generally speaking, the placement test assesses 

mathematical knowledge needed prior to entering into a Calculus sequence.  More 

specifically, the developers of the exam created a two-part test measuring three content 

areas of mathematics, namely Algebra 1, PreCalculus, and Geometry, as previously 

determined through an Exploratory Factor Analysis (Manuscript 2). 

 Part I of the assessment mainly measures student’s knowledge of Algebra 1 

content such as simplifying expressions, functions, and exponents.  Students are given 45 

minutes to complete 50 short-answer items, without a calculator.  Assessing higher-level 

abilities such as the ability to solve numerical problems and/or to manipulate 

mathematical symbols and equations necessitates a short-answer question format (Nitko 

& Brookhart, 2011).  While the short-answer format allows students to show their work, 

the legibility of students’ responses can at times complicate the scoring process.  

The mathematics faculty members using an answer key for dichotomous scoring (i.e., 

“Correct” or “Incorrect”) grade all responses.  If a grader is unsure of a student’s written 

response, other graders are consulted.  In the event that a student’s response cannot be 
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determined, it is marked as an incorrect response.  The possible range of scores on Part I 

is from 0 to 50.  After the allotted time has expired for Part I, exam proctors collect any 

remaining exams and distribute Part II. 

The main focus of Part II of the assessment is to measure students’ knowledge of 

both PreCalculus and Geometry content.  For this portion, students have 85 minutes to 

complete 57 multiple-choice items, again without a calculator.  The multiple-choice 

format used on this portion of the test provides students with the correct answer, three 

distractor answers, and a fifth response option of “I don’t know.”  Although not explicitly 

written on the test instructions, mathematics faculty members and exam proctors 

emphasize the use of the “I don’t know” option.  By purposefully mentioning this, it is 

believed that students will not guess, but rather consider using the “I don’t know” 

response option so that they do not accidentally place into a higher course than 

academically appropriate.  A similar argument was made by Prieto and Delgado (1999) 

who noted that educational standards should not be influenced by desired psychometric 

properties of a test.  Said another way, if students are unsure of an answer, it seems more 

appropriate for them to omit the item rather than encouraging them to guess.  After the 

exam is complete, the multiple-choice items are scanned into a grading software program 

using a scantron reader where all items are scored dichotomously (i.e., “Correct” or 

“Incorrect”), even if the student selected the “I don’t know” option. 

As the multiple-choice section had a fifth response option of “I don’t know,” the 

data were coded in such a way as to distinguish between incorrect answers and missing 

data.  More specifically, the coding format was as follows: “1” for a correct response, “0” 
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for an incorrect response, “DK” for selecting the “I don’t know” option on the multiple-

choice section, and “M” for a missing response (i.e., an item that was left blank).  The 

response frequencies for each item are displayed in Table 5 in the results section below.  

Prior to analysis, all responses of “I don’t know” were recoded as an incorrect response 

“0” to align with the grading procedures implemented by the mathematics faculty 

members.  The possible range of scores is from 0 to 57 on Part II. 

Data Analysis 

Item Response Theory (IRT) uses a collection of mathematical equations to 

analyze item-level data which provides information about the differences among 

individuals on a given construct or latent variable (De Ayala, 2009; Edelen & Reeve, 

2007; Hays et al., 2000; Stone & Zhang, 2003).  In order to do so, IRT assumes that the 

underlying latent trait (e.g., mathematical knowledge) is considered to be continuous in 

nature and can be represented by assigning numerical values to observed variables. 

Item analysis.  Three item analyses using the Birnbaum (1968) Two-Parameter 

Logistic Model (2PL), which makes use of the marginal maximum likelihood estimation 

method, were conducted to examine the characteristics of the items on each factor (i.e., 

Algebra 1, PreCalculus, and Geometry) of the mathematics placement test (Bock & 

Aitkin, 1981; Cai et al., 2011; Manuscript 2).  The 2PL model includes that the 

probability of a correct response is both a function of the distance between the person and 

the item and the ability of the item to differentiate among individuals with varying levels 

of the latent trait (De Ayala, 2009; Edelen & Reeve, 2007; Hays et al., 2000).  Thus, the 
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2PL model is the ordinary logistic regression of the observed dichotomous responses on 

the unobservable person location and item characterizations (De Ayala, 2009). 

Moreover, this model was selected for the additional discrimination parameter 

(i.e., compared to the 1PL model), which in this study differentiates between various 

levels of mathematics proficiency.  Although the use of the c parameter for guessing may 

apply to these data as well (i.e., as used in the 3PL model), students most likely refrained 

from guessing by using the optional fifth response of “I don’t know” on the multiple-

choice items.  Thus, it was determined that the 1PL (i.e., Rasch) model was too simplistic 

and that the 3PL model included an additional parameter that may not be relevant 

considering the context and response options on the exam in this study. 

Difficulty and discrimination indices can provide useful information at the item 

level; however, both the individual item fit and the overall model-data fit should be 

examined.  In order to assess the item fit and the model-data fit obtained in the 2PL 

model, this study examined the item-level diagnostic statistics (i.e., S – χ2) developed by 

Orlando and Thissen (2000), the M2 fit statistic developed by Maydeu-Olivares and Joe 

(2005), and the Root-Mean-Square-Error of Approximation (RMSEA) by Steiger and 

Lind (1980). 

Additionally, the item and total test information curves were examined.  The total 

test information curve is the sum of the item information curves and specifies how much 

information an instrument provides to separate two respondents with differing abilities in 

order to reduce the uncertainty about a person’s location (De Ayala, 2009).  When the 
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peak of the total test information curve is centered around zero (i.e., the mean), the test is 

said to target the average ability of the construct of interest. 

Moreover, examining the total test information curve and the location of its peak 

can help direct the design of an instrument to be able to measure along a wide or narrow 

range of the continuum by adding (or removing) items located within the range of interest 

(De Ayala, 2009).  For example, if stakeholders are interested in providing a better 

person ability estimation for respondents below θ = .70, then the operational range of the 

test could be improved by adding one or more items to the lower end of the continuum, 

which increases the amount of information about those individuals located at the lower 

end.  In the context of high-stakes assessments, test developers may want to specify that 

the ideal total test information curve have a peak higher than the mean to assess higher 

proficiencies of the construct of interest. 

Finally, both De Ayala (2009) and Ding and Beichner (2009) mention that when 

calibrating high-stakes assessments test items, reasonably accurate results are obtained 

when instruments contain 20 or more items and a sample size of at least 500 participants.  

With regards to test construction, Nunnally and Bernstein (1978) recommend five times 

as many subjects as items or at least 200 to 300 subjects, whichever is larger.  In the 

current study, there were a total of 107 items and approximately 300 students in each of 

the four cohorts.  Thus the approximate total population of 1,200 students was greater 

than the recommendations by De Ayala (2009), Ding and Beichner (2009), and Nunnally 

and Bernstein (1978). 
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 Differential item functioning.  The item analyses also included an examination 

of Differential Item Functioning (DIF) to determine whether or not a particular item is 

biased with regards to respondents’ reported sex (i.e., males versus females).  To identify 

which items, if any, exhibit DIF, Wald Chi-Square (χ2) tests with accurate item parameter 

error variance-covariance matrices were used (Cai, 2008; Cai et al., 2011; Lord, 1977).  

The null hypothesis for this test states that there are no group differences in the item 

parameter estimates.  Therefore, if an item presents evidence of DIF (i.e., p < .05), further 

investigation is needed to warrant discarding or revising the item. 

Results 

Based on prior research (i.e., Manuscripts 1 and 2), the mathematics placement 

test is comprised of three factors – Algebra 1, PreCalculus, and Geometry.  Therefore, to 

meet the unidimensionality assumption of the 2PL model, each factor was examined 

independently.  The results presented below are in the order in which they were 

conducted. 

 Between 2014 and 2017, 1,125 total students took the mathematics placement 

exam (see Table 5).  The low frequency of missing data is an indication of the higher-

stakes of this assessment where students are motivated to answer all questions. 

 

Table 5 

         
Item Response Frequencies for the Mathematics Placement Exam by Factor 

 

         

 Incorrect Correct I Don't Know Missing 

Algebra 1 n % n % n % n % 

MC3 292 25.96 708 62.93 117 10.40 8 0.71 
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MC4 279 24.80 678 60.27 158 14.04 10 0.89 

MC5 125 11.11 924 82.13 73 6.49 3 0.27 

MC6 411 36.53 432 38.40 275 24.44 7 0.62 

MC7 228 20.27 686 60.98 208 18.49 3 0.27 

MC8 228 20.27 774 68.80 120 10.67 3 0.27 

MC9 110 9.78 941 83.64 71 6.31 3 0.27 

MC16 86 7.64 860 76.44 177 15.73 2 0.18 

FR1 54 4.80 1070 95.11 N/A N/A 1 0.09 

FR3 333 29.60 773 68.71 N/A N/A 19 1.69 

FR4 79 7.02 1044 92.80 N/A N/A 2 0.18 

FR5 205 18.22 916 81.42 N/A N/A 4 0.36 

FR6 92 8.18 1012 89.96 N/A N/A 21 1.87 

FR7 143 12.71 972 86.40 N/A N/A 10 0.89 

FR8 188 16.71 925 82.22 N/A N/A 12 1.07 

FR9 168 14.93 933 82.93 N/A N/A 24 2.13 

FR10 164 14.58 930 82.67 N/A N/A 31 2.76 

FR11 194 17.24 928 82.49 N/A N/A 3 0.27 

FR12 123 10.93 970 86.22 N/A N/A 32 2.84 

FR13 282 25.07 811 72.09 N/A N/A 32 2.84 

FR14 56 4.98 1069 95.02 N/A N/A 0 0.00 

FR15 132 11.73 947 84.18 N/A N/A 46 4.09 

FR16 208 18.49 888 78.93 N/A N/A 29 2.58 

FR17 251 22.31 868 77.16 N/A N/A 6 0.53 

FR18 349 31.02 767 68.18 N/A N/A 9 0.80 

FR19 243 21.60 877 77.96 N/A N/A 5 0.44 

FR20 111 9.87 1006 89.42 N/A N/A 8 0.71 

FR21 181 16.09 910 80.89 N/A N/A 34 3.02 

FR22 127 11.29 960 85.33 N/A N/A 38 3.38 

FR23 140 12.44 936 83.20 N/A N/A 49 4.36 

FR24 61 5.42 1050 93.33 N/A N/A 14 1.24 

FR25 56 4.98 1062 94.40 N/A N/A 7 0.62 

FR26 149 13.24 970 86.22 N/A N/A 6 0.53 

FR27 89 7.91 1022 90.84 N/A N/A 14 1.24 

FR28 150 13.33 931 82.76 N/A N/A 44 3.91 

FR29 131 11.64 969 86.13 N/A N/A 25 2.22 

FR30 202 17.96 789 70.13 N/A N/A 134 11.91 

FR31 88 7.82 1031 91.64 N/A N/A 6 0.53 

FR32 49 4.36 1070 95.11 N/A N/A 6 0.53 

FR33 333 29.60 748 66.49 N/A N/A 44 3.91 
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FR34 387 34.40 633 56.27 N/A N/A 105 9.33 

FR35 148 13.16 952 84.62 N/A N/A 25 2.22 

FR36 144 12.80 947 84.18 N/A N/A 34 3.02 

FR37 127 11.29 980 87.11 N/A N/A 18 1.60 

FR38 137 12.18 932 82.84 N/A N/A 56 4.98 

FR39 131 11.64 981 87.20 N/A N/A 13 1.16 

FR40 157 13.96 935 83.11 N/A N/A 33 2.93 

FR41 173 15.38 901 80.09 N/A N/A 51 4.53 

FR42 49 4.36 1068 94.93 N/A N/A 8 0.71 

FR43 410 36.44 672 59.73 N/A N/A 43 3.82 

FR44 108 9.60 933 82.93 N/A N/A 84 7.47 

FR45 130 11.56 948 84.27 N/A N/A 47 4.18 

FR47 51 4.53 988 87.82 N/A N/A 86 7.64 

FR48 112 9.96 962 85.51 N/A N/A 51 4.53 

FR49 422 37.51 634 56.36 N/A N/A 69 6.13 

FR50 183 16.27 893 79.38 N/A N/A 49 4.36 

 Incorrect Correct I Don't Know Missing 

PreCalculus n % n % n % n % 

MC1 421 37.42 563 50.04 138 12.27 3 0.27 

MC2 666 59.20 339 30.13 117 10.40 3 0.27 

MC10 422 37.51 530 47.11 169 15.02 4 0.36 

MC11 323 28.71 367 32.62 432 38.40 3 0.27 

MC12 375 33.33 305 27.11 439 39.02 6 0.53 

MC13 169 15.02 629 55.91 316 28.09 11 0.98 

MC14 233 20.71 622 55.29 262 23.29 8 0.71 

MC15 537 47.73 244 21.69 337 29.96 7 0.62 

MC17 214 19.02 324 28.80 565 50.22 22 1.96 

MC18 151 13.42 637 56.62 331 29.42 6 0.53 

MC19 192 17.07 589 52.36 335 29.78 9 0.80 

MC20 148 13.16 673 59.82 302 26.84 2 0.18 

MC21 399 35.47 349 31.02 372 33.07 5 0.44 

MC22 275 24.44 205 18.22 632 56.18 13 1.16 

MC23 156 13.87 466 41.42 497 44.18 6 0.53 

MC24 189 16.80 361 32.09 561 49.87 14 1.24 

MC26 415 36.89 460 40.89 248 22.04 2 0.18 

MC27 322 28.62 344 30.58 453 40.27 6 0.53 

MC28 141 12.53 556 49.42 417 37.07 11 0.98 

MC29 148 13.16 320 28.44 645 57.33 12 1.07 
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MC30 145 12.89 339 30.13 629 55.91 12 1.07 

MC31 349 31.02 418 37.16 352 31.29 6 0.53 

MC32 237 21.07 392 34.84 488 43.38 8 0.71 

MC33 482 42.84 214 19.02 422 37.51 7 0.62 

MC34 319 28.36 248 22.04 548 48.71 10 0.89 

MC35 117 10.40 199 17.69 796 70.76 13 1.16 

MC36 269 23.91 226 20.09 614 54.58 16 1.42 

MC37 245 21.78 172 15.29 688 61.16 20 1.78 

MC38 110 9.78 629 55.91 374 33.24 12 1.07 

MC39 353 31.38 382 33.96 365 32.44 25 2.22 

MC40 186 16.53 213 18.93 712 63.29 14 1.24 

MC41 176 15.64 275 24.44 655 58.22 19 1.69 

MC42 82 7.29 179 15.91 848 75.38 16 1.42 

MC43 208 18.49 394 35.02 504 44.80 19 1.69 

MC44 561 49.87 317 28.18 238 21.16 9 0.80 

MC45 139 12.36 193 17.16 774 68.80 19 1.69 

FR2 87 7.73 1035 92.00 N/A N/A 3 0.27 

 Incorrect Correct I Don't Know Missing 

Geometry n % n % n % n % 

MC25 160 14.22 843 74.93 119 10.58 3 0.27 

MC51 222 19.73 842 74.84 56 4.98 5 0.44 

MC52 160 14.22 934 83.02 26 2.31 5 0.44 

MC53 154 13.69 901 80.09 65 5.78 5 0.44 

MC54 655 58.22 450 40.00 13 1.16 7 0.62 

MC55 354 31.47 723 64.27 41 3.64 7 0.62 

MC56 146 12.98 946 84.09 25 2.22 8 0.71 

MC57 34 3.02 1069 95.02 15 1.33 7 0.62 

MC58 310 27.56 589 52.36 202 17.96 24 2.13 

MC59 262 23.29 655 58.22 184 16.36 24 2.13 

MC60 232 20.62 809 71.91 64 5.69 20 1.78 

MC61 367 32.62 689 61.24 55 4.89 14 1.24 

MC62 326 28.98 690 61.33 19 1.69 90 8.00 

FR46 150 13.33 944 83.91 N/A N/A 31 2.76 
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Algebra 1 

The following sections and paragraphs include the results for the Algebra 1 factor 

of the mathematics placement test including: (1) Item Analysis (i.e., assumptions, item 

difficulty and discrimination, item and model fit, and test information), and (2) 

Differential Item Functioning (DIF). 

Item analysis.  The assumption of local dependence (LD) for dichotomous items 

was analyzed using the Standardized LD χ2 statistic developed by Chen and Thissen 

(1997).  Overall, there were a total of 30 item-pairs with LD χ 2 values greater than ten.  

These item-pairs were further inspected for issues with the wording and/or position of the 

item as well as possible redundancy in the content of the items (Cai et al., 2011).  

The Algebra 1 factor from the mathematics placement test has a total of 56 items.  

The difficulty of an item (i.e., the b parameter) is the point on the θ continuum that 

corresponds to a 50% chance of endorsing an item.  The parameter estimates for item 

difficulty had a range of -4.70 (FR42) to 12.49 (FR11).  However, Item FR11 also had a 

negative discrimination index (i.e., detailed in the following paragraph), and was deleted.  

Thus, the next largest item difficulty estimate was .50 (MC6). 

Extreme and typical examples of item difficulties and their item characteristic 

curves (ICCs) are in Figure 6.  Item FR42 (i.e., the yellow curve located at the far left-

hand side) was the easiest item because the probability of a correct response is high for 

low ability respondents, and approaches 1 for high ability respondents near θ = -1.5.  Item 

FR5, the orange curve, is displayed to provide a visual representation of a “typical” item 

response function for items on the Algebra 1 section of the exam.  Finally, Item MC6 
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(i.e., the blue curve), located the furthest right on the horizontal axis represents the most 

difficult item in the Algebra 1 factor.  Additionally, MC6 was the only item to have a 

positive difficulty estimate indicating that the Algebra 1 section on the Mathematics 

Placement Test is generally easy for the respondents. 

 

Figure 6. Algebra 1 Item Characteristic Curves. This figure shows the item characteristic 

curves of four select items from the Algebra 1 section of the Mathematics Placement 

Test. 

 

Discrimination (i.e., the a parameter) is the slope of the item response function 

assessed at the difficulty of the item.  The steeper the slope, the greater the ability of the 

item to differentiate between individuals with varying abilities.  The parameter estimates 

(see Table 6 below) for the slopes (a) ranged from -.13 (FR11) to 4.04 (FR33).  The small 
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negative a value on FR11 (i.e., the gray curve) indicated that this item is acting in a 

counterintuitive manner (see Figure 6 above).  Specifically, individuals located further 

right on the θ continuum (i.e., higher proficiency in Algebra 1) were less likely to answer 

FR11 correctly compared to those individuals located further left on the θ continuum.  

Students with a stronger proficiency in Algebra 1 were more likely to answer FR11 

incorrectly than those students with a weaker proficiency in Algebra 1.  Thus, FR11 was 

identified for further revision or deletion.  FR33, however, had the highest a parameter, 

indicating that item’s ability to differentiate between individuals at varying levels of 

Algebra 1 proficiency.  Finally, the slopes of three other items (i.e., FR3, FR42, and 

FR50) fell below the acceptable range of .8 – 2.5 (De Ayala et al., 2001), warranting a 

more detailed examination of these items. 

 

Table 6 

     
Item Parameter Estimates and Standard Errors for Algebra 1 Scale (N = 1125) 

 

Item Label a (s.e.) b (s.e.) 

1 MC3 1.80 (.12) -0.47 (.05) 

2 MC4 2.79 (.19) -0.32 (.04) 

3 MC5 1.99 (.16) -1.24 (.07) 

4 MC6 1.20 (.10) 0.50 (.07) 

5 MC7 2.07 (.14) -0.37 (.05) 

6 MC8 3.19 (.23) -0.58 (.04) 

7 MC9 1.69 (.14) -1.43 (.08) 

8 MC16 2.74 (.20) -0.88 (.05) 

9 FR1 1.04 (.17) -3.32 (.42) 

10 FR3 0.75 (.08) -1.25 (.15) 

11 FR4 1.12 (.15) -2.74 (.28) 

12 FR5 1.63 (.13) -1.33 (.08) 

13 FR6 1.76 (.18) -1.91 (.12) 

14 FR7 2.11 (.18) -1.47 (.07) 
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15 FR8 1.72 (.14) -1.35 (.08) 

16 FR9 1.64 (.14) -1.44 (.09) 

17 FR10 2.38 (.20) -1.25 (.06) 

18 FR11 -0.13 (.08) 12.49 (8.36) 

19 FR12 1.22 (.13) -2.06 (.17) 

20 FR13 2.00 (.15) -0.82 (.06) 

21 FR14 1.02 (.16) -3.31 (.42) 

22 FR15 1.65 (.15) -1.63 (.10) 

23 FR16 1.38 (.12) -1.34 (.10) 

24 FR17 2.56 (.19) -0.93 (.05) 

25 FR18 2.59 (.18) -0.59 (.05) 

26 FR19 1.08 (.10) -1.45 (.12) 

27 FR20 1.78 (.17) -1.81 (.11) 

28 FR21 2.21 (.18) -1.20 (.06) 

29 FR22 1.55 (.15) -1.73 (.12) 

30 FR23 1.75 (.16) -1.50 (.09) 

31 FR24 1.67 (.20) -2.30 (.18) 

32 FR25 1.30 (.18) -2.77 (.27) 

33 FR26 2.43 (.21) -1.37 (.06) 

34 FR27 1.76 (.18) -1.95 (.13) 

35 FR28 2.37 (.20) -1.28 (.06) 

36 FR29 2.95 (.27) -1.32 (.06) 

37 FR30 1.82 (.15) -0.97 (.07) 

38 FR31 1.30 (.15) -2.37 (.20) 

39 FR32 1.61 (.21) -2.54 (.21) 

40 FR33 4.04 (.32) -0.50 (.04) 

41 FR34 2.68 (.20) -0.24 (.05) 

42 FR35 1.32 (.13) -1.78 (.13) 

43 FR36 1.45 (.14) -1.68 (.12) 

44 FR37 1.55 (.15) -1.77 (.12) 

45 FR38 1.60 (.15) -1.59 (.11) 

46 FR39 1.35 (.14) -1.92 (.14) 

47 FR40 1.53 (.14) -1.57 (.10) 

48 FR41 1.44 (.13) -1.47 (.10) 

49 FR42 0.70 (.16) -4.70 (.96) 

50 FR43 1.56 (.12) -0.41 (.06) 

51 FR44 1.85 (.18) -1.58 (.10) 

52 FR45 1.19 (.13) -2.01 (.17) 
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53 FR47 1.01 (.17) -3.23 (.46) 

54 FR48 0.94 (.12) -2.57 (.28) 

55 FR49 1.94 (.14) -0.26 (.05) 

56 FR50 0.58 (.09) -2.86 (.43) 

 

Next, the item-level diagnostics using S – χ2 (Orlando & Thissen, 2000) were 

examined to identify items misfitting to the overall model.  Six items were statistically 

significant (p < .05 for all) and were further investigated.  To measure the overall model-

data fit, the M2 fit statistic was used, which is asymptotically equal to χ2 (Maydeu-

Olivares & Joe, 2005).  The value of the M2 fit statistic suggested that there was not a 

good fit between the model and the data.  However, the RMSEA was .02, which is below 

the acceptable threshold for good model fit (Browne & Cudeck, 1992; Maydeu-Olivares, 

2013; Maydeu-Olivares & Joe, 2014; Steiger, 2016).  Therefore, it was determined that 

the model sufficiently represented the data. 
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Figure 7. Algebra 1 Total Information Curve. The above figure displays the total test 

information function which is the sum of the item information functions across all items, 

which is also graphed with the standard error curve. 

 

Finally, the Total Information Curve above, demonstrated that the maximum 

information value for the entire Algebra 1 test was 33 (θ = -1.30), which means that more 

information from the test is below the mean.  Therefore, this portion of the test assessed 

lower levels of the underlying construct, Algebra 1 proficiency, and was not able to 

distinguish between varying proficiencies along the Algebra 1 continuum. 

Differential item functioning.  Following the item analysis, DIF was conducted 

with the 56 Algebra 1 items to identify if any were biased with regards to respondents’ 

reported sex (i.e., males versus females).  Nine-hundred thirty-three students had their sex 

recorded in the data file.  Of that total, there were 469 males and 464 females.  The range 

of discrimination and difficulty indices was similar for both males and females.  For the 



166 

 

 

 

item-level diagnostic statistic (S – χ2) in each group, the males had three items (FR31, 

FR42, FR43) that did not fit the model as expected.  On the other hand, the females had 

seven items (MC5, FR12, FR15, FR25, FR31, FR45, FR48) that did not fit the model as 

expected.  Additionally, each group had a few item-pairs potentially violating the local 

dependence assumption.  Overall, using the χ2 omnibus test (Cai, 2008) and other χ2 tests 

for each parameter, it was determined that two items, FR4 and FR14, exhibited DIF (p < 

.05 for both).  Thus, these two items were investigated further for either revision or 

elimination. 

PreCalculus 

Similar to the Algebra 1 results above, the following sections and paragraphs 

include the results of the PreCalculus factor of the mathematics placement test including 

Item Analysis and Differential Item Functioning (DIF). 

Item analysis.  The assumption of local dependence (LD) was analyzed for the 

second factor, PreCalculus, using the Standardized LD χ2 statistic (Chen & Thissen, 

1997).  There were a total of 10 item-pairs with LD χ2 values greater than ten.  Further 

examination of these item-pairs is described in the discussion section below. 

The PreCalculus factor from the mathematics placement exam has a total of 37 

items.  The parameter estimates for item difficulty ranged from -5.86 (FR2) to 1.31 

(MC42).  Generally speaking, the PreCalculus factor appeared to have a good amount of 

variability among the item difficulty values (see Table 7 below), representing a 

moderately difficult section.  Additionally, the discrimination parameter estimates ranged 

from 0.43 (FR2) to 3.90 (MC35).  With the exception of two items, FR2 and MC2, all 
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other items had discrimination indices greater than 1, demonstrating their ability to 

adequately differentiate between individuals at varying levels of PreCalculus proficiency. 

 

Table 7 

     
Item Parameter Estimates and Standard Errors for PreCalculus Scale (N = 1125) 

 

Item Label a (s.e.) b (s.e.) 

1 MC1 1.02 (.14) -0.02 (.26) 

2 MC2 0.71 (.10) 1.29 (.22) 

3 MC10 1.99 (.26) 0.07 (.26) 

4 MC11 1.33 (.20) 0.71 (.19) 

5 MC12 2.17 (.36) 0.75 (.16) 

6 MC13 2.60 (.34) -0.21 (.29) 

7 MC14 1.22 (.17) -0.25 (.29) 

8 MC15 1.55 (.29) 1.15 (.11) 

9 MC17 2.30 (.39) 0.65 (.17) 

10 MC18 2.93 (.38) -0.22 (.29) 

11 MC19 1.94 (.28) -0.11 (.27) 

12 MC20 3.45 (.45) -0.29 (.30) 

13 MC21 2.63 (.47) 0.57 (.18) 

14 MC22 2.00 (.40) 1.17 (.10) 

15 MC23 2.34 (.37) 0.25 (.23) 

16 MC24 1.58 (.28) 0.65 (.16) 

17 MC26 2.48 (.42) 0.27 (.23) 

18 MC27 2.67 (.52) 0.58 (.18) 

19 MC28 2.08 (.33) -0.01 (.26) 

20 MC29 3.26 (.73) 0.61 (.16) 

21 MC30 3.20 (.69) 0.56 (.17) 

22 MC31 2.43 (.46) 0.38 (.21) 

23 MC32 2.46 (.48) 0.45 (.20) 

24 MC33 1.81 (.42) 1.19 (.08) 

25 MC34 2.14 (.49) 0.97 (.11) 

26 MC35 3.90 (1.17) 0.98 (.10) 

27 MC36 2.66 (.68) 0.97 (.10) 

28 MC37 3.30 (.95) 1.12 (.07) 

29 MC38 1.39 (.23) -0.28 (.28) 
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30 MC39 1.34 (.28) 0.61 (.15) 

31 MC40 1.95 (.49) 1.14 (.08) 

32 MC41 2.15 (.48) 0.85 (.12) 

33 MC42 1.92 (.47) 1.31 (.07) 

34 MC43 1.33 (.28) 0.58 (.15) 

35 MC44 1.38 (.30) 0.90 (.11) 

36 MC45 1.76 (.46) 1.30 (.08) 

37 FR2 0.43 (.17) -5.86 (2.18) 

 

 Extreme and typical examples of item difficulties and their ICCs are in Figure 8.  

Item FR2 (i.e., the grey curve located towards the top of the graph) was the easiest item 

because the probability of a correct response is high for low ability respondents, and 

approaches 1 for high ability respondents.  Item MC35, the blue curve, is displayed to 

provide a visual representation of the item’s ability to discriminate among respondents 

with varying ability levels, as evidenced by the steepness of the ICC.  Lastly, Item MC42 

(i.e., the orange curve), located the furthest right on the horizontal axis represents the 

most difficult item in the PreCalculus factor. 
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Figure 8. PreCalculus Item Characteristic Curves. This figure shows the item 

characteristic curves of three select items from the PreCalculus section of the 

Mathematics Placement Test. 

 

All PreCalculus items were examined for item-model fit using the item-level 

diagnostic statistic S – χ2 (Orlando & Thissen, 2000).  Six items were statistically 

significant (p < .05) and thus did not fit the overall model as expected.  These items were 

further investigated.  In regards to the overall model-data fit, the M2 fit statistic indicated 

that there was not a good fit between the model and the data.  However, the RMSEA was 

.05, which is considered to be an acceptable model fit (Browne & Cudeck, 1992; 

Maydeu-Olivares, 2013; Maydeu-Olivares & Joe, 2014; Steiger, 2016).  Thus, it was 

determined that the model provided a sufficient representation of the model. 
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Figure 9. PreCalculus Total Information Curve. The above figure displays the total test 

information function which is the sum of the item information functions across all items, 

which is also graphed with the standard error curve. 

 

Lastly, the Total Information Curve above, shows that the maximum information 

value for the PreCalculus section was approximately 34 (θ = 0.60), meaning that 

information from the test is a little above average.  Therefore, this section of the 



171 

 

 

 

mathematics placement test assessed higher levels of PreCalculus proficiency and was 

sufficiently able to distinguish between varying proficiencies along the PreCalculus 

continuum. 

Differential item functioning.  Item biases were explored on the basis of 

respondents’ reported sex for each of the 37 PreCalculus items.  The range of difficulty 

and discrimination indices was similar for both males and females.  While the item-level 

diagnostic statistic (S – χ2) revealed four misfitting items for males (MC2, MC10, MC31, 

and FR2), all items demonstrated acceptable model fit for females.  Moreover, each 

group had less than a handful of item-pairs potentially violating the assumption of local 

dependence.  Finally, the χ2 omnibus test (Cai, 2008) and additional χ2 tests for each 

parameter indicated four items that exhibited DIF (MC12, MC23, MC31, and MC36).  

With regard to item difficulty, items MC12 and MC23 were easier for males than 

females.  Conversely, item MC36 favored females over males.  The last item, MC31, 

discriminated between males and females differently depending on whether or not the 

individual’s ability level was above or below θ = 0.20.  In each of these situations, items 

were further investigated for either revision or elimination. 

Geometry 

Lastly, the following sections and paragraphs include the results for the Geometry 

factor of the mathematics placement test including Item Analysis and DIF. 

Item analysis.  The third factor of the mathematics placement exam, Geometry, 

has 14 items.  The assumption of local dependence was tested and found to be tenable, 

indicating that each item is measuring a distinct Geometry concept and contributing to 
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the exam.  Next, the parameter estimates for item difficulty and discrimination were 

analyzed. 

Item difficulty values ranged from -2.84 (FR46) to 0.51 (MC54).  In Table 8 

below, it can be seen that 13 of the 14 total items had a negative difficulty estimate 

meaning that the Geometry section is generally easy for those completing this exam.  

Moreover, the parameter estimates for discrimination ranged from .70 (FR46) to 2.67 

(MC53).  Item FR46 was the only item to fall below the recommended values of 

discrimination, warranting a more detailed examination of this item (De Ayala et al., 

2001). 

 

Table 8 

     
Item Parameter Estimates and Standard Errors for Geometry Scale (N = 1125) 

 

Item Label a (s.e.) b (s.e.) 

1 MC25 0.96 (.11) -1.36 (.14) 

2 MC51 2.14 (.20) -0.86 (.06) 

3 MC52 1.29 (.13) -1.61 (.13) 

4 MC53 2.67 (.29) -1.02 (.06) 

5 MC54 0.93 (.10) 0.51 (.09) 

6 MC55 1.55 (.14) -0.56 (.06) 

7 MC56 0.84 (.11) -2.29 (.26) 

8 MC57 1.96 (.26) -2.33 (.17) 

9 MC58 1.14 (.11) -0.16 (.06) 

10 MC59 1.38 (.13) -0.38 (.06) 

11 MC60 0.89 (.10) -1.32 (.14) 

12 MC61 0.91 (.10) -0.64 (.09) 

13 MC62 0.81 (.10) -0.99 (.13) 

14 FR46 0.70 (.11) -2.84 (.41) 
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Extreme and typical examples of item difficulties and their ICCs are in Figure 10.  

Item FR46 (i.e., the grey curve located at the far left-hand side) was the easiest item 

because the probability of a correct response is high for low ability respondents, and 

approaches 1 for high ability respondents above θ = 1.  Item MC53, the blue curve, is 

displayed to provide a visual representation of the item’s ability to discriminate among 

respondents with varying ability levels, as evidenced by the steepness of the ICC. Lastly, 

Item MC54 (i.e., the orange curve), located the furthest right on the horizontal axis 

represents the most difficult item in the Geometry factor.  Additionally, Item MC54 was 

the only item to have a positive difficulty estimate, again, indicating that the Geometry 

section on the Mathematics Placement Test is generally easy for the respondents. 

 

 

Figure 10. Geometry Item Characteristic Curves. This figure shows the item 

characteristic curves of three select items from the Geometry section of the Mathematics 

Placement Test. 
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Next, each item was examined for model fit using the item-level diagnostic 

statistic S – χ2 (Orlando & Thissen, 2000).  Only one item, MC57, was found to be 

statistically significant (p < .05) and did not fit the model as expected.  A more detailed 

description of Item MC57 is provided in the discussion section below.  Similar to 

previous factors, the M2 fit statistic indicated a poor model-data fit.  However, the 

RMSEA was .02, which was well below the acceptable level of good model fit.  

Therefore, it was determined that the model provided a sufficient representation of the 

data. 
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Figure 11. Geometry Total Information Curve. The above figure displays the total test 

information function which is the sum of the item information functions across all items, 

which is also graphed with the standard error curve. 

 

Finally, the Total Information Curve (see Figure 11 above) demonstrates a 

maximum information value of approximately 6.7 (θ = -0.80).  This value indicates that 
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more information from the test is slightly below the mean.  Thus, this section of the test 

assessed lower levels of Geometry proficiency and was not able to distinguish between 

varying proficiencies along the Geometry continuum. 

Differential item functioning.  Each of the 14 Geometry items were tested for 

potential item bias with regards to respondents’ reported sex (i.e., males versus females).  

Both males and females had similar parameter estimates for both difficulty and 

discrimination and no concerns of violating the local dependence assumption.  Using the 

χ2 omnibus test (Cai, 2008) and other χ2 tests for individual parameters, it was determined 

that two items, MC25 and MC59, exhibited DIF (p < .05 for both).  Item MC59 

demonstrated uniform DIF such that the item was easier for females than males across the 

θ continuum.  Item MC25, on the other hand, differed in its ability to discriminate 

between males and females depending on whether or not an individual was located above 

or below θ = -0.80.  Both items were investigated further for either revision or 

elimination. 

Discussion 

Educational institutions, at all levels, must be prepared to address questions about 

the uses and interpretations of tests and their scoring methods.  To do so, it is imperative 

that the test itself be evaluated to ensure that the items are well constructed, 

unambiguous, and free of bias (Adedoyin & Mokobi, 2013; R. F. Burton, 2005; Sireci, 

1998b).  Once the quality of the test has been analyzed and professionals are confident in 

the characteristics of the test and scores, then stakeholders can be assured that the 

outcomes of the assessment do not lead to uneven or unfair treatment of students, 
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allowing for more accurate inferences to be made.  Using IRT, this study examined the 

item parameters (i.e., item difficulty, and item discrimination) and DIF of the 

mathematics placement test used at a gifted, STEM, residential high school using the 

Two-Parameter Logistic (2PL) Model (see Table 9 below).  The following sections and 

paragraphs provide a detailed discussion for each factor (i.e., Algebra 1, PreCalculus, and 

Geometry) of the mathematics placement test as well as the implications, limitations, and 

future directions for this study. 

Algebra 1 

Results from this study indicate that the Algebra 1 section of the mathematics 

placement test is generally easy for the population of interest suggesting that some 

revisions be made.  As mentioned previously, Item FR11 had a negative discrimination 

value and was acting in a counterintuitive manner.  As such, Item FR11 was 

recommended for deletion. 

Moreover, the 30 item-pairs with possible threats of local dependence were 

examined further.  Based on the value of the Standardized LD χ2 statistic and the 

investigation of content similarity among item-pairs, eight additional items (MC8, FR16, 

FR21, FR26, FR30, FR31, FR33, FR37) were recommended for deletion.  An additional 

two items, FR4 and FR42, may also be considered for deletion.  Not only did Item FR4 

exhibit DIF, but the (S - χ2) item-level diagnostic statistic also suggested that FR4 did not 

fit the model as expected.  The second item, FR42 according to the item parameter 

estimates, was the easiest item (b = -4.70) and also indicated poor item-model fit.  After 



178 

 

 

 

removing the items listed above, the Algebra 1 factor had an internal consistency 

reliability (KR-20) of .895 for 45 items compared to the previous .91 for 56 items. 

Finally thirteen items (FR1, FR8, FR9, FR12, FR19, FR25, FR32, FR35, FR36, 

FR38, FR39, FR45, and FR48) are recommended for revision due to their limited 

contribution of information as determined by their item response functions.  By revising 

or removing items contributing little to no information to the overall Algebra 1 section of 

the test, the operational range of the exam can be improved.  Likewise, to provide a better 

estimation of ability above -1.30, more items could be added to the higher end of the 

continuum to expand the operational range of the Algebra 1 section of the mathematics 

placement test. 

PreCalculus 

Results regarding the PreCalculus items indicate that this section is moderately 

challenging for the population of interest.  As previously mentioned, items FR2 and MC2 

had discrimination indices that fell below the accepted value of .80 (De Ayala et al., 

2001).  More specifically, Item FR2 was the easiest of the PreCalculus items (b = -5.86) 

and did not fit the model as expected.  Item MC2, although it did not exhibit DIF, the 

item characteristic curve suggests that this item tends to be easier for males than females.  

For these reasons, it is recommended that item FR2 be deleted and MC2 be revised for 

future administrations of this assessment. 

Furthermore, the 10 item-pairs with potential threats to the assumption of local 

dependence were examined along with misfitting items.  From these procedures, it was 

determined that item MC31 did not fit the model as expected and did share similar 
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content with another item.  Thus, item MC31 should be removed.  After removing these 

two items, the new internal consistency reliability estimate (KR-20) remained consistent 

at .95. 

Lastly, it is recommended that 11 additional items be discussed further due to the 

high frequency of selecting the fifth response option “I don’t know.”  More specifically, 

item MC35 was previously identified as misfitting the model.  Upon additional 

examination, it was determined that approximately 71% of the respondents answering 

item MC35 had selected the “I don’t know” response option.  Use and relevance of this 

item in placing students in their first mathematics course in the high school should be 

discussed. 

Geometry 

The Total Information Curve along with difficulty parameter estimates suggests 

that the Geometry section of the mathematics placement test is generally easy for the 

population of interest.  Moreover, it is recommended that four items (FR46, MC25, 

MC57, and MC59) be considered for revision.  Item FR46 had a smaller than acceptable 

discrimination index and appears to be contributing little information to the overall 

Geometry section according to the item information function.  Items MC25 and MC59 

exhibited DIF and therefore need to be examined to avoid item bias.  As previously 

stated, item MC57 did not fit the model as expected.  After reviewing the item’s content, 

it is believed that one of the distractor options may be contributing additional confusion 

on item MC57.  Thus, it is recommended that item MC57 be discussed further and 

potentially revised. 
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One final point to consider is the possibility of removing all 14 Geometry items 

from the overarching mathematics placement exam.  Although it is interesting to know 

how students perform on Geometry concepts, these items are not used for placement 

purposes.  In order to graduate high school (i.e., in Illinois), each student must complete a 

high school level Geometry course.  However, a vast majority of the gifted students 

attending the high school of interest complete their required Geometry course prior to 

acceptance.  Therefore, incoming students are only “placed” into Geometry if they have 

not yet completed the state requirement.  As such, it may be advisable to remove the 

Geometry items from the placement test in exchange for other items that may assist with 

a more accurate placement of students. 

 

Table 9 

 

Summary of Item Analysis Results 

 

  

Algebra 1 

(56 items) 

PreCalculus 

(37 items) 

Geometry 

(14 items) 

Difficulty [-4.70, 12.49] [-4.70, .50]* [-5.86, 1.31] [-2.84, .51] 

Discrimination [-.13, 4.04] [.58, 4.04]* [.43, 3.90] [.70, 2.67] 

DIF FR4 and FR14 

MC12, MC23, 

MC31, and MC36 

MC25 and 

MC59 

# Items Deleted 11 2 0 

# Items Remaining 45 35 14 

KR-20 0.895 0.95 0.736 

Note. *Item FR11 excluded 
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Differential Item Functioning 

Findings from this study suggest that some gender-based differential item 

functioning exists on each of the three sections (i.e., Algebra 1, PreCalculus, and 

Geometry) of the mathematics placement test.  While the items with the short-answer 

format exhibited less DIF than the multiple-choice items, the cause of gender differences 

in performance on certain items remains unclear. 

Previous research has indicated that males have a stronger advantage than females 

on items using the multiple-choice format (Becker, 1990; Burton, 1996; Garner & 

Engelhard Jr., 1999).  However, results from this study were mixed.  Across the 

PreCalculus and Geometry sections, there were a total of six multiple-choice items that 

exhibited DIF.  Three of those items (i.e., MC12, MC23, and MC25) favored males over 

females while the remaining three items (i.e., MC31, MC36, and MC59) revealed a 

distinct advantage for females compared to males.  Future research may consider 

examining the patterns in the choices of distractors made by students who got the item 

wrong.  Such patterns may provide additional insight and explanation of the observed 

gender differences. 

Moreover, the two short-answer items (i.e., FR4 and FR14) that exhibited DIF on 

the Algebra 1 section of the mathematics placement test demonstrated an advantage for 

males over females.  This result was surprising as previous research has supported the 

argument that females tend to have an advantage on Algebra items compared to males 

(Abedalaziz, Leng, & Alahmadi, 2018; Altenhof, 1984; Burton, 1996; Doolittle & 

Cleary, 1987; Garner & Engelhard Jr., 1999).  Additionally, in the current study, the 
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maximum information value for males on the Algebra 1 section was approximately 38.78 

(θ = -0.8) compared to a maximum information value for females of approximately 38.88 

(θ = -1.2).  Although the amount of information is virtually the same, the location at 

which the peak occurs is much different.  Thus, these findings suggest that the Algebra 1 

section of the mathematics placement test was easier for females compared to males, 

supporting the findings from previous research. 

Implications 

The purpose of the current study was to examine the item parameters (i.e., item 

difficulty, and item discrimination) and DIF of the mathematics placement test used at a 

gifted STEM residential high school.  By critically examining the quality of the items on 

the mathematics placement test, all stakeholders can be assured that the inferences drawn 

from the educational assessment are accurate and that the assessment outcomes do not 

lead to unfair or uneven treatment of students (Harris, 2003; Linn, 1994). 

Findings have practical implications for the faculty members at the high school in 

this study as they consider future revisions and administrations of the mathematics 

placement test.  Study results suggested that eleven items should be removed from the 

Algebra 1 section of the mathematics placement test, with an additional two items 

recommended for deletion from the PreCalculus section, due to concerns of local 

dependence, item difficulty, and item discrimination.  Additionally, there were a few 

items that exhibited DIF and should be discussed further to identify why the item was 

biased on the basis of students’ sex.  Thus, by equipping faculty members with these 
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important item-level details, they can more confidently customize the mathematics 

placement test to accurately place students in their initial mathematics course. 

Moreover, this study provides an initial step in demonstrating the need to 

critically examine the psychometric properties of placement tests at all educational levels.  

Although the average high school may not have adequate resources to conduct similar 

research, there is still a need to have solid and defensible placement tests and practices to 

ensure that decisions are equal and fair for all students.  The current study may act as a 

catalyst for similar high schools to examine the placement tests in use at their institutions. 

Limitations and Future Research 

One major limitation of this study is the use of the “I don’t know” response option 

on the multiple-choice section of the mathematics placement test.  Since the early 1970s, 

researchers and statisticians alike have continued to argue the advantages and 

disadvantages of offering such a response option.  Some claim that the “I don’t know” 

response option may be informative and thus should be included within the estimation 

model (Balcombe & Fraser, 2011).  Others propose that the “I don’t know” option is not 

suitable for tests measuring respondent’s optimal performance and that to either 

discourage guessing and/or to encourage “I don’t know” responses is to seek reliability at 

the cost of validity (Mondak, 2001). 

 Some test developers and administrators will advocate for the use of the “I don’t 

know” option as a way to reduce guessing behaviors.  A compromise for this was 

proposed by Zhang (2013) who noted that if it is the intention of the test to minimize 

guessing and measure precise knowledge, then the “I don’t know” option could be used 
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within a penalty scoring model.  Another suggestion to address the use of the “I don’t 

know” option was to eliminate the “I don’t know” response on multiple-choice questions 

by using a post-hoc correction (Kline, 1986; Mondak, 2001).  In this post-hoc correction, 

the “I don’t know” responses are randomly assigned to the remaining four choices, 

essentially entering guesses on behalf of the respondents who would not do so themselves 

(Mondak, 2001).  However, since the goal of the mathematics placement test is to 

measure optimal performance, the post-hoc correction or a penalty scoring model seem 

inappropriate due to the differences in individuals’ willingness to guess. 

When students vary in their willingness to guess, then two students with the same 

ability level will receive different scores (Culbertson, 2011; Hanna, 1974; Mondak, 2001; 

Pohl et al., 2014).  In this instance, the test is no longer measuring only knowledge of 

mathematics, but also students’ “test-wiseness.”  Again, if the intention of the placement 

test is to measure students’ maximum performance in mathematics, then all possible 

sources of measurement error should be reduced to ensure the proper course placement.  

Future research could examine the various correction models discussed above to 

determine which, if any, may be best suited for the purposes of this mathematics 

placement exam. 

In the current study, the Two-Parameter Logistic Model (2PL) was used to 

examine the characteristics of the items on each factor of the mathematics placement test 

because it was believed that the presence of the “I don’t know” response option prevented 

students from guessing.  However, if the “I don’t know” response option is removed from 

the exam, future research could use the 3PL model to re-examine the item parameters 
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(i.e., item difficulty, item discrimination, and guessing) and DIF of the mathematics 

placement test. 

As noted in the previous section, there are a number of items that have been 

recommended for revision or deletion.  Future research can support these efforts to ensure 

the use of quality items that adequately measure the construct of interest.  Finally, more 

research is warranted to examine additional factors (i.e., race/ethnicity, socioeconomic 

status) that may elicit item bias so that stakeholders can be confident that the decisions 

and interpretations made based off of the scores obtained are equitable across all groups 

and identities. 

Conclusions 

 While the use of placement tests is a near-universal practice at the post-secondary 

level, fewer studies have focused their attention on the psychometric properties of these 

tests.  It is imperative that educational institutions at all levels examine their placement 

testing procedures and assessments to demonstrate their impact on students’ future 

educational outcomes (Mattern & Packman, 2009; McDaniel et al., 2007; Morgan & 

Michaelides, 2005; Norman et al., 2011).  Maintaining a cooperative research partnership 

between content experts and assessment professionals provides an opportunity to address 

issues throughout the item development, revision, and piloting process while 

simultaneously enhancing the visibility of measurement and evaluation.  This study 

encourages similar schools with an emphasis on STEM and/or gifted education to 

develop relationships with measurement professionals who can provide valuable insight 

regarding the use and development of placement tests within unique educational settings. 
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 Results from the current study indicate that the mathematics placement test is 

generally easy for the population of interest.  While the PreCalculus items proved to be 

more challenging, many respondents used the “I don’t know” response option for some 

items.  Further discussion should determine whether or not the information obtained from 

the “I don’t know” response is useful in the placement decision-making process.  

Moreover, it is recommended that the Algebra 1 and Geometry items be reconsidered due 

to concerns of local dependence, difficulty, and discrimination.  Since the Geometry 

items are not used for placement purposes, future versions of the mathematics placement 

test may exclude these items in favor of other items that may be of more relevance to 

placement decisions.  Additional conversations are also recommended regarding a few 

items exhibiting differential item functioning. 

 Educational assessments, when designed and used properly, can enhance later 

performance and provide feedback to both the student and other interested stakeholders 

on what has and has not been learned.  Only then can an educational institution provide 

evidence of maximizing student success while minimizing the consequences of 

misplacement. 
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CHAPTER VII – MANUSCRIPT 4 

PLACEMENT EXAM SCORES AND FIRST-SEMESTER MATHEMATICS 

ACHIEVEMENT AT A SCIENCE, TECHNOLOGY, ENGINEERING, AND 

MATHEMATICS (STEM) GIFTED RESIDENTIAL HIGH SCHOOL 

Abstract 

According to the literature, the primary purpose of placement testing is to assess 

students’ academic skills and to provide them with instruction that is appropriate for their 

ability (e.g., Frisbie, 1982; Mattern & Packman, 2009; Morgan & Michaelides, 2005; 

Noble et al., 2003; Sawyer, 1996).  As such, educational institutions, at all levels, must 

continually review and evaluate their placement tests and policies to ensure that students 

are enrolled in courses that will increase the probability of success and minimize the 

unintended negative consequences of misplacement (e.g., Linn, 1994; Mattern & 

Packman, 2009; McFate & Olmsted III, 1999; Norman et al., 2011; Wiggins, 1989). 

To review the placement procedures being used at a Science, Technology, 

Engineering, and Mathematics (STEM) residential high school for gifted students, the 

current study sought evidence of the Predictive Validity of the item scores on a 

mathematics placement test.  Existing data from two cohorts were obtained and analyzed 

using a series of Hierarchical Multiple Linear Regressions.  Findings from this study 

demonstrated the ability of the mathematics placement test total and factor scores to 

predict students’ success in their first semester mathematics course, providing evidence 

of Criterion-Related Validity for the population of interest. 
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Keywords: Predictive Validity, Multiple Regression, Mathematics Placement Test, 

STEM Education 

Introduction 

In educational measurement, constructs such as achievement, interest, and 

performance are assigned numerical values, through the use of a wide variety of tests and 

assessments, to infer the abilities and proficiencies of students.  Specific to the current 

study, the purpose of achievement testing is to measure students’ actual knowledge or 

acquired skills in order to reliably distinguish between students who do and do not have 

some level of the construct of interest (Slavin, 2007).  As one of the primary measures 

used in educational research, there is an abundance of literature focused on achievement 

testing as institutions begin to defend their policies and practices surrounding the use of 

these measures. 

At the post-secondary level, numerous articles have been published regarding the 

use of placement tests for incoming students.  Many of these articles mention the 

continuing decline of academic standards, specifically in the area of mathematics (e.g., 

Crist et al., 2002; Hoyt & Sorensen, 2001; Medhanie et al., 2012; Ngo & Kwon, 2015; 

Parker, 2005; Schmitz & delMas, 1991).  Unsurprisingly, the lowered academic standards 

in math are said to be related to students’ scoring lower on mathematics placement tests.  

Due to the lower test scores, more students are being assigned to take remedial 

coursework, which has sparked a conversation about whether or not students are less 

prepared for college-level work or if the placement tests used are appropriate for this type 

of decision (Morgan & Michaelides, 2005). 
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More specifically, nearly one-third of all students entering community colleges 

take at least one remedial or developmental course in mathematics (e.g., Bailey, 2009; 

Hoyt & Sorensen, 2001; Kowski, 2013; Medhanie et al., 2012; Melguizo et al., 2014; 

Scott-Clayton, 2012).  Not only do these remedial courses lower student motivation, but 

they also add time to student graduation.  Furthermore, the additional time students spend 

taking non-credit courses increases their overall cost to attend and lowers retention rates 

(Medhanie et al., 2012; Melguizo et al., 2008; Ngo & Kwon, 2015; Scott-Clayton, 2012).  

Some community colleges have even been accused of placing students into these 

remedial, non-credit courses as a way to increase revenue (Armstrong, 2000).  As a 

result, post-secondary institutions are now being asked to provide evidence of the 

effectiveness of their placement procedures and measures to ensure that the negative 

consequences of misplacement are minimized (Armstrong, 2000; Morgan & Michaelides, 

2005; Smith & Fey, 2000).  Institutions must remember that accurately placing students 

is a necessary, but not sufficient, condition for a placement system as a whole to be 

effective (Sawyer, 1996). 

The purpose of this study was to provide evidence of Criterion-Related Validity 

(i.e., Predictive Validity) of a mathematics placement test at a Science, Technology, 

Engineering, and Mathematics (STEM), gifted, residential high school.  Specifically, this 

study examined the relationship between the mathematics placement exam and students’ 

performance in their initial mathematics course.  Previous research on placement exams 

have been conducted at the post-secondary level; however, this study extends the 

research to younger grade levels serving a specific, gifted population. 
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Literature Review 

The overarching purpose of placement tests is to enroll students in courses that 

are suitably challenging to their current knowledge level (e.g., Akst & Hirsch, 1991; 

Frisbie, 1982; Marshall & Allen, 2000; Mattern & Packman, 2009; McFate & Olmsted 

III, 1999; Noble et al., 2003; Sawyer, 1996).  When students are not fittingly placed, their 

courses can either bore or frustrate them, which in turn lowers students’ motivation to 

perform at a normal or higher level (Mattern & Packman, 2009; Morgan & Michaelides, 

2005; Noble et al., 2003; Sawyer, 1996). 

In addition to impacting student motivation, prior research has shown that course 

placement decisions can have a significant impact on a student’s future academic 

preparation (McDaniel et al., 2007; Morgan & Michaelides, 2005).  For example, 

students who begin in a post-secondary mathematics course that is appropriate given their 

background have an increased chance of succeeding in their initial mathematics course 

and their subsequent mathematics courses (Akst & Hirsch, 1991; Latterell & Regal, 2003; 

Marshall & Allen, 2000; Mattern & Packman, 2009; Norman et al., 2011; Shaw, 1997).  

For this reason, more research is needed to thoroughly examine placement tests and 

procedures to ensure that students are in fact being placed into courses that will maximize 

the probability of their success (Linn, 1994; Mattern & Packman, 2009; McFate & 

Olmsted III, 1999; Norman et al., 2011; Wiggins, 1989).  Although these placement tests 

are typically considered “high-stakes,” the psychometric properties of such tests have 

received relatively little attention and need to be evaluated further (Callahan, 2005; 

Grubb & Worthen, 1999; Scott-Clayton, 2012). 



191 

 

 

 

According to the Code of Fair Testing Practices in Education (Joint Committee 

on Testing Practices, 2005), test developers are charged with the responsibility to: (1) 

Provide evidence of what the test measures, its recommended uses, and its strengths and 

limitations, and (2) Provide evidence that the technical quality (i.e., reliability and 

validity) of the test meets its intended uses.  Moreover, previous research has 

recommended that colleges and universities consider the rigor and defensibility of the 

policies and methods used to inform placement decisions due to their “high-stakes” 

classification (Clark & Watson, 1995; Morgan & Michaelides, 2005).  Armstrong (1995) 

stated that both Title V and Federal Civil Rights legislation requires institutions to 

validate the use of assessment tests in the placement and referral of students.  Therefore, 

regardless of educational level, future research should continue to evaluate and specify 

the psychometric properties of placement tests in order to address questions about the 

impact of these tests on students and their learning. 

Criterion-Related Validity draws inferences from individuals’ exam scores to 

performance on some external criterion of practical importance (Crocker & Algina, 2008; 

Hambleton et al., 1978).  This type of validity can be evidenced either concurrently or 

predictively.  Procedures for concurrent validation are used when the data collected for 

both the test and the criterion occur at or about the same point in time (Crocker & Algina, 

2008; Wiersma & Jurs, 2009).  On the other hand, procedures for predictive validity 

require a gap in time between when the test was given and when the criterion data are 

collected (Crocker & Algina, 2008).  Additionally, the purpose of predictive validity is to 
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determine whether or not test scores have the ability to predict specified future 

performance. 

In the context of educational measurement and placement decisions, the best 

indicator of future behavior/performance is an individual’s past behavior/performance 

(Belfield & Crosta, 2012; Davis & Shih, 2007; Erwin & Worrell, 2012; Feldhusen & 

Jarwan, 1995).  However, one of the major concerns detailed in the existing literature 

base has been the disparity between the cognition and performance elicited on placement 

tests and the cognition and performance needed to succeed in the classroom (Armstrong, 

2000; Brown & Niemi, 2007; Madison et al., 2015; Marsh et al., 2007; Schmitz & 

delMas, 1991).  For example, if a test forbids the use of a calculator, the score obtained 

from that test may not accurately predict a student’s ability to succeed in a mathematics 

course that encourages the use of calculators (Akst & Hirsch, 1991).  Moreover, 

Predictive (i.e., Criterion-Related) Validity is enhanced when the correspondence 

between what is measured on a test is congruent with what is needed to succeed in a 

course (Armstrong, 2000). 

Prior research has attempted to examine this relationship by investigating the 

Predictive Validity of post-secondary placement exams in relation to course grade 

received.  Within these models, the use of multiple measures is encouraged and provides 

more accurate course placement decisions compared to test scores alone (e.g., Armstrong, 

1995; Erwin & Worrell, 2012; Marwick, 2004; Ngo & Kwon, 2015; Noble et al., 2003).  

For example, one study showed that combining the SAT Mathematics exam with either 

high school GPA (i.e., grade point average) and/or class rank was a better predictor of 
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college achievement over test scores alone (Schumacher & Smith, 2008).  However, 

other studies have cautioned that the usefulness of the SAT Mathematics exam is limited 

due to the average difference in scores between males and females (Bridgeman & 

Wendler, 1989, 1991; Davis & Shih, 2007; Gallagher & De Lisi, 1994).  More recent 

research has concluded that the accuracy of placement decisions greatly increases when 

placement test scores are combined with measures of high school achievement (i.e., high 

school GPA, high school grades, courses taken; Marwick, 2002; Melguizo et al., 2014; 

Ngo & Kwon, 2015; Pike, 1991; Scott-Clayton, 2012; Wattenbarger & McLeod, 1989).  

Although the use of multiple measures have been demonstrated to enhance placement 

policies and decisions at the post-secondary level, additional research is sought after at 

the high school level. 

Therefore, the current study sought evidence of Criterion-Related Validity (i.e., 

Predictive Validity) of the scores on a mathematics placement test used at a gifted 

residential high school for students interested in STEM using a series of Hierarchical 

Multiple Linear Regressions.  These regressions were used to investigate the relationship 

between students’ mathematical knowledge, as measured by the mathematics placement 

test, and students’ subsequent performance, as measured by their grade (i.e., a score 

represented by a percentage between zero and 100) in their first semester mathematics 

course.  Moreover, the models used included students’ demographic information and 

previous mathematics coursework to mimic the reality of placement practices used at the 

high school under study and to improve the predictive accuracy of the results. 
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Methods 

The following sections describe the methods used to examine the Criterion-

Related Validity of the scores on a mathematics placement test. 

Participants and Procedures 

Existing data from four cohorts of students were obtained to examine Predictive 

Validity.  These cohorts consisted of students entering the high school their sophomore 

year, beginning in the 2014/2015 academic year and ending in the most recent 2017/2018 

academic year, for which data was available.  However, due to incomplete and 

inaccessible data, the final analysis included two of the four cohorts for which the most 

complete data were available. 

Additionally, group equivalence across the two cohorts was examined and 

reported for the population information listed above (e.g., gender and race/ethnicity) 

using Chi-Square Tests of Association.  Furthermore, the two cohort means of students’ 

median family incomes (SES), incoming SAT Mathematics scores (SAT_M), and the 

SAT Evidence-Based Reading and Writing (SAT_ERW) scores were examined for 

significant differences using Independent Samples t-Tests.  No significant differences 

were identified for four of the five demographic variables (i.e., gender, race/ethnicity, 

SAT_ERW, and SES).  The demographic variable of SAT_M, showed significant 

differences between the two cohorts (t[539] = 2.394, p < .05).  The cohort from 2014 (n = 

257) had a mean SAT_M score of 689.22 (SD = 71.43) compared to the cohort of 2016 (n 

= 284) which had a mean SAT_M score of 673.45 (SD = 80.85). 
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To further examine this difference, Cohen’s d was calculated as a measure of 

effect size.  An effect size is an indicator of the degree of departure between the null 

hypothesis (i.e., equivalent means) and the alternate hypothesis (i.e., group means differ), 

such that a small effect size is .2, medium is .5 and large is .8 (Cohen, 1988).  In the 

current study, the effect size was small (d = .2).  Therefore, even though there was a 

statistically significant difference between the two cohorts on the SAT_M variable, the 

small effect size justified combining the two cohorts into one sample for subsequent data 

analysis. 

Measure 

Mathematics faculty members developed the mathematics placement test in 1985.  

The original and continuing purpose of the mathematics placement test is to determine a 

student’s incoming mathematical knowledge for appropriate initial course placement 

commensurate with ability level.  Thus, generally speaking, the placement test assesses 

mathematical knowledge needed prior to entering into a Calculus sequence.  More 

specifically, the developers of the exam created a two-part test measuring three content 

areas of mathematics, namely Algebra 1, Geometry, and PreCalculus, as previously 

determined through an Exploratory Factor Analysis (Manuscript 2). 

 In Manuscript 3, an item analysis was conducted to examine the item parameters 

(i.e., item difficulties and item discrimination indices) and differential item functioning 

within each factor.  As a result of the study, some items were deleted from the exam.  The 

Algebra 1 factor had a KR-20 reliability estimate of .895 for 45 items and measured 

student’s knowledge of content such as simplifying expressions, functions, and 
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exponents.  The Geometry factor had the lowest reliability estimate (KR-20 = .736) and 

the fewest number of items (n = 14).  These items assessed concepts such as right triangle 

trigonometry, properties of congruent angles and triangles, and characteristics of a circle.  

Finally, the PreCalculus factor had a KR-20 reliability estimate of .95 for 35 items and 

measured student’s knowledge of content such as evaluating and graphing quadratic and 

exponential functions, finding the roots of functions, laws of sines and cosines, and 

combinatorics.  Students’ performance on the exam is noted by a raw subscore for each 

factor (i.e., Algebra 1, Geometry, and PreCalculus) and a total exam score. 

Data Analysis 

As part of the General Linear Model family of statistical techniques, Multiple 

Regression is used to explain or predict a criterion (dependent) variable with more than 

one predictor (independent) variable (e.g., Ebel, 1965; Hair Jr et al., 1995; Osborne, 

2000; Petrocelli, 2003; Rubio et al., 2003; Stevens, 2012; Wampold & Freund, 1987).  

There are many types of regression analyses (i.e., Linear, Logistic, Polynomial), which is 

dependent upon the measurement level of the outcome variable.  In the current study, the 

dependent variables are continuous (i.e., interval level), so a Multiple Linear Regression 

was used.  Although it can be argued that mathematical knowledge may follow a 

different type of curve, a linear regression model was selected due to the limited time 

lapse between the start of testing and the completion of their initial mathematics course 

(i.e., approximately six to eight months). 

Furthermore, regression analyses differ in the manner and order in which the 

independent variables are entered into the model (e.g., simultaneously, stepwise, 
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hierarchically).  Hierarchical entry in Multiple Regression allows the researcher to select 

the order of the entered predictor variables based on previous research and/or theory.  

When Hierarchical entry is used, the focus is on the change in predictability that is 

associated with the variables entered later in the analysis, above and beyond the 

contribution of the previously entered control variables (Petrocelli, 2003).  Thus, 

Hierarchical Multiple Linear Regression was used in the current study to control for a 

series of conceptually-similar variable groupings prior to the main variables of interest – 

the mathematics placement exam scores for the high school. 

Outlier detection.  Prior to conducting each multiple regression analysis, data 

were examined for potential influential data points, leverage points, and/or outliers.  The 

presence of influential data points can significantly affect the overall analysis.  An 

influential data point is one where if deleted, it would produce a substantial change in the 

value of at least one regression coefficient (Stevens, 2012).  To detect influential data 

points, Cook’s distance (Cook, 1977) and DFBETAS (Hahs-Vaughn, 2016; Stevens, 

2012) were used.  Cook’s distance (Cook, 1977) measures the amount of change in the 

regression coefficients that would occur if a particular case was omitted.  Typically, if 

Cook’s D > 1, it is determined that there is an influential data point. 

While Cook’s D is a composite measure of influence, the DFBETAS indicate 

which specific coefficients are most influential by providing information on the change in 

the predicted value when a specific case is deleted from the model (Hahs-Vaughn, 2016; 

Stevens, 2012).  Thus, when any DFBETA value is outside the range of ±2, this indicates 

a sizeable change and should be examined further. 



198 

 

 

 

Next, the predictor variables were investigated for possible outliers using leverage 

values and Mahalanobis distances.  Leverage values are used to quickly identify 

participants that differ from the rest of the sample on a particular set of predictor 

variables (Stevens, 2012).  The current study used the calculation of  
3𝑝

𝑛
, where p is the 

number of predictors plus 1 and n is the sample size, suggested by Stevens (2012) and 

adapted from Hoaglin and Welsch (1978).  In this case, if a leverage value was greater 

than or equal to  
3𝑝

𝑛
, then the data point was examined further. 

Additionally, Mahalanobis distances were used to measure how far each case was 

from the mean of the independent variable for the remaining cases (Hahs-Vaughn, 2016; 

Stevens, 2012).  To determine whether or not a large enough difference existed, which 

would indicate a possible outlier, the χ2 distribution table was used to find the critical 

value for either 9 or 11 predictor variables (α = .001).  If the Mahalanobis distance 

exceeded the critical value, the case was further investigated. 

Finally, to find outliers on the criterion variable (y), this study examined the 

standardized residuals (ri).  Standardized residuals allow the researcher to identify 

subjects whose predicted score is different from the actual criterion score (Stevens, 

2012).  Generally speaking, standardized residuals follow a normal distribution with 

approximately 95% of the standardized residual values falling within two standard 

deviations of the mean (Stevens, 2012).  For the current analysis, all data points were 

examined to ensure that no more than 5% of the cases fell outside the acceptable range of 

ri < |2| and did not need to be further examined (Hair Jr et al., 1995; Stevens, 2012). 
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Assumptions.  After detecting influential data points, leverage points, and/or 

outliers, the statistical assumptions of regression were examined and addressed.  These 

assumptions included Multicollinearity, Independence of Errors (i.e., Residuals), 

Linearity, Normality, and Homoscedasticity (Hahs-Vaughn, 2016; Hair Jr et al., 1995; 

Stevens, 2012). 

Multicollinearity exists when there is a strong correlation between some or all of 

the independent variables (Hair Jr et al., 1995; Stevens, 2012; Wampold & Freund, 

1987).  If present, multicollinearity reduces the unique explained variance of each 

predictor variable while increasing the shared prediction, complicating the interpretation 

of a predictor variable (Hair Jr et al., 1995; Stevens, 2012).  To test multicollinearity, the 

tolerance, variance inflation factors (VIF), and collinearity diagnostics were examined. 

Tolerance is measured as 1 minus the proportion of variance explained in the 

variable of interest by the other predictor variables (Hair Jr et al., 1995).  Thus, a lower 

tolerance value (i.e., less than .10) suggests that the variable of interest is accounted for 

by the other variables, suggesting possible multicollinearity problems (Hahs-Vaughn, 

2016).  By taking the reciprocal of tolerance, the VIF is produced and values greater than 

10 are indicative of threats to multicollinearity (Hair Jr et al., 1995). 

Lastly, the eigenvalues of the collinearity diagnostics were examined.  When 

multiple eigenvalues are close to zero, this indicates that some independent variables 

have strong intercorrelations and may present concerns of multicollinearity (Hahs-

Vaughn, 2016).  In this case, the condition index can be calculated using the square root 

of the ratio between the largest eigenvalue to each preceding eigenvalue, to ensure that no 
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values exceed 10 (Hahs-Vaughn, 2016).  If multicollinearity is suspected in any of the 

above situations, it is recommended that either one or more of the highly correlated 

variables be eliminated from the model or consolidated into a single measure. 

The next assumption, Independence of Errors (i.e., residuals), assumes that each 

participant’s responses are not dependent upon the response of another individual 

(Stevens, 2012).  If violated, it is possible to identify variables as statistically significant, 

when in fact they are not (Keith, 2014).  In the current study, each student completed 

their placement exam under the supervision of an exam proctor, implying that the 

assumption of independence is tenable.  Furthermore, the assumption of independence of 

errors was examined by plotting the studentized residuals against the unstandardized 

predicted values. 

The third assumption of Linearity describes the degree to which a change in the 

criterion variable associated with the predictor variable is constant across the range of 

values for the predictor variable (Hair Jr et al., 1995; Keith, 2014).  Using partial 

regression plots, each predictor variable was examined with the criterion variable for the 

presence of a linear relationship. 

The next assumption, Normality, requires that each continuous variable (i.e., 

independent and dependent) follow a normal distribution of data (Hair Jr et al., 1995; 

Stevens, 2012).  Normality was checked by creating and examining both a histogram of 

unstandardized residual values in relation to the normal distribution curve and normal 

probability plots, generally referred to as Q-Q Plots (Hair Jr et al., 1995; Keith, 2014).  

The skewness and kurtosis of the unstandardized residuals was also examined. 
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The final assumption, Homoscedasticity suggests the presence of equal error 

variances (Hair Jr et al., 1995; Keith, 2014; Stevens, 2012).  Similar to previous 

assumptions, violation of homoscedasticity can affect the standard errors, which in turn 

will impact the statistical significance of variables.  To test for homoscedasticity, residual 

plots of the predictor variables against the criterion variable were used to identify 

whether or not a relatively random display of points was present. 

One additional consideration in this multiple regression analysis was the sample 

size.  In the current study, an a priori power analysis was conducted in G*Power 3.1.9.4 

for the “Linear Multiple Regression: Fixed Model, R2 Deviation from Zero” (Faul et al., 

2007).  For the two multiple regressions using the total score from the mathematics 

placement test, the software tool yielded a minimum total sample size of 114 to detect a 

medium effect given a significance level of .05, power of .80, and nine predictor 

variables.  Similarly, for the two multiple regressions using the three factor subscores 

from the mathematics placement test, the software tool yielded a minimum total sample 

size of 123 to detect a medium effect given a significance level of .05, power of .80, and 

eleven predictor variables (Cohen, 1988). 

Correlations.  Prior to conducting the multiple regression analyses, correlations 

were investigated to look at the relationship between the independent and dependent 

variables.  Phi correlations were computed for the relationship between the variables of 

gender and race/ethnicity, as both are measured on a nominal (i.e., dichotomous) scale.  

For the case where a nominal variable was correlated with a continuous variable, Point 

Biserial correlations were calculated.  Finally, the Pearson correlations were calculated to 
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examine the relationship between two continuous variables.  The correlation matrix 

summarizing the information above is reported in the results section and significant 

correlations at .05, .01, and .001 are identified. 

Variables.  As stated previously, Hierarchical Multiple Regressions were used to 

explore the relationships between students’ mathematical knowledge and their 

subsequent performance in their first semester mathematics course.  In any multivariate 

analysis, the careful selection of variables is important for statistical conclusion validity.  

When selecting variables for inclusion, the final decision should be based on either 

theoretical or conceptual grounds (Hair Jr et al., 1995).  The variables considered in this 

study are provided in Table 10 below. 
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Table 10 

Hierarchical Multiple Linear Regression Model Predictors - Level of Measurement and 

Coding 

 

Variable Name Level of Measurement Code 

(1) Demographic Covariates 

 Sex Nominal (Dichotomous)   

  Male  0 

  Female  1 
 Race Nominal Race 1 (r1) Race 2 (r2) 

  Asian  1 0 

  White  0 1 

  Other  0 0 
 Socioeconomic Status Interval (Continuous) - 

  Median Family Income   

(2) Incoming Performance Covariates 

 SAT Math Score Interval (Continuous) - 

 SAT Critical Reading Score Interval (Continuous) - 

 Algebra 1 GPA Nominal (Dichotomous)  

  3.0 or below  0 

  4.0  1 

 Geometry GPA Nominal (Dichotomous)   

  3.0 or below  0 

  4.0  1 

 Took an Algebra 2 Course Nominal (Dichotomous)   

  No  0 

  Yes  1 

(3) Main Predictor Variables 

 Mathematics Placement Test Interval (Continuous) - 

  Total Score    

  Algebra 1 Subscore    

  Geometry Subscore    

  PreCalculus Subscore    

(4) Criterion Variable 

 Grade in 1st Semester Math Course Interval (Continuous) - 

  Lower Level Math Course    

  Upper Level Math Course    
            

 



204 

 

 

 

Over the past two decades, numerous articles have detailed the uses, 

consequences, and challenges of placement exams (e.g., Denny et al., 2012; Farley, 2007; 

Foley-Peres & Poirier, 2008; Haeck et al., 1997; Rueda & Sokolowski, 2004; Schmitz & 

delMas, 1991).  However, the vast majority of these studies were within the context of a 

community college or university.  Thus, the predictor variables chosen for inclusion in 

the current study were from similar studies containing varying contexts. 

In the current study, the first block of the Hierarchical Multiple Regression 

included student demographic information such as sex, race/ethnicity, and socioeconomic 

status (SES).  A variety of studies have been conducted examining demographic variables 

and their impact on educational outcomes, specifically math achievement.  For example, 

in a study by Roth et al. (2000), racial differences in mathematics achievement did not 

exist after controlling for previous coursework in mathematics.  Another study mentioned 

that regardless of racial group, SES was unrelated to gender differences in mathematics 

achievement or attitudes (Catsambis, 1994).  Moreover, Pugh and Lowther (2004) found 

that regardless of students’ race, SES, or type of high school, the greatest indicator of 

college achievement was the mathematics course(s) taken. 

Conversely, additional research has demonstrated SES, especially income, to be 

an important predictor in mathematics achievement and career decisions, especially for 

females (Gonzalez & Kuenzi, 2012; Oakes, 1990).  Moreover, research has shown that 

Black and Hispanic students are less than half as likely to be in gifted education programs 

compared to White students (Callahan, 2005).  The same study also concluded that nine 

percent of students enrolled in gifted and talented programs were categorized in the 
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bottom quartile of family income (Callahan, 2005).  Other studies have concluded that 

both SES and race/ethnicity strongly correlate with academic performance and account 

for a significant amount of variance in students’ test scores (Sirin, 2005; White et al., 

2016).  Although the nature of the impact of race/ethnicity and SES on educational 

achievement is ongoing, these variables have not been considered in the context of a 

gifted residential high school focused on STEM. 

The second block in the regression analysis contained incoming academic 

information including students’ SAT mathematics subscore, SAT Evidence-Based 

Reading and Writing subscore, students’ grades in previous coursework (i.e., Algebra 1 

and Geometry) and whether or not the student had reached an Algebra 2 level course.  In 

a study by Sheel et al. (2001), high school GPA, SAT mathematics score, and the 

student’s final grade received in high school Algebra 2 were the most influential 

predictors of students’ college mathematics placement test scores.  Similarly, Latterell 

and Regal (2003) found that other predictors such as high school courses and the grades 

received in those courses were often stronger predictors of college course success than an 

incoming placement test score.  These variables are similar to others in previous studies, 

but the context was at the post-secondary level rather than at a high school (Latterell & 

Regal, 2003; Pugh & Lowther, 2004; Sheel et al., 2001). 

The third and final block of the analysis included either the total score, or the 

three subscores of Algebra 1, Geometry, and PreCalculus, from the high school 

mathematics placement.  The placement test was positioned last in the Hierarchical 

Multiple Linear Regression as the amount of variance the placement test explains, over 
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and above the variables in the previous blocks, was central to addressing the research 

question in this study.  

Finally, the criterion (i.e., outcome) variables in this study were students’ 

percentage grades received in their first semester mathematics course, which were 

divided into lower and upper level courses.  Based on the placement exam score, students 

enter into one of four mathematics courses – Mathematical Investigations I, II, III, or IV.  

Thus, Mathematical Investigations I and II were categorized as lower level courses with 

Mathematical Investigations III and IV being categorized as upper level courses.  While 

some students begin the math sequence in either Geometry or BC Calculus I, these 

decisions are not determined through the use of the placement exam, and thus were not 

included in the study sample. 

Results 

The main research question in this study was, “What is the Criterion-Related 

Validity of the item scores on a mathematics placement test for gifted, residential high 

school students interested in STEM?”  More specifically, this study examined the 

relationship between the predictor and outcome variables of the mathematics placement 

exam in relation to how students’ perform in their initial mathematics course using 

Hierarchical Multiple Linear Regression.  Four regression analyses were conducted, two 

for the lower level courses and two for the upper level courses. 

Multiple Regression for Lower Level Courses 

The first two Hierarchical Multiple Linear Regressions were conducted for 

students completing either Mathematical Investigations I or II.  After all outliers and 
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assumptions were tested for both the total score regression and the factor score 

regression, it was determined that the two samples were identical.  To reduce redundancy, 

the outlier detection, assumption, and descriptive statistics sections will only be presented 

once.  Following that discussion, the correlation matrix and regression results for the total 

mathematics placement test score as a predictor is presented first followed by the 

regression involving the factor subscores as predictors. 

Outlier detection.  The two lower level mathematics courses had an initial 

enrollment of 234 students.  Through the process of data cleaning and outlier detection, 

an additional seven cases were removed for a final sample of 227 students.  Tables 11 

and 12 below provide details regarding the outlier testing that was conducted, the 

acceptable values for each test, the range of values that were obtained, and the action 

taken as a result of each outlier check.  Five of the seven cases were removed because of 

missing data present on one or more independent variable.  The other two cases were 

removed as potential outliers due to the Mahalanobis Distances obtained. 

 
Table 11 

     
Multiple Regression Outlier Checking for Lower Level Mathematics Courses - Total Score 

 

Measure Recommended Value(s) Case(s) 

Obtained 

Value(s) Action 

Missing Data No missing data on any IV 5 ≥1 on IV(s) Removed 

Cook's Distance Cook's D < 1 None [0, .082] Retain 

DFBETAS DFBETA ≤ |2| None [-1.627, 1.397] Retain 

Leverage Values Leverage < 3p/n = .131 2 [.018, .146] Retain 

Mahalanobis Distance 
Mahalanobis Distance < χ2 

(i.e., cv for 9 IVs and α = .001) 
2 

Distances > 

27.877 
Removed 

Standardized Residuals No more than 5% of ri > |2| 12 
Cases ≈5.29% 

(ri > |2|) 
Retain 
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Table 12 

     
Multiple Regression Outlier Checking for Lower Level Mathematics Courses - Subscale Scores 

 

Measure Recommended Value(s) Case(s) 

Obtained 

Value(s) Action 

Missing Data No missing data on any IV 5 ≥1 on IV(s) Removed 

Cook's Distance Cook's D < 1 None [0, .07] Retain 

DFBETAS DFBETA ≤ |2| None [-.499, .720] Retain 

Leverage Values Leverage < 3p/n = .157 None [.021, .149] Retain 

Mahalanobis Distance 
Mahalanobis Distance < χ2 

(i.e., cv for 11 IVs and α = .001) 
2 

Distances > 

31.264 
Removed 

Standardized Residuals No more than 5% of ri > |2| 12 
Cases ≈5.29% 

(ri > |2|) 
Retain 

 

Assumptions.  Prior to examining the predictive ability of the mathematics 

placement test scores, the assumptions of multiple regression were examined.  

Multicollinearity was examined using values of Tolerance, Variance Inflation Factors 

(VIFs), and collinearity diagnostics.  Tolerance values for the total score regression 

ranged from .372 to .931 and had VIFs between 1.075 and 2.690 indicating that all values 

were within acceptable limits for all predictors.  Similarly, the tolerance values for the 

factor score regression fell between .346 and .939 with VIFs ranging from 1.065 to 2.891, 

again indicating that all values were within acceptable limits for all predictors.  The 

collinearity diagnostics for both regressions, in combination with the tolerance and VIF 

values, suggested that there was no concern of multicollinearity. 

The next two assumptions, Independence of Errors and Linearity, were both 

determined to be tenable.  Independence of Errors was considered through the use of 

scatterplots comparing studentized residuals against unstandardized predicted values.  As 

all points were within two standard deviations of the mean, this assumption was met for 
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both regressions.  Similarly, the partial scatterplots were examined for the presence of a 

linear relationship between each independent variable and the dependent variable.  The 

scatterplots displayed a linear relationship for all cases in both regressions, and thus the 

assumption of Linearity was met. 

Normality was examined using the skewness, kurtosis, and histogram of the 

unstandardized residuals along with the normal probability plots for each regression.  

While there was evidence of a negatively skewed distribution for both the total score and 

factor score regressions, the values of kurtosis and information from the probability plots 

suggested that normality was reasonable in both cases.  Therefore, the assumption of 

Normality was tenable. 

Finally, the assumption of homoscedasticity was considered based on the 

scatterplots of studentized residuals versus the predicted values.  The spread of residuals 

appeared fairly consistent over the range of values of the independent variables, 

providing evidence of homoscedasticity for both regressions. 

Descriptive statistics.  After removing cases due to missing data and potential 

outliers, each regression analysis had a final sample of 227 students.  Of the total sample, 

90 (39.6%) were male and 137 (60.4%) were female.  Additionally, the sample contained 

70 (30.8%) students who identified as Asian, 93 (41.0%) students who identified as 

White, and 64 (28.2%) students who identified as either Black or African American, 

Hispanic or Latino, or who reported two or more races.  Student’s median family income 

was estimated using the zip code of student’s home address and ranged from $20,227 to 

$137,059 with an average of $71,058.54 (SD = 22810.21).  Moreover, this sample of 



210 

 

 

 

students had an average SAT Math (SAT_M) score of 643.92 (SD = 67.18) and an 

average SAT Evidence-Based Reading and Writing (SAT_ERW) score of 625.51 (SD = 

63.17).  Lastly, the average total score achieved on the mathematics placement test was 

46.51 (SD = 13.61) out of a possible score of 94.  The strongest factor score was Algebra 

1 with an average of 31.22 (SD = 9.36) out of a possible score of 45.  The average 

Geometry and PreCalculus factor scores were much lower with means of 9.57 (SD = 

2.66) out of 14 and 5.71 (SD = 4.30) out of 35, respectively. 

Correlations for lower level regression.  Correlations were run to examine the 

relationship between the independent and dependent variables (see Table 13 below).  The 

strongest positive correlation was between SAT Math Score and the Mathematics 

Placement Test Total Score (r = .685, p < .001).  This strong correlation indicates that 

students who perform well on the SAT Math exam also perform well on the mathematics 

placement test.  Conversely, the strongest negative correlation appeared between Race 1 

and Race 2 (rΦ = -.556, p < .001). 

Among the independent variables, the Mathematics Placement Test Total Score 

had the strongest correlation with the dependent variable Percentage Grade in Initial 

Mathematics Course (r = .579, p < .001).  That is to say that high achieving students on 

the mathematics placement test are also high achieving students in their initial 

mathematics course.  On the other hand, Race 2 had the only negative correlation with 

the dependent variable (rpb = -.029, p > .05), which was not significant.  
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Table 13 

 

Summary of Correlations for Lower Level Mathematics Courses 

 

# Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Gender -              

2 Race 1 .151* -             

3 Race 2 -.149* -.556*** -            

4 Median Family Income .106 .115 -.076 -           

5 SAT Math Subscore -.110 .299*** .025 .259*** -          

6 SAT ERW Subscore .020 .120 .064 .242*** .448*** -         

7 Algebra 1 GPA -.006 .124 -.103 -.069 -.044 -.095 -        

8 Geometry GPA .097 .182** .018 -.017 .190** .118 -.098 -       

9 Algebra 2 Taken -.013 .089 .102 .008 .100 -.034 -.113 .057 -      

10 MPT Total Score -.042 .429*** -.102 .280*** .685*** .342*** .040 .260*** .341*** -     

11 Algebra 1 Factor Score -.018 .434*** -.112 .287*** .675*** .342*** .052 .272*** .286*** - -    

12 Geometry Factor Score -.017 .207** -.028 .159* .510*** .415*** .025 .179** -.068 - .499*** -   

13 PreCalculus Factor Score -.062 .306*** -.042 .164* .383*** .081 -.008 .161* .475*** - .541*** .156* -  

14 % Grade in IMC .029 .266*** -.029 .215** .492*** .304*** .044 .239*** .112 .579*** .561*** .401*** .362*** - 

Note. *p < .05, **p < .01, ***p < .001. ERW = Evidence-Based Reading and Writing, GPA = Grade Point Average, MPT = Mathematics Placement Test, IMC = 

Initial Mathematics Course 
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Total score regression.  A Hierarchical Multiple Linear Regression was 

conducted to explore the relationship between the main predictor variable of Mathematics 

Placement Test Total Score and the criterion variable of the percentage grade received in 

the student’s initial lower level mathematics course.  Regression results suggest that a 

significant proportion of the total variance in students’ grades is explained by the 

collection of independent variables (R2 = .366, F[10, 216] = 12.479, p < .001).  More 

specifically, the predictors accounted for 36.6% of the variance in the percentage grade 

students’ received in their initial mathematics course. 

 Overall, there were nine predictors in this model and all three regression blocks 

were significant.  Examining the final block of the regression model, displayed in Table 

14 below, it is evident that the student’s total score from the mathematics placement test 

was the only significant predictor of the student’s percentage grade received in their 

initial mathematics course (t = 5.057, p < .001).  Specifically, for each one-point increase 

in students’ Mathematics Placement Test Total Score, the students’ grade received in 

their first semester mathematics course increased by .229 percentage points.  Therefore, 

the Mathematics Placement Test Total Score is predictive of student success in their 

initial lower level mathematics course (i.e., Mathematical Investigations I or II), 

providing evidence of Criterion-Related (i.e., Predictive) Validity. 
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Table 14 

 

Hierarchical Multiple Linear Regression for Lower Level Mathematics Courses - Total 

Score (n = 227) 

 

Variables Β SE t β 
95% CI for B 

Lower Upper 

Gender .579 .799 .724 .041 -.996 2.153 

Race 1 -.193 1.129 -.171 -.013 -2.418 2.033 

Race 2 -.084 .976 -.086 -.006 -2.008 1.839 

Median Family Income .000 .000 .592 .035 .000 .000 

SAT Math Subscore .015 .008 1.788 .147 -.002 .032 

SAT_ERW Subscore .008 .007 1.211 .075 -.005 .022 

Algebra 1 GPA 1.492 1.673 .892 .050 -1.806 4.789 

Geometry GPA .857 1.173 .730 .043 -1.456 3.170 

Algebra 2 Taken -.533 .874 -.610 -.038 -2.255 1.189 

Placement Test Total Score .229 .045 5.057*** .449 .140 .318 

Note. ***p < .001. ERW = Evidence-Based Reading and Writing, GPA = Grade Point 

Average, B = Unstandardized Regression Coefficient, SE = Standard Error, β = Standardized 

Regression Coefficient, CI = Confidence Interval 

 

 Subscale score regression.  To better understand the relationship between the 

mathematics placement test and students’ percentage grade received in their initial 

mathematics course, a Hierarchical Multiple Linear Regression was conducted with the 

three factor subscores of Algebra 1, Geometry, and PreCalculus.  Regression results 

indicated that a significant proportion of total variance in students’ grades is explained by 

the collection of independent variables (R2 = .367, F[12, 214] = 10.335, p < .001).  Thus, the 

predictor variables accounted for 36.7% of the variance in the percentage grade students’ 

received in their initial mathematics course. 

 Similar to the total score regression, all three regression blocks were significant 

for the eleven predictor variables.  Exploring the final block of the regression model, 
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Table 15 below shows that the only significant predictor of the student’s percentage 

grade received in their first mathematics course was the Algebra 1 Factor Score (t = 

3.321, p = .001).  Additionally, for each one-point increase in students’ Mathematics 

Placement Test Algebra 1 Score, the students’ grade received in their first semester 

mathematics course increased by .227 percentage points. 

 

Table 15 

 

Hierarchical Multiple Linear Regression for Lower Level Mathematics Courses - 

Subscale Scores (n = 227) 

 

Variables Β SE t β 
95% CI for B 

Lower Upper 

Gender .568 .803 .708 .040 -1.014 2.151 

Race 1 -.147 1.138 -.129 -.010 -2.389 2.096 

Race 2 -.085 .981 -.086 -.006 -2.019 1.849 

Median Family Income .000 .000 .622 .037 .000 .000 

SAT Math Subscore .015 .009 1.732 .143 -.002 .032 

SAT_ERW Subscore .007 .007 1.047 .067 -.007 .021 

Algebra 1 GPA 1.486 1.680 .885 .050 -1.825 4.798 

Geometry GPA .842 1.180 .714 .042 -1.483 3.168 

Algebra 2 Taken -.373 .937 -.398 -.026 -2.219 1.473 

Algebra 1 Factor Score .227 .068 3.321*** .306 .092 .361 

Geometry Factor Score .300 .179 1.676 .115 -.053 .654 

PreCalculus Factor Score .198 .117 1.701 .123 -.031 .428 

Note. ***p ≤ .001. ERW = Evidence-Based Reading and Writing, GPA = Grade 

Point Average, B = Unstandardized Regression Coefficient, SE = Standard Error, 

β = Standardized Regression Coefficient, CI = Confidence Interval 

 

Recall that Mathematical Investigations is a four-semester sequence of courses 

preparing students for Calculus.  According to the course syllabus, one objective of 

Mathematical Investigations I (i.e., the first course the sequence) is to further develop 

students’ understanding of the underlying concepts of algebra and refine their abilities to 
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apply their algebraic skills.  The second course (i.e., Mathematical Investigations II) 

builds upon this foundation and facilitates student learning in the areas such as linear 

relationships and equations, exponential functions, and transformations of functions.  

Therefore, not only does the Mathematics Placement Test Total Score predict student 

success in their initial lower level mathematics course (i.e., Mathematical Investigations I 

or II), but more specifically, the subscore obtained from the Algebra 1 section of the 

mathematics placement test predicts student success in an Algebra-centric course 

sequence, providing strong evidence of Predictive Validity. 

Multiple Regression for Upper Level Courses 

The final two Hierarchical Multiple Linear Regressions were conducted for 

students completing an upper level mathematics course (i.e., Mathematical Investigations 

III or IV).  After all outliers and assumptions were tested for both the total score and 

factor score regressions, it was determined that there were minor differences between the 

two samples.  To reduce redundancy, the outlier detection and assumption sections will 

only be presented once.  Following that discussion, the descriptive statistics, correlation 

matrices, and regression results for the total score regression will be presented first, 

followed by the regression involving the factor subscores as predictors. 

Outlier detection.  The two upper level mathematics courses had an initial 

enrollment of 150 students.  Through the data cleaning and outlier detection processes, an 

additional twelve cases were removed for a final sample size of 138 students.  Tables 16 

and 17 below provide details regarding the outlier testing that was conducted, the 

acceptable values for each test, the range of values that were obtained, and the action 
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taken as a result of each outlier check.  Two of the twelve cases were immediately 

removed due to missing data on one or more independent variable.  The other ten cases 

were removed as potential outliers based on the Mahalanobis Distances obtained. 

 
Table 16 

     
Multiple Regression Outlier Checking for Upper Level Mathematics Courses - Total Score 

 

Measure Recommended Value(s) Case(s) 

Obtained 

Value(s) Action 

Missing Data No missing data on any IV 2 ≥1 on IV(s) Removed 

Cook's Distance Cook's D < 1 0 [0, .157] Retain 

DFBETAS DFBETA ≤ |2| 0 [-.871, 1.158] Retain 

Leverage Values Leverage < 3p/n = .203 7 [.013, .282] Retain 

Mahalanobis Distance 
Mahalanobis Distance < χ2 

(i.e., cv for 9 IVs and α = .001) 
10 

Distances > 

27.877 
Removed 

Standardized Residuals No more than 5% of ri > |2| 6 
Cases ≈4.35% 

(ri > |2|) 
Retain 

 

 

Table 17 

     
Multiple Regression Outlier Checking for Upper Level Mathematics Courses - Subscale Scores 

 

Measure Recommended Value(s) Case(s) 

Obtained 

Value(s) Action 

Missing Data No missing data on any IV 2 ≥1 on IV(s) Removed 

Cook's Distance Cook's D < 1 0 [0, .136] Retain 

DFBETAS DFBETA ≤ |2| 0 [-.830, 1.248] Retain 

Leverage Values Leverage < 3p/n = .243 3 [.021, .305] Retain 

Mahalanobis Distance 
Mahalanobis Distance < χ2 

(i.e., cv for 11 IVs and α = .001) 
10 

Distances > 

31.264 
Removed 

Standardized Residuals No more than 5% of ri > |2| 6 
Cases ≈4.35% 

(ri > |2|) 
Retain 

 

 



217 

 

 

 

 Assumptions.  Following the data cleaning and outlier detection processes, the 

assumptions of multiple regression were examined.  Multicollinearity was considered 

using values of Tolerance, Variance Inflation Factors (VIFs), and collinearity diagnostics.  

Tolerance values for the total score regression ranged from .249 to .936 and had VIFs 

between 1.068 and 4.021, suggesting that all values were within acceptable limits for all 

predictors.  Similarly, the tolerance values for the factor score regression fell between 

.211 and .961 with VIFs ranging from 1.040 to 4.746, again suggesting that all values 

were within acceptable limits for all predictors.  The collinearity diagnostics for both 

regressions, in combination with the tolerance and VIF values, indicated that there was 

no concern of multicollinearity. 

 Next, the two assumptions of Independence of Errors and Linearity were explored 

and determined to be tenable.  Independence of Errors was examined using scatterplots 

comparing studentized residuals against the unstandardized predicted values.  Since all 

points fell within two standard deviations of the mean, this assumption was met for both 

regressions.  In a similar manner, the partial scatterplots were used to identify the 

presence of a linear relationship between each independent variable and the dependent 

variable.  All scatterplots suggested that a linear relationship was evident for all variables 

in both regressions, demonstrating that the Linearity assumption had been met. 

 The fourth assumption, Normality, was investigated using the skewness, kurtosis, 

and histogram of the unstandardized residuals along with the normal probability plots for 

each regression.  Even though there was evidence of a negatively skewed distribution for 

both the total score and factor score regressions, the values of kurtosis and information 
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from the probability plots indicated that normality was reasonable in both cases.  

Therefore, the assumption of Normality was tenable. 

 Lastly, homoscedasticity was examined using the scatterplots of studentized 

residuals versus the predicted values.  The distribution of residuals appeared relatively 

consistent across the range of values of the independent variables, providing evidence of 

homoscedasticity in both regressions. 

 Descriptive statistics for total score regression.  The final sample for the total 

score regression was 138 students.  Of the total sample, there were 82 (59.4%) males and 

56 (40.6%) females.  Moreover, there were 81 (58.7%) students who identified as Asian, 

47 (34.1%) students who identified as White, and 10 (7.35%) students who identified as 

either Black or African American, Hispanic or Latino, or who reported two or more 

races.  Student’s median family income was estimated using the zip code of the student’s 

home address and ranged from $37,846 to $138,178 with an average of $87,772.30 (SD = 

22662.97).  Additionally, this group of students had an average SAT Math score of 

735.43 (SD = 44.43) and an average SAT ERW score of 659.49 (SD = 54.76).  Finally, 

the average total score achieved on the mathematics placement test was 72.00 (SD = 

8.23) out of a total possible score of 94. 

 Descriptive statistics for subscale score regression.  The final sample for the 

factor score regression was also 138 students, but had a minor difference among the 

demographic variables.  In the factor score regression total sample, there were again, 82 

(59.4%) males and 56 (40.6%) females.  Moreover, there were 81 (58.7%) students who 

identified as Asian, 48 (34.8%) students who identified as White, and 9 (6.52%) students 
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who identified as either Black or African American, Hispanic or Latino, or who reported 

two or more races.  Similar to before, student’s median family income was estimated 

using the zip code of the student’s home address and ranged from $38,313 to $138,178 

with an average of $87,620.35 (SD = 22800.29).  Additionally, this group of students had 

an average SAT Math score of 736.23 (SD = 43.43) and an average SAT ERW score of 

659.93 (SD = 54.36).  Finally, the largest factor score among these students was Algebra 

1 with an average of 43.23 (SD = 2.08) out of a possible score of 45.  The average 

Geometry and PreCalculus factor scores were similar with means of 11.00 (SD = 2.03) 

out of 14 and 18.88 (SD = 6.41) out of 35, respectively. 

Correlations for total score regression.  Correlations were run to examine the 

relationship between the independent and dependent variables (see Table 18 below).  The 

strongest positive correlation was between SAT Math Score and the Mathematics 

Placement Test Total Score (r = .536, p < .001).  This strong correlation indicates that 

students who perform well on the SAT Math exam also perform well on the mathematics 

placement test.  Conversely, the strongest negative correlation appeared between Race 1 

and Race 2 (rΦ = -.857, p < .001). 

Among the independent variables, the Mathematics Placement Test Total Score 

had the strongest correlation with the dependent variable Percentage Grade in Initial 

Mathematics Course (r = .478, p < .001).  That is to say that high achieving students on 

the mathematics placement test are also high achieving students in their initial 

mathematics course.  On the other hand, Race 2 had the strongest negative correlation 

with the dependent variable (rpb = -.173, p < .05).
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Table 18 

 

Summary of Correlations for Upper Level Mathematics Courses - Total Score Regression 

 

# Variable 1 2 3 4 5 6 7 8 9 10 11 

1 Gender -           

2 Race 1 .064 -          

3 Race 2 -.002 -.857*** -         

4 Median Family Income .031 .121 -.076 -        

5 SAT Math Subscore -.251** .128 -.088 -.102 -       

6 SAT ERW Subscore .074 .072 -.038 -.058 .369*** -      

7 Algebra 1 GPA .055 -.145 .124 -.065 -.155 -.144 -     

8 Geometry GPA - - - - - - - -    

9 Algebra 2 Taken .081 .074 -.106 -.118 -1.07 -.108 -.033 - -   

10 MPT Total Score -.108 .169* -.149 .292*** .536*** .403*** -.018 - -.217* -  

11 % Grade in IMC -.033 .224** -.173* .072 .398*** .236** .018 - -.129 .478*** - 

Note. *p < .05, **p < .01, ***p < .001. ERW = Evidence-Based Reading and Writing, GPA = Grade Point Average, MPT = 

Mathematics Placement Test, IMC = Initial Mathematics Course 
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Correlations for subscale score regression.  Similar to the total score 

regression, the relationship between the independent and dependent variables was 

explored using the correlation matrix in Table 19 below.  The strongest positive 

correlation present was between SAT Math Score and the PreCalculus Factor Score (r = 

.427, p < .001).  This strong correlation suggests that students who score high on the SAT 

Math exam also score high on the cumulative PreCalculus items from the mathematics 

placement test.  Conversely, the strongest negative correlation was present between Race 

1 and Race 2 (rΦ = -.871, p < .001). 

Examining the independent variables, the SAT Math Score had the strongest 

correlation with the criterion variable Percentage Grade in Initial Mathematics Course (r 

= .415, p < .001).  In other words, students who perform well on the SAT Math exam also 

perform well in their first mathematics course.  On the other hand, Race 2 had the 

strongest negative correlation with the dependent variable (rpb = -.182, p < .05). 
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Table 19 

 

Summary of Correlations for Upper Level Mathematics Courses - Subscale Score Regression 

 

# Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 Gender -             

2 Race 1 .064 -            

3 Race 2 -.015 -.871*** -           

4 Median Family Income .034 .114 -.096 -          

5 SAT Math Subscore -.266** .106 -.090 .079 -         

6 SAT ERW Subscore .073 .032 -.021 .071 .334*** -        

7 Algebra 1 GPA .022 -.125 .109 -.107 -.124 -.117 -       

8 Geometry GPA - - - - - - - -      

9 Algebra 2 Taken .124 .074 -.109 .002 -.128 -.082 -.034 - -     

10 Algebra 1 Factor Score -.062 .209* -.111 .151 .405*** .167 -.046 - -.065 -    

11 Geometry Factor Score -.093 .043 -.122 -.038 .293*** .208* .005 - -.206* .119 -   

12 PreCalculus Factor Score -.118 .156 -.168* .313*** .427*** .353*** -.079 - -.082 .392*** .163 -  

13 % Grade in IMC -.044 .227** -.182* .058 .415*** .241** -.042 - -.107 .389*** .247** .390*** - 

Note. *p < .05, **p < .01, ***p < .001. ERW = Evidence-Based Reading and Writing, GPA = Grade Point Average, IMC = Initial Mathematics Course 
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Total score regression.  A Hierarchical Multiple Linear Regression was 

conducted to explore the relationship between the main predictor variable of Mathematics 

Placement Test Total Score and the criterion variable of the percentage grade received in 

the student’s initial upper level mathematics course.  Regression results suggest that a 

significant proportion of the total variance in students’ grades is explained by the 

collection of independent variables (R2 = .290, F[9, 128] = 5.814, p < .001).  More 

specifically, the predictors accounted for 29.0% of the variance in the percentage grade 

students’ received in their initial mathematics course. 

 Overall, there were nine predictors in this model and the latter two regression 

blocks were significant.  Additionally, the predictor of students’ high school Geometry 

GPA was removed because it was a constant of 4.0 among the sample.  Examining the 

final block of the regression model, displayed in Table 20 below, it is evident that the 

student’s total score from the mathematics placement test was a significant predictor of 

the student’s percentage grade received in their initial mathematics course (t = 3.712, p < 

.001).  Specifically, for each one-point increase in students’ Mathematics Placement Test 

Total Score, the students’ grade received in their first semester mathematics course 

increased by .288 percentage points.  Therefore, the Mathematics Placement Test Total 

Score is predictive of student success in their initial upper level mathematics course (i.e., 

Mathematical Investigations III or IV), providing evidence of Criterion-Related (i.e., 

Predictive) Validity. 
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Table 20 

 

Hierarchical Multiple Linear Regression for Upper Level Mathematics Courses - 

Total Score (n = 138) 

 

Variables Β SE t β 
95% CI for B 

Lower Upper 

Gender .909 1.041 .874 .069 -1.150 2.969 

Race 1 2.102 1.951 1.078 .161 -1.757 5.962 

Race 2 .109 1.995 .055 .008 -3.839 4.057 

Median Family Income .000 .000 -1.137 -.090 .000 .000 

SAT Math Subscore .029 .014 2.166* .203 .003 .056 

SAT_ERW Subscore .001 .010 .059 .005 -.019 .021 

Algebra 1 GPA 1.979 2.950 .671 .052 -3.858 7.817 

Algebra 2 Taken -1.031 2.677 -.385 -.030 -6.328 4.265 

Placement Test Total Score .288 .077 3.712*** .367 .134 .441 

Note. *p < .05, ***p < .001. ERW = Evidence-Based Reading and Writing, GPA = 

Grade Point Average, B = Unstandardized Regression Coefficient, SE = Standard 

Error, β = Standardized Regression Coefficient, CI = Confidence Interval 

 

Subscale score regression.  To further understand the relationship between the 

mathematics placement test and students’ percentage grade received in their initial upper 

level mathematics course, a Hierarchical Multiple Linear Regression was conducted with 

the three factor subscores of Algebra 1, Geometry, and PreCalculus.  Regression results 

indicated that a significant proportion of total variance in students’ grades is explained by 

the collection of independent variables (R2 = .308, F[11, 126] = 5.096, p < .001).  Thus, the 

predictor variables accounted for 30.8% of the variance in the percentage grade students’ 

received in their initial upper level mathematics course. 

 Similar to the total score regression, the second and third regression blocks were 

significant for the eleven predictor variables.  Again, the predictor variable of High 
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School Geometry GPA was removed from the analysis due to it being a constant variable.  

Exploring the final block of the regression model, Table 21 below shows that both the 

Algebra 1 Factor Score (t = 2.075, p < .05) and the PreCalculus Factor Score (t = 2.188, p 

< .05) are significant predictors of the student’s percentage grade received in their first 

mathematics course.  More specifically, for each one-point increase in students’ 

Mathematics Placement Algebra 1 Factor Score, the students’ grade received in their first 

semester mathematics course increased by .562 percentage points.  Likewise, for each 

one-point increase in students’ Mathematics Placement Test PreCalculus Factor Score, 

the students’ grade received in their first semester upper level mathematics course 

increased by .207 percentage points. 
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Table 21 

 

Hierarchical Multiple Linear Regression for Upper Level Mathematics Courses - 

Subscale Scores (n = 138) 

 

Variables Β SE t β 
95% CI for B 

Lower Upper 

Gender .775 1.038 .747 .059 -1.278 2.828 

Race 1 2.430 2.098 1.158 .187 -1.722 6.581 

Race 2 .550 2.149 .256 .041 -3.702 4.802 

Median Family Income .000 .000 -.894 -.071 .000 .000 

SAT Math Subscore .029 .014 2.132* .198 .002 .056 

SAT_ERW Subscore .004 .010 .446 .038 -.015 .024 

Algebra 1 GPA .438 3.316 .132 .010 -6.125 7.001 

Algebra 2 Taken -1.051 2.252 -.467 -.036 -5.508 3.406 

Algebra 1 Factor Score .562 .271 2.075* .182 .026 1.097 

Geometry Factor Score .388 .256 1.520 .123 -.117 .894 

PreCalculus Factor Score .207 .095 2.188* .206 .020 .394 

Note. *p < .05. ERW = Evidence-Based Reading and Writing, GPA = Grade Point 

Average, B = Unstandardized Regression Coefficient, SE = Standard Error, β = 

Standardized Regression Coefficient, CI = Confidence Interval 

 

As previously mentioned, Mathematical Investigations is a four-semester 

sequence of courses preparing students for Calculus.  According to the course syllabus, 

students entering Mathematical Investigations III (i.e., the third course the sequence) 

should demonstrate a strong background in Algebra and Geometry to be able to expand 

upon their mathematical thinking throughout this course.  The final course of the 

sequence (i.e., Mathematical Investigations IV) focuses on developing students’ learning 

in the areas of trigonometry, vectors, polar coordinates, and mathematical induction.  The 

strength of the Predictive Validity evidence lies in the Mathematics Placement Test Total 

Score predicting student success in their initial upper level mathematics course (i.e., 
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Mathematical Investigations III or IV).  More specifically, the subscores obtained from 

the Algebra 1 and PreCalculus sections of the mathematics placement test predict student 

success in courses containing those content areas, providing strong evidence of Predictive 

Validity. 

Discussion 

Research has demonstrated the significant impact that course placement decisions 

can have on a student’s future academic preparation (McDaniel et al., 2007; Morgan & 

Michaelides, 2005).  Specifically, students who begin in a mathematics course that is 

appropriate given their background have an increased chance of succeeding in their initial 

mathematics course and their subsequent mathematics courses (Akst & Hirsch, 1991; 

Latterell & Regal, 2003; Marshall & Allen, 2000; Mattern & Packman, 2009; Norman et 

al., 2011; Shaw, 1997).  Therefore, it is critically important to provide evidence of the 

effectiveness of placement measures and procedures to ensure a reduction in these 

unintended consequences of misplacement. 

Findings from the Hierarchical Multiple Linear Regressions for both lower and 

upper level mathematics courses demonstrate that the total score students’ receive on the 

mathematics placement test predicts their achievement in their initial mathematics course, 

above and beyond the contributions of their demographic information and previous 

academic background.  Additionally, the combination of predictor variables in the lower 

level regression accounted for a greater proportion of variance explained (36.6%) in 

students’ first semester mathematics grade compared to the upper level regression (29.0% 

variance explained), echoing the use of multiple measures to enhance course placement 
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decisions (e.g., Armstrong, 1995; Erwin & Worrell, 2012; Marwick, 2004; Ngo & Kwon, 

2015; Noble et al., 2003).  This finding extends the existing literature by demonstrating 

the influence of multiple measures on course placement decisions, especially for courses 

at the lower levels among gifted high school students. 

Results from the Hierarchical Multiple Linear Regressions using the factor 

subscale scores as predictors revealed similar patterns (see Table 22 below).  More 

specifically, the subscale score from the Algebra 1 section of the mathematics placement 

test was the strongest predictor of student success among the lower level mathematics 

courses (i.e., Mathematical Investigations I or II).  Similarly, both the Algebra 1 and 

PreCalculus Factor Scores from the mathematics placement test were significant 

predictors of students’ first-semester grades in an upper level mathematics course (i.e., 

Mathematical Investigations III or IV).  These findings may contradict post-secondary 

education literature which found students’ high school coursework and grades received in 

those courses to be stronger predictors of college course success compared to an 

incoming placement test score (Latterell & Regal, 2003). 
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Table 22 

 

Summary of Hierarchical Multiple Linear Regression Results 

 

Course Type DV Block IV Direction 

Lower 

Level 

Total Course Grade (3) Mathematics Placement Test Total Test Score Positive 

          

Subscale Course Grade (3) Mathematics Placement Test Algebra 1 Subscore Positive 

            

Upper 

Level 

Total 
Course Grade (2) Incoming Performance SAT Math Subscore Positive 

Course Grade (3) Mathematics Placement Test Total Test Score Positive 

          

Subscale 

Course Grade (2) Incoming Performance SAT Math Subscore Positive 

Course Grade (3) Mathematics Placement Test Algebra 1 Subscore Positive 

Course Grade (3) Mathematics Placement Test PreCalculus Subscore Positive 

 

 

Additionally, the regression models used in this study included demographic 

control variables such as gender, race/ethnicity, and SES.  Specific to gender, the 

literature includes that males take more advanced mathematics courses in high school and 

obtain higher scores on standardized assessments (Bridgeman & Wendler, 1989, 1991; 

Catsambis, 1994; Davis & Shih, 2007; Ellison & Swanson, 2018; Gallagher & De Lisi, 

1994; Pedro et al., 1981).  More recent research has reported that gender differences in 

math scores on standardized assessments are minimal and non-significant (Else-Quest et 

al., 2010; Hyde et al., 2008; Lindberg et al., 2010).  Still other studies have noted that 

girls outperform boys with respect to the grades received in their mathematics courses 

(Arslan et al., 2012; Ding et al., 2006; Gherasim et al., 2013; Wang & Degol, 2017).  The 

collection of results suggests that there is some relationship between gender and 

mathematics achievement.  Therefore, it was surprising that students’ gender was not a 

significant predictor of the outcomes in the regression models. 
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Likewise, research has continued to examine the effects of race/ethnicity and SES 

on students’ mathematics achievement.  In a meta-analysis by Sirin (2005), SES had a 

medium effect on academic achievement at the student level.  This finding strengthened 

earlier research findings that concluded SES (i.e., income) was an important predictor of 

mathematics achievement and career decisions, especially for females (Gonzalez & 

Kuenzi, 2012).  Moreover, studies have shown that both race/ethnicity and SES account 

for a significant and meaningful percentage of variance in students’ test scores (White et 

al., 2016).  Similar to the gender variable discussion above, despite the body of research 

demonstrating relationships between the demographic variables and math achievement, 

neither race/ethnicity nor SES was a significant predictor of the outcomes in the current 

study. 

Although previous research has demonstrated the effects of demographic 

information on students’ academic performance, that was not the case in the current 

study.  Instead, it is possible that the total and factor subscale scores from the 

mathematics placement test were overwhelmingly influential and dominated the overall 

models in this study.  This finding is supported in previous literature, which has 

demonstrated moderate-to-strong relationships between scores received on achievement 

tests and students’ subsequent course performance (Bridgeman & Wendler, 1989; Davis 

& Shih, 2007; Erwin & Worrell, 2012; Mattern & Packman, 2009; Rueda & Sokolowski, 

2004).  Another possible explanation is the “recency effect” such that the variables 

appearing closer in time to the outcome variable become more influential within the 

model.  Thus, since the mathematics placement test was completed approximately six to 
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eight months prior to students’ receiving their grades in their first semester mathematics 

course, it is possible that the test scores obtained were stronger predictors than the 

demographic variables included within the models. 

Implications 

 This study examined the relationship between student’s mathematics placement 

test scores and their subsequent performance in their initial mathematics course.  

Additionally, the models used incorporated students’ demographic information and 

previous mathematical coursework to reflect the reality of placement practices at the high 

school under study.  As such, results of this study provide valuable insight for students 

and faculty members, as well as administrators and the larger community. 

 One of educational measurement’s core activities is to aid the educational process 

of each student as they learn (Wilson, 2018).  Findings from this study can help students 

and faculty members identify the academic needs of students so that the proper resources 

and supports can be implemented.  Traditionally, mathematics faculty members have 

used the total score obtained on the Mathematics Placement Test to guide students’ initial 

course placement.  However, by providing evidence regarding the underlying factor 

structure of the mathematics placement test (Manuscript 2) and developing factor 

subscale scores (Manuscript 3), students and faculty members can use the newly 

developed Algebra 1, Geometry, and PreCalculus subscores to gauge student readiness 

for a particular course.  This targeted approach can illuminate both students and faculty 

about the content students have or have not mastered, allowing the institution to address 

gaps in student understanding prior to course enrollment.  Additionally, as this is the only 
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study to examine predictive validity of a placement test in the context of a gifted, 

residential STEM high school, students, parents, and faculty can now have the full gamut 

of reliability and validity evidence needed to make appropriate course placement 

decisions. 

 Similarly, educational administrators and other interested stakeholders can be 

assured that there is an increased likelihood that the consequences of course 

misplacement will be minimized.  Numerous studies have shown that success in a 

student’s initial mathematics course increases their likelihood of greater achievement in 

subsequent mathematics courses (e.g., Akst & Hirsch, 1991; Latterell & Regal, 2003; 

Marshall & Allen, 2000; Norman et al., 2011; Shaw, 1997).  Thus, by providing evidence 

of Criterion-Related Validity, the main purpose of placement testing has been achieved in 

that the mathematics placement test scores can be used to appropriately match the 

students’ existing level of mathematics knowledge to instruction commensurate with their 

previous academic preparations.  Moreover, in the case where a student completed 

additional coursework in the summer prior to attending the high school, the development 

of the three subscale scores (i.e., Algebra 1, Geometry, and PreCalculus) can provide 

faculty members and administrators with a more targeted placement test without 

sacrificing reliability and/or validity. 

 Lastly, the implications of this study go beyond the local context.  In the current 

era of accountability, placement exams and methods that are rigorous and defensible are 

critical for educational institutions at varying levels to justify their use and to address 

questions of their impact on students’ educational outcomes.  A number of studies have 
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evaluated placement tests at the post-secondary level, with more research needed at lower 

educational levels.  The current study can provide a foundation for other similar high 

schools to examine the placement tests, procedures, and decisions used at their own 

institutions. 

Limitations and Future Research 

Although this study provides evidence of Predictive Validity, there were some 

limitations.  The original sample included student data from across four cohorts, which 

were determined to be statistically equivalent.  However, due to inaccessible and 

incomplete data, the final regression analyses only included two of the four cohorts.  

Future research may consider extending this study to more recent cohorts for which 

complete data may be available in the future. 

Another possible limitation was the use of student’s median family income based 

on their home address zip code as an indicator for socioeconomic status (SES).  While 

there is some promising literature that supports the use of neighborhood-level SES 

indicators (Labovitz, 1975; Sirin, 2005), there is no universally accepted proxy of SES 

among the educational research literature.  Moreover, though the census bureau has 

median family income data available at the block level, the current data set contained 

only participants five digit zip code, making coding based on the nine digit zip code not 

possible.  Future research could examine other proxies for SES to determine whether or 

not they influence the regression models in a different way. 

A third limitation to consider is the use of students’ SAT scores within the 

regression models.  All applicants are required to submit their current SAT score reports 
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directly from the College Board for each exam the prospective student completes.  

Regardless of which test administration the score was from, the high school reports only 

the highest SAT Mathematics and Evidence-Based Reading and Writing scores as part of 

the student’s admissions application.  According to the College Board, robust measures 

are taken to ensure the accuracy of students’ scores across versions of the SAT (College 

Board, 2018a).  This suggests that regardless of the test the student completed, their 

scores have a consistent interpretation and representation of their underlying knowledge.  

Future research could examine the impact of using the highest SAT scores within the 

regression model compared to students’ most recent testing administration. 

Moreover, on March 1, 2016, the College Board changed the scoring scale for the 

SAT from a maximum score of 2400 (prior to 2016) to a maximum score of 1600 (after 

2016).  Therefore, the SAT scores gathered from the admissions applications in this study 

included both SAT scoring scales, which were all converted to the post-2016 scale using 

the concordance tables provided by the College Board (2016).  Future research may 

consider extending this study to more recent cohorts for which data will become available 

so that there is a consistency in the SAT scoring scales reported. 

A final limitation to consider is the extent to which grading scales across the state 

of Illinois are equivalent.  The near-universal use of placement tests at the post-secondary 

level emerged due to the incomparability of unknown factors such as the content and 

rigor of courses and the grading scales used at different schools (Kossack, 1942; Linn, 

1994; Ngo & Kwon, 2015; Noble et al., 2003).  In an environment where students with 

varying experiences and backgrounds from across the state are accepted into the high 
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school, it is important to consider how comparisons are made among student grades.  

Future research could explore other ways to measure students’ previous academic 

coursework so that more accurate course predictions can be made. 

Similarly, future research could examine the variance of grades received within 

the high school under study.  The grading scale used in mathematics at the current high 

school is as follows: A [92.5 – 100%], A- [89.5 – 92.5%), B+ [87.5 – 89.5%), B [82.5 – 

87.5%), B- [79.5 – 82.5%), C+ [77.5 – 79.5%), C [72.5 – 77.5%), C- [69.5 – 72.5%), and 

D [0 – 69.5%).  However, when critically analyzing the data, it was determined that this 

scale was not implemented consistently across all students, most likely due to “teacher 

discretion.”  Again, future research may consider additional ways to measure student 

performance and success in coursework. 

Conclusions 

This study investigated the Criterion-Related Validity of the item scores on a 

mathematics placement test at a gifted residential high school for students interested in 

STEM.  More specifically, this study examined the relationship between students’ 

mathematics placement test total and factor scores with students’ subsequent performance 

in their first semester mathematics course. 

Using a series of four Hierarchical Multiple Linear Regressions, it was 

determined that the total score obtained on the mathematics placement test was predictive 

of student success in their initial mathematics course.  When examining the 

predictiveness of the factor scores for students in a lower level mathematics course (i.e., 

Mathematical Investigations I or II), the Algebra 1 Factor Score was found to be the only 
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significant predictor of the percentage grade students’ received in that course.  Likewise, 

both the Algebra 1 and PreCalculus Factor Scores were determined to be significant 

predictors of student success in their first upper level mathematics course, either 

Mathematical Investigations III or IV. 

Therefore, the mathematics placement test demonstrates evidence of Predictive 

Validity and can be used in the course placement decision-making process.  In an era of 

accountability, this study can encourage other educational institutions, at all levels, to 

validate their placement processes and decisions.  In doing so, all stakeholders can be 

confident that students’ future educational outcomes are being optimized while the 

consequences of misplacement are being minimized. 
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CHAPTER VIII 

CONCLUSIONS 

The overarching goal of this study was to investigate the psychometric properties 

of a mathematics placement test at a gifted residential high school for students interested 

in STEM.  More specifically, the four objectives of this study were: (1) To provide 

evidence of Content Validity, (2) To provide evidence of Construct Validity and Internal 

Consistency Reliability, (3) To examine the characteristics and potential bias of the items 

for males and females and (4) To provide evidence of Criterion-Related Validity.  The 

literature, methodology, results, and discussion for each of the four objectives were 

presented as four manuscripts within the larger document. 

Manuscript 1 examined the Content Validity of the mathematics placement test 

using a card-sorting technique replicated from a study by D’Agostino et al. (2011).  Data 

were collected from internal and external subject matter experts (SMEs) and were 

analyzed using Multidimensional Scaling and Hierarchical Cluster Analysis.  The final 

cluster solution revealed six unique clusters that were labeled Algebraic Operations, 

Solving Equations, Graphing Functions, Evaluating Functions, Trigonometry, and 

Geometry.  Additionally, results demonstrated some congruence between the internal and 

external SME configurations, indicating marginal evidence of Content Validity. 

The second manuscript sought to provide evidence of Construct Validity and 

Internal Consistency Reliability of the mathematics placement test.  Developed by faculty 

members, the mathematics placement test was designed to measure students’ incoming 

mathematical knowledge prior to entering a Calculus sequence.  Existing data from four 
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cohorts of students were obtained and analyzed using Exploratory Factor Analysis (EFA) 

and the Kuder-Richardson (KR-20) formula.  Results from the EFA suggested that the 

mathematics placement test was comprised of three factors, which included PreCalculus, 

Geometry, and Algebra 1. All of these factors had moderate to strong Internal 

Consistency Reliabilities.  Therefore, Manuscript 2 demonstrated evidence of Construct 

Validity and Internal Consistency Reliability for the population of interest. 

The main objectives of Manuscript 3 were to examine the item parameters (i.e., 

item difficulty and discrimination) and Differential Item Functioning (DIF) of the 

mathematics placement test.  Using the Two-Parameter Logistic (2PL) model from Item 

Response Theory, existing data from four cohorts of students were analyzed.  Due to the 

unidimensionality assumption of the 2PL model and the results from Manuscript 2, the 

Algebra 1, PreCalculus, and Geometry factors were examined independently. 

Results from the analysis of Algebra 1 and Geometry items indicated that these 

portions of the mathematics placement test were generally easy for the population of 

interest.  These sections of items also were unable to distinguish between varying 

proficiencies along the Algebra 1 and Geometry continuums.  Item analysis results of the 

PreCalculus factor suggested that these items from the mathematics placement test were 

more challenging for the population of interest.  Not only were the PreCalculus items 

able to sufficiently discriminate between individuals of varying PreCalculus knowledge, 

but the information from the test was also slightly above average. 

Finally, Manuscript 4 examined the Criterion-Related Validity of the item scores 

on the mathematics placement test using existing data from two cohorts of students.  Two 
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Hierarchical Multiple Linear Regressions were conducted for students enrolled in either a 

lower level mathematics course (i.e., Mathematical Investigations I or II) or an upper 

level mathematics course (i.e., Mathematical Investigations III or IV; four regression 

total).  The first regression for each group used students’ mathematics placement test total 

score as the main predictor variable.  In the second regression for each group, the main 

predictor variable was students’ mathematics placement test factor subscores for the three 

factors of Algebra 1, Geometry, and PreCalculus. 

Results from the regressions for both lower and upper level mathematics courses 

showed that the total score students received on the mathematics placement test predicts 

achievement in their first semester mathematics course.  More specifically, Algebra 1 

scores from the mathematics placement test were the strongest predictor of student 

success among the lower level mathematics courses (i.e., Mathematical Investigations I 

or II).  Similarly, both the Algebra 1 and PreCalculus Factor Scores from the mathematics 

placement test were significant predictors of students’ grades in their first upper level 

mathematics course (i.e., Mathematical Investigations III or IV).  Each of these findings 

provide evidence of Criterion-Related (i.e., Predictive) Validity of the items scores on a 

mathematics placement test for gifted, residential high school students interested in 

STEM. 

Synthesis of Manuscripts 1 – 4 

 Validity has been argued as the most important criteria to ensure the quality of a 

test.  While there are three major types of validity (i.e., Content, Construct, and Criterion-

Related), one is no more important than another.  Equally important in judging the 
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validity of test scores is the analysis of item-level data to determine the quality of the test 

and the information it generates (Adedoyin & Mokobi, 2013).  For this reason, it is vital 

that each psychometric aspect of a test is examined to appraise the overall quality and the 

inferences that can be made from the scores. 

Manuscripts 1 and 2 

 As previously mentioned, some literature exists that provides evidence regarding 

the similarity of results obtained through a Hierarchical Cluster Analysis (HCA) and 

factor analytic procedures (Capra, 2005; Revelle, 1979).  While studies comparing the 

two techniques are sparse, there is an abundance of literature on the underlying validities 

that are shared by both analytic strategies.  In the current study, HCA and Exploratory 

Factor Analysis (EFA) were conducted in two separate manuscripts to provide evidence 

of Content and Construct Validity, respectively.  However, the psychometric literature 

conceptualizes all validities under one overarching framework of Construct Validity 

(Clark & Watson, 1995; Cook & Beckman, 2006; Loevinger, 1957; Messick, 1989). 

 In Loevinger (1957), a theoretical approach to scale development is discussed 

stating that there are three components of Construct Validity, namely substantive validity, 

structural validity, and external validity.  The first component, substantive validity, is 

described as a critical first step to developing a precise and detailed definition of the 

target construct and its theoretical context (i.e., content domain; Clark & Watson, 1995; 

Loevinger, 1957).  To develop a detailed construct definition, the scope and range of the 

content domain should be established.  Following this, items are written to ensure that 

each area of the content domain is well represented (i.e., Content Validity).  After writing 
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items covering the entirety of the content domain, factor analytic procedures can be used 

to reveal how the items are subdivided into subscales (i.e., factors).  These analyses (e.g., 

factor analysis) may reveal that the number of items is too small to assess each area of the 

content domain reliably (Clark & Watson, 1995; Loevinger, 1957).  To increase the 

amount of items, the process typically returns to the beginning to re-examine the 

construct definition (i.e., substantive validity).  This cyclical process continues until 

enough evidence (i.e., objective and subjective) is obtained to support the overarching 

framework of Construct Validity.  Thus, there is an iterative relationship between the 

traditionally defined concepts of Content and Construct Validity, and obtaining 

comparable results for the two types (separately) is unsurprising. 

 The final HCA solution contained six clusters, which were labeled as Algebraic 

Operations, Solving Equations, Graphing Functions, Evaluating Functions, 

Trigonometry, and Geometry.  While this six-factor solution was considered when 

conducting the EFAs, it ultimately was unsuitable for these data given the presence of 

Heywood cases and lack of simple structure.  Instead, the final EFA structure was 

comprised of the three factors – PreCalculus, Geometry, and Algebra 1. 

 Comparing the results from the HCA and EFA, the following observations were 

noted.  The Geometry cluster from the HCA had a direct relationship to the Geometry 

factor of the EFA (i.e., the same items in both).  Likewise, all items (i.e., except one) 

from the HCA Trigonometry cluster loaded the highest on the PreCalculus factor of the 

EFA.  This relationship between the Trigonometry cluster and the PreCalculus factor was 

expected based on the sequence and design of the high school mathematics courses. 
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 Next, the items in the first two clusters of the HCA (i.e., Algebraic Operations and 

Solving Equations) were mainly located in the Algebra 1 factor of the EFA.  However, 

the clusters of Graphing and Evaluating Functions were split between the Algebra 1 and 

the PreCalculus factor.  The distinction between the two factors appeared to be related to 

the placement of the items on the exam.  Since mathematical knowledge is hierarchical in 

nature, meaning that you need to know Algebra first before completing PreCalculus, the 

majority of the earlier items on the exam loaded on the Algebra 1 factor.  Conversely, the 

items that loaded highest on the PreCalculus factor from clusters three and four were the 

items involving graphing and evaluating higher order functions.  Therefore, there appears 

to be reasonable evidence to support the similarity of results between the HCA and the 

EFA, further confirming the presence and relationship between Content and Construct 

Validity. 

Validating the scores on a test requires a carefully structured argument where 

evidence has been collected to support or refute the intended interpretation of results 

(Cook & Beckman, 2006; Cronbach, 1971; Messick, 1995).  Moreover, the validity of an 

instrument’s scores depends on the construct definition, which necessitates an extensive 

literature review to detail the content of the domain (Clark & Watson, 1995; Cook & 

Beckman, 2006; Loevinger, 1957).  Therefore, to evidence substantive validity in the 

current study, it was critical to obtain information from multiple different perspectives to 

ensure a common understanding about the underlying content and constructs of the 

mathematics placement test.  That is, content validity, in essence, “lays the foundation” 
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for the other types of validity, and without this foundation, future substantive validation 

evidence is weak or non-existent. 

Manuscripts 2 and 3 

According to Loevinger (1957), the second component of Construct Validity is 

structural validity.  This type of validity examines the extent to which the internal 

structure of the assessment reflected in the scores is consistent with the structure of the 

construct of interest (Messick, 1995).  It is important to note that this definition consists 

of two distinct, but related parts.  Before examining the consistency of the scores, it is 

imperative to understand the underlying structure of the construct of interest.  As such, 

Manuscripts 2 and 3 explored the internal structure of the mathematics placement test by 

examining the patterns of relationships among item scores and between test scores. 

 In Manuscript 2, the internal structure (i.e., addressing Construct Validity) of the 

test was investigated using EFA to evidence the factors in the exam.  Findings from the 

EFA revealed three factors PreCalculus, Geometry, and Algebra 1.  To gather more 

detailed internal structure information to evidence Construct Validity, each of the three 

factors were subjected to item analysis, which included Differential Item Functioning 

(DIF).  DIF was conducted to uncover the presence of systematic variations in responses 

to items among subgroups who were expected to perform similarly on the mathematics 

placement test.  According to Crocker and Algina (2008), there are multiple ways to 

evidence a construct including examining group differences.  If a construct is 

theoretically expected to show differences between groups, and that is demonstrated 

using t-Tests, ANOVAs, or DIF (as some examples), the evidence supporting the 
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construct’s internal structure increases (or vice versa).  In the current context, based on 

the historical literature, group differences (males versus females) on mathematics 

performance was expected.  Indeed, the results showed that some items displayed 

significant DIF, which provides more evidence of Construct Validity.  However, although 

this supports the construct under investigation in the current study, for practical and 

applied purposes and use, DIF should be minimized to ensure that the mathematics 

placement test is equally valid for both male and female students. 

 Recall that structural validity examines the extent to which the internal structure 

of the assessment reflected in the scores is consistent with the structure of the construct of 

interest (Messick, 1995).  Thus, in addition to understanding the structure of the construct 

of interest, Manuscripts 2 and 3 also examined the consistency (i.e., reliability) of the 

scores.  In Manuscript 2, the Internal Consistency Reliability of each factor was 

examined using the inter-item correlations and the Kuder-Richardson (KR-20) Formula.  

Broadly stated, reliability measures the consistency or accuracy of the research and 

provides evidence to the extent to which the research can be repeated (e.g., Cook & 

Beckman, 2006; Cronbach, 1951; Nunnally & Bernstein, 1978; Rossi et al., 2003; 

Wiersma & Jurs, 2009).  Thus, items that are intended to measure a single construct 

should to some degree relate to one another.  This was evidenced by acceptable inter-item 

correlations and moderate-to-strong KR-20 reliability estimates.  However, in order to 

have a holistic understanding of the reliability of an instrument’s scores, item analytic 

procedures must be conducted. 
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 Manuscript 3 used the 2PL model from Item Response Theory to analyze the 

item-level data.  The goal of an instrument is to accurately and consistently measure a 

student’s true score by minimizing measurement error.  To do so, requires that the items 

and test instructions are clearly written and understood and that the scoring of the 

observed tasks is as objective as possible.  Thus, by examining the item-level data, test 

developers and researchers can gain a better understanding of how particular items are 

performing (or not in the case of negatively discriminating items).  Additionally, item-

level diagnostics such as local dependence are useful in determining whether two distinct 

items are too similar in what they are assessing, which can compromise the reliability of 

the scores.  Thus, to maximize the information gained from an instrument, it is critical 

that the items on the exam be optimized to reduce measurement error and to fully 

understand the complexities of score reliability estimates. 

 Therefore, findings from Manuscripts 2 and 3 demonstrate the complexities of the 

internal structure of educational assessments and the need to review such information 

from various perspectives to support the argument of structural validity (i.e., Construct 

Validity).  The previous definition of structural validity suggests that one must 

understand the underlying structure of the construct of interest first prior to determining 

the consistency of the scores.  However, it has been said that reliability is a necessary, but 

not sufficient, condition for validity (Cook & Beckman, 2006; Cronbach, 1951).  These 

two statements, both of which are correct, demonstrate the cyclical nature of validity and 

reliability.  When there are concerns regarding item parameters (i.e., item difficulty and 

item discrimination) and DIF, the reliability of test scores are threatened along with the 
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interpretations and decisions that are made using the scores.  Therefore, educational 

assessments need to be examined for their psychometric properties as a whole, rather than 

any one particular property of an assessment. 

Manuscripts 1 – 4 

 Validity is a judgment concerning the extent to which inferences and actions 

based on test scores are appropriate given the empirical evidence and theoretical rationale 

(Cook & Beckman, 2006; Cronbach, 1971; Kimberlin & Winetrstein, 2008; Schmitz & 

delMas, 1991).  Underlying each validation argument are assumptions that must be 

accepted as reasonable or plausible to support the overall interpretations and uses of the 

test scores (Kane, 1992; Sawyer, 1996).  The current study has developed its validity 

argument through the combination of its four manuscripts. 

 As previously mentioned, validity consists of a carefully constructed argument 

where evidence has been collected from multiple sources to support or refute the intended 

interpretation of results (Cook & Beckman, 2006; Cronbach, 1971; Messick, 1995).  

Moreover, the validity of an instrument’s scores depends on the construct definition, 

which is why some theorists suggest that all validity should be conceptualized as 

components of one overarching framework of Construct Validity (Clark & Watson, 1995; 

Cook & Beckman, 2006; Loevinger, 1957; Messick, 1989).  As such, Messick (1989) 

presented five sources of evidence to support Construct Validity: content, response 

process, internal structure, relationships with other variables, and social consequences.  

While many articles cite only one or two sources of validity evidence, the current study 

included each of the five sources of evidence to support the overarching framework of 
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Construct Validity (Table 23 below).  Furthermore, strong evidence from one source does 

not negate the need to seek validity evidence from other sources (Cook & Beckman, 

2006). 

 

Table 23 

 

Summary of Evidence to Support Construct Validity 

 

Manuscript Content 

Response 

Process 

Internal 

Structure Relationships 

Social 

Consequences 

1 X  X   

2 X  X   

3 X x X  x 

4 x   x X X 

Note. X = Validity evidence that was directly addressed; x = Validity 

evidence that was indirectly addressed 

 

 In Manuscript 1, internal and external subject matter experts (SMEs) were used to 

explore the congruence of the content domain among the two groups.  Using MDS and 

HCA, it was determined that the content of the mathematics placement test items could 

be clustered into six mathematical areas, with approximately 63% agreement between 

internal and external SMEs.  Thus, it is reasonable to say that the two groups agreed on 

the content present on the mathematics placement test, providing content evidence. 

 Secondly, Manuscript 2 demonstrated the presence of three underlying factors 

which were labeled as PreCalculus, Geometry, and Algebra 1.  While each of these 

factors had strong Internal Consistency Reliability estimates, Manuscript 3 conducted an 

item analysis to further explore the quality of the items.  Through the item analysis 

process, the mathematics placement test was refined by deleting items, and the Internal 
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Consistency Reliability of each factor was reassessed.  Thus, Manuscript 2 and 

Manuscript 3 provided evidence to support the internal structure (and reliability) of the 

instrument.  Manuscript 3 also provided some additional theoretical evidence related to 

the construct (i.e., the internal structure) via item bias. 

 Finally, Manuscript 4 provided evidence to support the relationship between 

students’ total and factor scores from the mathematics placement test with students’ 

performance in their first semester mathematics course, based on the revised test from 

Manuscript 3.  Moreover, by establishing the relationship of the mathematics placement 

test to other variables, Manuscript 4 provided additional information indicating that the 

consequences of misplacement had been minimized, addressing two sources of evidence 

as defined by Messick (1989) (i.e., relationships to other variables and social 

consequences). 

Overall, the combination of the four manuscripts provides strong evidence 

regarding the psychometric properties of the mathematics placement test.  More 

specifically, the current mathematics placement test and procedures appear appropriate 

for gifted residential students interested in STEM given the empirical evidence 

demonstrated in the current study.  Therefore, the continued use of the revised 

mathematics placement test in the course placement decision-making process is 

supported via a compelling validity argument. 
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APPENDIX A 

INSTRUCTIONS FOR PART I OF THE MATHEMATICS PLACEMENT EXAM 

2018 

[Name of High School] 

Mathematics Placement Test 

 

Part I 

 

Do NOT turn the page until you are told to do so. 

 

 

Instructions: 

 

 

NO CALCULATORS.  While calculators will be used in all Academy 

courses, they will not be permitted on this test. 

 

 

Time limit for this part of the test is 45 minutes. 

 
On the following pages are 50 short answer questions.  There is a box with each problem 

and a line at the bottom of the box on which to record your answer.  Do your calculations 

in the box; however, only the recorded answer will be graded.  You may use the back 

sides of the pages if you need more space to calculate.  No partial credit will be given. 

 

 

Use pencil only!  Write answers neatly. 

 

 

 

      Name_______________________________ 

 

 

 

The name of the math course you are currently taking: ____________________________ 

 

 

The last topic you covered in math class was: ________________________________
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APPENDIX B 

INSTRUCTIONS FOR PART II OF THE MATHEMATICS PLACEMENT EXAM 

 

2018 

[Name of High School] 

Mathematics Placement Test 

 

Part II 

 

Do NOT turn the page until you are told to do so. 

 

 

Instructions: 

 

While calculators will be used in all Academy courses, they will not be 

permitted on this test. 

 

 

The time limit for this part of the test is 85 minutes. 

 
On the following pages are 45 multiple choice questions. Use a soft lead pencil to mark 

your answers on the separate answer sheet that has been provided. Be careful to fill the 

answer next to the same number as the problem you are solving. You may use any space 

on the test to do your calculations. Scratch paper will be provided if you prefer to use it. 

However, only the recorded answer will be graded. 

 

This test will be machine scored. Make NO stray marks on your answer sheet. Be sure 

erasures are complete. 

 

 

PLEASE PRINT YOUR NAME BELOW AND ON THE ANSWER SHEET. 

 

 

 

       

 

 

      Name_______________________________
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APPENDIX C 

RECRUITMENT EMAIL FOR SUBJECT MATTER EXPERTS 

Address Line: This email will be sent individually to allow for confidentiality of the 

research participants’ identities and to address each individual by name along with their 

relevant experience(s). Additionally, this email will be sent from the Principal 

Investigator’s Kent State University email account (hwilso20@kent.edu) to protect the 

identity of the participating institution. 

Subject: Research Participation Invitation Assessing the Content Validity of a 

Mathematics Placement Test 

Body: This email message is an approved request for participation in research that has 

been approved or declared exempt by the Institutional Review Boards (IRB) at both the 

participating location and Kent State University. 

Good morning/afternoon/evening [NAME], 

You have been selected to participate in a research study regarding the Content 

Validity of a mathematics placement test due to your [insert relevant experience and 

research here]. This invitation email will provide you with general information regarding 

the research project and the tasks requested of you as a participant. Additional 

information about the research study can be found in the attached consent form. Your 

participation in this study is voluntary. 

Purpose: It is the intent of the current study to examine the psychometric properties of a 

mathematics placement test at a gifted residential high school focused on STEM. More 

specifically, this portion of the research project seeks to identify evidence of Content 

Validity (i.e., whether or not items on an instrument suitably measure a construct of 

particular interest). 

Procedures: Participation in this study is completely voluntary and participants may 

choose to withdraw from the study at any time without consequence for doing so. 

Moreover, participation in this research will require each participant to be able and 

willing to complete a card-sorting tasks of 107 items. The card-sorting task will ask 

subject matter experts (SMEs) to sort the 107 items into groups based on item similarity 

mailto:hwilso20@kent.edu
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and to record the final groupings on a provided piece of paper. Upon completion of the 

card-sorting task, participants will return all provided materials to the principal 

investigator. All participant identities, responses, and contact information will remain 

confidential through the use of random study identification numbers. 

Questions: This project was approved by the Kent State University IRB (#17-475) and 

the study site’s IRB (IRB2017-03) on September 29, 2017. Pertinent questions or 

concerns about the research, research participants’ rights, and/or research-related injuries 

to participants should be directed to the IRB Research Compliance Coordinator, Kevin 

McCreary by phone at 330.672.8058 or by email at kmccreal@kent.edu. 

 

If you are willing to participate in this research study or have additional questions about 

this research, please contact me no later than Friday, February 8, 2019. 

Thank you for considering this research opportunity. 

Sincerely, 

 

 

Hannah R. Anderson 

Ph.D. Student of Evaluation and Measurement 

Kent State University 

Phone: 234.571.8923 

Email: hwilso20@kent.edu

mailto:kmccreal@kent.edu
mailto:hwilso20@kent.edu
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APPENDIX D 

 

INFORMED CONSENT TO PARTICIPATE IN A RESEARCH STUDY 

Study Title: A Psychometric Investigation of a Mathematics Placement Test at a 

Science, Technology, Engineering, and Mathematics (STEM) Gifted 

Residential High School 

Principal Investigator: Hannah R. Anderson 

 

 You are being invited to participate in a research study. This consent form will 

provide you with information regarding the research project, the tasks requested of you as 

a participant, and the associated risks and benefits of the research. Your participation in 

this study is voluntary. Please read this form carefully and ask questions, if needed, to 

ensure that you fully understand the research project in order to make an informed 

decision. You will receive a copy of this document for your records. 

Purpose: 

Placement testing has become an integral component of the admissions process 

within American post-secondary institutions. The overarching goal of administering 

placement tests is to accurately distinguish between those students who do or do not have 

the knowledge base to succeed in a particular course (Feldhusen & Jarwan, 1995; J. P. 

Marshall & Allen, 2000; Mattern & Packman, 2009; Sawyer, 1996; Schmitz & delMas, 

1991). In an era of federal regulations such as No Child Left Behind, and a need for 

increased accountability, American post-secondary institutions are being asked to defend 

the use and interpretations of their placement testing decisions. While the current study 

takes place at a gifted residential high school (i.e., Grades 10 through 12), the purpose is 

the same. Thus, it is the intent of the current study to examine the psychometric 

properties of a mathematics placement test at a gifted residential high school focused on 

STEM. More specifically, this portion of the research project seeks to identify evidence 

of Content Validity (i.e., whether or not items on an instrument suitably measure a 

construct of particular interest).
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Procedures: 

 Participation in this study is completely voluntary and participants may choose to 

withdraw from the study at any time without consequence for doing so. Moreover, 

participation in this research will require each participant to be able and willing to 

complete a card-sorting task of 107 items. The card-sorting task will ask subject matter 

experts (SMEs) to sort the 107 items into groups based on item similarity and to record 

the final groupings on a provided piece of paper. Upon completion of the card-sorting 

task, participants will return all provided materials to the principal investigator. All 

participant identities, responses, and contact information will remain confidential through 

the use of random study identification numbers. 

Benefits: 

 This research study does not provide direct benefits to the participant. However, 

by assisting in the investigation of Content Validity evidence, the uses and interpretations 

of the mathematics placement test will be better understood so that future 

recommendations can be made. Additionally, by exploring psychometric properties of a 

mathematics placement test and presenting the findings in a scholarly journal, other 

researchers will be able to replicate and expand upon the current research study in order 

to move the educational field forward. 

Risks and Discomforts: 

 There are no anticipated risks beyond those encountered in everyday life. 

Privacy and Confidentiality: 

 Your study related information will be kept confidential within the limits of the 

law. Any responses and identifying information will be kept in a secure location with 

restricted access by only the principal investigator. Research participants will not be 

identified in any publication or presentation of research results. Only aggregate data will 

be used in addition to a general acknowledgement of those who participated in this 

portion of the research study. 
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 It is important to note that the items used in the card-sorting task are the same 

items being actively used on the mathematics placement test. Therefore, each participant 

agrees to the access and use of this confidential data for the sole purposes of this research 

study. Disclosing confidential information directly or allowing non-authorized access to 

such information may subject that individual to criminal prosecution. 

Voluntary Participation: 

 Taking part in this research project is entirely your decision. You may choose to 

not participate or to discontinue your participation at any time without penalty or loss of 

benefits to which you are otherwise entitled. You will be informed of any new, relevant 

information that may affect your health, welfare, or willingness to continue your study 

participation. 

Contact Information: 

 If you have any questions or concerns about this research, you may contact 

Hannah Anderson by phone at 234.571.8923 or by email at hwilso20@kent.edu. This 

project has been approved by both the Institutional Review Board (IRB) at Kent State 

University (#17-475) and the site of the research study (IRB2017-03). If you have any 

questions or concerns about your rights as a participant or concerns about the research, 

please contact the Kent State University IRB at 330.672.2704. 

Consent Statement and Signature: 

 I have read this consent form and have had the opportunity to have my questions 

answered to my satisfaction. I voluntarily agree to participate in this study. I understand 

that a copy of this consent form will be provided to me for future reference. 

 

_______________________________ 

Participant Name (Printed) 

 

________________________________  _____________________ 

Participant Signature    Date 

mailto:hwilso20@kent.edu
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________________________________  _____________________ 

Hannah R. Anderson 

Principal Investigator Signature   Date 
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