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Observer error in sampling a rare plant population
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(Received 24 March 2016; accepted 2 August 2016)

Background: Estimation of abundance in vegetation sampling involving observers is almost always characterised by
observer error, although such error is rarely reported.
Aims: To quantify observer error in population estimation of the rare plant species Physaria filiformis in Missouri, USA.
Methods: The abundance of P. filiformis was estimated within 25-m2 plots by six trained observers with varying experience
levels over 10 years. Observers assigned plots to six predefined density classes. A total of 477 plots were estimated annually,
and actual counts were conducted on ca. 10% of the plots to assess per cent agreement of estimates with counts.
Results: Over a third of the estimates of plant abundance evaluated for accuracy (36.4%) deviated from exhaustive counts.
The majority of the misestimates were underestimates by one density class (29.4%). The number and type of misestimates
varied systematically with density class.
Conclusions: Observer error could be explained to some degree by variation in population density, but not by experience. It
appears that inherent differences exist among observers that cannot be entirely compensated for by experience or training.
Observer error in this system represents a systematic bias, and can be compensated for by use of correction factors, which
would ideally be both density class-dependent and observer-specific.

Keywords: density class; monitoring; observer error; Physaria filiformis; rare plant sampling

Introduction

Vegetation sampling is almost always, if not always, char-
acterised by some degree of error. A recent review of
vegetation studies that employed observers found that
92% of the 59 total studies that tested for a statistical effect
of observer error found at least one significant comparison
(Morrison 2016). The magnitude of error often accounted
for as much as 20–30% of the value of the measured vari-
able. Even in smaller scale studies when observer error may
be reduced by the use of digital imagery, other sources of
error may arise (e.g. underestimates of abundance may
result when layers of vegetation overlap, and shading may
introduce problems in analyses) (Morrison 2016). Thus, all
vegetation ecologists should realise the potential for error in
field studies, and attempt to quantify it and report it in any
publications (Kercher et al. 2003). Data quality is a critical
consideration in any monitoring programme (Elzinga et al.
2001; Legg and Nagy 2006).

Quantifying abundance in plant populations or com-
munities is usually accomplished by estimating cover-
abundance. For most species, per cent cover is a more
appropriate measure than number of individuals, since the
size of individuals may vary greatly with age and other
factors. Most published estimates of observer error asso-
ciated with quantifying plant abundances are related to per
cent cover (Morrison 2016). Observer error, however, may
invalidate inferences because the magnitude of observer
error can exceed statistically observable minimum

differences. Moreover, the vast majority of studies pub-
lished in the literature do not quantify observer error.

Here, we evaluate observer error in the estimation of
abundance within six density categories of a rare species
of flowering plant in the mustard family (Brassicaceae) –
Physaria filiformis (Rollins) O’Kane and Al-Shehbaz, the
Missouri bladderpod. P. filiformis is a small (10–20 cm
tall) winter annual that is listed as threatened and moni-
tored annually as part of the Natural Resource Inventory
and Monitoring Program of the US National Park Service.
To obtain a demographically robust measurement, sam-
pling has focused on estimating the number of individuals,
rather than per cent cover, as a measure of abundance
(Young et al. 2008a). Because populations may reach
tens of thousands of individuals, numbers of individuals
within plots have been estimated within density classes
rather than counted. Assigning the wrong abundance cate-
gory to a particular plot represents an obvious potential
source of observer error.

The rationale for, and evaluation of, the sampling
protocol for this particular rare plant has been described
elsewhere (Young et al. 2008b). Here, we focus on the
observer error associated with the estimation of abun-
dance. The following questions were addressed: (1) What
is the magnitude of observer error associated with the
estimation of abundance? (2) Is there an effect of the
experience level of the observer? (3) Are errors random
or systematically biased? and (4) What, if anything, can be
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done to increase the precision of estimates once errors
have been documented?

Materials and methods

Focal species

P. filiformis inhabits limestone, dolomite, and shale glades
in Alabama, Arkansas and Missouri (Al-Shehbaz 2010). A
winter annual, the plant germinates in late summer to
autumn, overwinters as a rosette, produces yellow flowers
(5–9 mm petals) in April–May, sets seed and senesces by
late spring. The rosette leaves are 1–2.4 cm in length. Each
rosette may support multiple erect to decumbent flowering
stems with heights up to 25 cm. The plant produces
globose fruits with a 3–4 mm diameter. Fruits dehisce
upon drying. A substrate endemic, the plant is rare and
listed by the US Fish and Wildlife Service as a threatened
species. Long-term studies in Missouri have shown that
population size fluctuates widely among years, suggesting
an overriding influence of density-independent factors
(Young et al. 2008b). This species prefers open microha-
bitats and is threatened by woody plant encroachment
(Young et al. 2009).

Study site and sampling design

This study was conducted on a large limestone glade
located in Wilson’s Creek National Battlefield, Republic,
Missouri. Various sampling designs have been evaluated
for this P. filiformis population (Morrison et al. 2008); see
Young et al. (2008b) for a rationale for the design
employed, which utilises density classes. Each year from
2006 to 2015, we assessed the abundance of P. filiformis in
a contiguous grid of 477 permanently marked 25-m2 plots.
The plots included the glade area with the highest concen-
tration of P. filiformis.

We conducted surveys in April during peak flowering.
Plots were marked with flags at each corner. In each plot,
we estimated the density of plants using a density-class
scale: 0 = no plants; 1 = 1–9 plants; 2 = 10–49 plants;
3 = 50–99 plants; 4 = 100–499 plants; 5 = 500–999 plants;
and 6 = 1000–4999 plants. To calculate a point estimate of
the population size for each year, we summed the mid-
points of the density classes attributed to each plot (Young
et al. 2008b).

The low and high ends of the estimated density classes
assigned to each cell can be summed, respectively, to
calculate the end points of a population size interval,
which (assuming correct density class assignment) con-
tains the actual population size (i.e. is similar to a 100%
confidence interval). These population size intervals were
found to be very similar in width and location to 95%
confidence intervals determined from a sampling approach
(Young et al. 2008b). The midpoints of population size
intervals, however, may not be good approximations of
sample means, and counts may provide more accurate
point estimates (Young et al. 2008b). The primary

advantage of estimating all plots rather than counting a
sample of plots is that the former method allows for
mapping relative densities across the glade.

Training of observers – harmonising abundance estimates

We practised a series of informal quality control measures
during the study. Observers frequently discussed how to
systematically observe a plot and how P. filiformis growth
forms differed among microhabitats. New observers were
always trained, which involved plant identification in its
various growth forms in the field. Each trainee then esti-
mated density in conversation with an experienced obser-
ver. Finally, each trainee estimated density while being
supervised by an experienced observer. Once counts
between the observer and trainee matched, the trainee
was allowed to make independent observations of abun-
dance. Initial training typically lasted 30–45 min. It should
be noted that as the study progressed, multi-year observers
became aware of the tendency to underestimate density
and may have tried to hedge against this tendency, espe-
cially in cases where density was marginal between two
categories.

Accuracy assessments

Accuracy assessments were conducted by dividing plots
into five 1-m wide lanes and counting all plants at ground
level within these lanes. In each year, a random sample of
60 plots was selected for accuracy assessments. In some
years, additional plots were added haphazardly to increase
the sample size, from density classes that were under-
represented in the random sample. At least 10 plots for
each density class were included when available. Although
some degree of error may characterise the count data, it is
of a relatively small magnitude and because of the rela-
tively wide density classes used, would affect a very small
proportion of the accuracy assessments.

In 2006 and 2010, plots to be used for accuracy
assessments were selected by using slightly different pro-
cedures. In 2006, the 477 plots, representing the core area,
were first grouped into fifty-three 15-m × 15-m strata. A
single 5-m × 5-m plot was then randomly selected from
each stratum. Nine additional plots were haphazardly
selected to increase the total number of plots assessed for
each density class to at least 10. The selection process
employed in 2006 was designed to increase the spatial
balance of the plots selected; this was later determined to
be unnecessary (Morrison et al. 2008). In 2010 (a low-
abundance year), 10 plots to be used for accuracy assess-
ments were selected randomly from each density class
after estimates were made. Only three density classes
were represented (0, 1 and 2) and only three plots were
estimated as class 2. The percentage of the 477 plots
evaluated for accuracy ranged from 13% to 15% in all
years except 2010, in which it was 5% (Table 1).

Overall, 609 accuracy assessments were conducted
over the 10 years. In 500 of the assessments, an
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independent observer made the estimates, and in 109 cases
the estimates were made by a team of two observers.
Because it was not known with certainty which observer
of each team made the estimates, or if there were any
conferrals, the team estimates were included in the overall
accuracy assessment, but excluded from analyses of obser-
ver error. Accuracy was determined including all assess-
ments (n = 609) and including only assessments with P.
filiformis present (n = 437).

In the analyses of observer error, all cases in which
actual counts were zero were excluded, as these were rarely
misclassified, to better focus on observer ability to estimate
non-zero abundance. The final sample size for assessing
observer error was 365 estimates, made by 7 observers.
One observer only had five total estimates evaluated, and
was not included in the comparisons among observers. In
comparisons of observers among years, cases in which an
observer had <6 estimates evaluated were not included; this
resulted in an overall sample size of 346. Overall, years of
experience ranged from 0 to 10, and two observers made
estimates in five or more years.

Data analysis

Per cent agreement of estimates with counts was calcu-
lated as the percentage of abundance estimates that agreed
with the exhaustive counts. Per cent agreement of esti-
mates with counts was summarised by observer as a func-
tion of population size, years of experience and density
class. Statistical associations were evaluated by the use of
Pearson correlation coefficients. SPSS Version 20.0 (IBM
Corp 2011) was used for all analyses.

Results

Accuracy assessments

Overall (for all observers in all years), in almost two-thirds
(63.6%) of all accuracy assessments, the estimated

category was in agreement with the exhaustive counts
(Table 2). Almost all estimates that were not in agreement
with counts were underestimates: 29.4% were underesti-
mated by one density class, and 4.1% were underestimated
by two density classes. Only 2.8% were overestimated by
one density class, and a single assessment (0.2%) was
overestimated by two density classes. No estimates were
off by three or more density classes.

Errors in estimation were not consistent across density
classes, however. Agreement of estimates with counts gener-
ally decreased with the higher density classes (Table 2).
Overestimates were restricted to density classes 0–2.
Underestimates became more prevalent as density class
increased (Figure 1). For density class 3 and higher, the
number of underestimates exceeded cases of agreement with
counts. For density class 6, all estimates were underestimates.

Plots without P. filiformis were rarely misclassified
(91.9% agreement with counts). If plots without

Table 1. Population estimates of Physaria filiformis inhabiting
a glade in south-western Missouri, along with numbers and
percentages of plots assessed for accuracy.

Year

Population
point

estimate
Percentage of
plots occupied

Number of
plots

counted
Percentage of
plots counted

2006 29,269 70.9 61 12.8
2007 16,822 72.1 73 15.3
2008 3918 54.1 60 12.6
2009 1937 44.2 60 12.6
2010 794 30.2 23 4.8
2011 49,043 85.7 68 14.3
2012 36,212 79.2 63 13.2
2013 48,040 77.6 69 14.5
2014 465 18.4 60 12.6
2015 19,014 67.7 72 15.1

Percentage of plots counted is based on 477 plots for all years (2006–
2015).

Table 2. Types and frequencies of errors for each actual density
class, from estimates of abundance of Physaria filiformis inhabit-
ing a glade in south-western Missouri over 10 years (2006–
2015).

Density class

Frequency Error
Per cent within
each actual classActual Estimate

0 0 158 None 91.9
0 1 13 Overestimate

by 1 class
7.6

0 2 1 Overestimate
by 2 classes

0.6

1 0 37 Underestimate
by 1 class

27.2

1 1 96 None 70.6
1 2 3 Overestimate

by 1 class
2.2

2 0 5 Underestimate
by 2 classes

4.6

2 1 40 Underestimate
by 1 class

36.7

2 2 63 None 57.8
2 3 1 Overestimate

by 1 class
0.9

3 1 1 Underestimate
by 2 classes

2.2

3 2 29 Underestimate
by 1 class

63.0

3 3 16 None 34.8
4 2 14 Underestimate

by 2 classes
13.2

4 3 46 Underestimate
by 1 class

43.4

4 4 46 None 43.4
5 3 3 Underestimate

by 2 classes
11.5

5 4 15 Underestimate
by 1 class

57.7

5 5 8 None 30.8
6 4 2 Underestimate

by 2 classes
14.3

6 5 12 Underestimate
by 1 class

85.7

6 6 0 None 0
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P. filiformiswere excluded, only 52.4% of accuracy estimates
agreed with counts. Almost all misestimates were underesti-
mates: 41.0% were underestimated by one density class and
5.7% were underestimated by two density classes. Only four
plots were overestimated, all by one density class.

Patterns in observer error

The per cent agreement of estimates with counts sum-
marised over all years varied widely among observers,
ranging from 40% to 68% (Figure 2). The number of
estimates made also ranged widely among observers, and
the relationship between per cent agreement of estimates
with counts and number of estimates was marginally sig-
nificant and negative (r = −0.79, P = 0.06, n = 6).

Two observers estimated abundances over multiple
years (observer 1: 6 years; observer 2: 5 years). The per
cent agreement of estimates with counts for observer 1
varied widely over time, ranging from 28.6% to 66.7%
(range: 38.1) (Figure 3). In contrast, the per cent agreement
of estimates with counts for observer 2 varied much less,
from 45.5% to 60% (range: 14.5). Population abundance
varied among years, however, and this could have affected
agreement of estimates with counts. The two observers
made estimates in eight total years, both making estimates
in only three of the same years, although both made esti-
mates over a similar range of population sizes. For observer
1, the relationship between per cent agreement of estimates
with counts and population size was marginally significant
and negative (r = −0.79, P = 0.06, n = 6). For observer 2,
there was no association (r = 0.23, P = 0.71, n = 5).

Effects of experience and plant density

Per cent agreement of estimates with counts is plotted by
years of experience of the observer in Figure 4. Much
variability is obvious in the data. For the two observers
with the most data points (observers 1 and 2), associations
were tested but neither was significant (observer 1:
r = 0.18, P = 0.75, n = 6; observer 2: r = 0.59,
P = 0.30, n = 5). Much more variability in this relationship
characterised observer 1 compared to observer 2.

The overall per cent agreement of estimates with
counts for each observer (calculated over all years) was
plotted as a function of the actual density in the plot
(Figure 5). Per cent agreement of estimates with counts
ranged from 0% to 100%, although it tended to be higher
for the lower density classes. For the two observers with
the most observations (observers 1 and 2), associations
were tested and both were significant and negative (obser-
ver 1: r = −0.83, P = 0.04, n = 6; observer 2: r = −0. 95,
P = 0.048, n = 4). Observer 2 always had higher

Figure 1. The percentage of overestimates (solid bars) and under-
estimates (stippled bars) for each actual density class, from esti-
mates of abundance of Physaria filiformis inhabiting a glade in
south-westernMissouri over 10 years (2006–2015). Note the differ-
ences of scale on the y-axes; the scale for underestimates is an order
of magnitude higher than the scale for overestimates.

Figure 2. Overall per cent agreement of estimates with counts
by observer, from estimates of abundance of Physaria filiformis
inhabiting a glade in south-western Missouri over 10 years
(2006–2015). Numbers above bars represent number of plots
for which accuracy was evaluated for each observer.

Figure 3. Per cent agreement of estimates with counts for two
observers in different years, plotted as a function of total popula-
tion size, from estimates of abundance of Physaria filiformis
inhabiting a glade in south-western Missouri over 10 years
(2006–2015) (observer 1: y = 62.43 − 0.0006x, R2 = 0.62; obser-
ver 2: y = 53.19 + 0.0001x, R2 = 0.05).
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agreement of estimates with counts than observer 1, even
though observer 1 had more experience.

Because observer 1 estimated a larger number of plots
than any of the other observers, and in more years, it is
possible that the lower overall agreement of estimates with
counts for observer 1 was due to estimating more of the
high-density plots (density class 4 or higher), which were
more difficult to classify accurately. Observer 1 did esti-
mate a slightly larger proportion of high-density plots than

existed in the data set overall (40.0% vs. 33.3%). There
was, however, no relationship between agreement of esti-
mates with counts and the percentage of high-density plots
estimated among observers (r = −0.05, P = 0.92, n = 6)
(Figure 6).

Discussion

Comparisons with other studies

In general, when evaluating observer error in vegetation
sampling, one may attempt to measure accuracy (i.e. how
close estimates are to true values) or precision (i.e. how
close different observer’s estimates are to each other). In
most studies of observer error, accuracy is unknown, as
there exists no practical method of obtaining an unbiased
value of the parameter in question. Thus, most studies of
observer error have evaluated precision rather than accu-
racy (Morrison 2016). By carefully counting the numbers
of individuals in a subset of plots, we were able to eval-
uate the accuracy of observer estimates.

Although the overall accuracy of observer estimates
may seem low (only 63.6% of all plots counted agreed
with estimates), it is very similar to that documented in
studies of observer error using per cent cover as an indi-
cator of abundance and evaluating precision. Lepš and
Hadincová (1992), sampling relevés in meadows, clear
cuts and peat bogs in the Czech Republic and using the
Braun-Blanquet scale for cover, reported that between two
observers 39.5% of estimates were different by one cate-
gory, and 3% were different by more than one category.
Klimeš (2003), working in 4-m2 plots in grasslands also in
the Czech Republic found that, after transformations of per
cent cover data to the Braun-Blanquet scale, 46% of
estimates between two observers were different by one

Figure 4. Per cent agreement of estimates with counts as a
function of years of experience, from estimates of abundance of
Physaria filiformis inhabiting a glade in south-western Missouri
over 10 years (2006–2015). Six different observers are repre-
sented. Lines of best fit are shown for the two observers with the
most years of data (observer 1: y = 37.84 + 1.01x, R2 = 0.03;
observer 2: y = 49.94 + 1.29x, R2 = 0.35).

Figure 5. Per cent agreement of estimates with counts as a
function of density class, from estimates of abundance of
Physaria filiformis inhabiting a glade in south-western Missouri
over 10 years (2006–2015). Six different observers are repre-
sented. Lines of best fit are shown for the two observers with the
most years of data (observer 1: y = 63.31 − 9.41x, R2 = 0.69;
observer 2: y = 78.25 − 8.73x, R2 = 0.90).

Figure 6. Per cent agreement of estimates with counts versus
the percentage of estimated high-density plots (density class 4 or
higher), from estimates of abundance of Physaria filiformis inha-
biting a glade in south-western Missouri over 10 years (2006–
2015). Each point represents a different observer. Numbers refer
to the different observers.
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category, and 4% were different by two categories. Klimeš
(2003) employed five total observers and calculated dis-
crepancies based on all possible pairs of observers.

Archaux et al. (2007), working in 400 m2 quadrats in
French lowland forests, reported that estimates of cover-
abundance using the Braun-Blanquet scale between two
observers were different by one category for 47.5% of
cases, and different by two categories for 11.5% of
cases. Archaux et al. (2007) also used the Braun-
Blanquet scale and, like Klimeš (2003), calculated discre-
pancies based on all possible pairs of observers (four
total). Gray and Azuma (2005), sampling forests in
Oregon, reported that for cover estimates, 41% of quadrats
differed by one category and 6% differed by two cate-
gories. Cheal (2008), in an evaluation of the ability of 16
experienced observers to evaluate cover of a single grass
species in open shrubland in Victoria, Australia, found
variation that spread over three Braun-Blanquet categories.

Similarly, in a study of intra-observer error conducted
in grasslands in the UK with subjective frequency as a
measure of abundance, Hope-Simpson (1940) found that
36% of species differed by one category and 12% differed
by two categories. Thus, for vegetation studies using cate-
gory estimation of abundance in which precision has been
evaluated, between one-third and one-half of all estimates
are erroneous, but most are off by only one category.
These are directly comparable to our estimates of accuracy
– 32.2% of all plots were misestimated by one density
class, and 4.3% were misestimated by two density classes
– and suggest the magnitude of such error rates are ubi-
quitous in vegetation studies given the normal number and
range of categories chosen to estimate abundance.

Systematic bias vs. random variation

Accuracy assessments revealed a strong bias in estima-
tion of P. filiformis abundance – 33.5% of all estimates
were underestimates, whereas only 3% were overesti-
mates. Moreover, all overestimates occurred in the
lower density classes (0–2), and the majority (78% of
all overestimates) occurred when actual densities were
zero. In terms of the effect on estimation of total popu-
lation size, overestimates are trivial. For example, if the
abundance of a plot was actually zero, but it was over-
estimated to be density class one (1–9 individuals), the
point estimate of the total population would be erro-
neously overestimated by only 5. In contrast, underesti-
mates were more prevalent for the higher density
classes. Given that higher density classes were wider,
underestimation in the higher density classes results in
much greater error in the total population estimate. For
example, if a plot was actually in density class 6 (1000–
4999 individuals), but it was underestimated as density
class 5 (500–999 individuals), the point estimate of the
total population would be erroneously underestimated by
2250.

The mechanisms underlying the observed bias
appear primarily to be associated with the growth form

of the plant and the habitat matrix. P. filiformis consists
of multiple stems arising from a basal rosette, 1–4 cm in
diameter (Young et al. 2008a). On average, an indivi-
dual has two or three flowering stems (Thomas and
Willson 1992), but as many as thirty flowering stems
have been documented (Young et al. 2008a).
Determining how many individual plants exist when
each has multiple stems is difficult in dense populations,
and there is an obvious tendency to underestimate abun-
dances. Additionally, smaller plants growing in marginal
habitats tend to be overlooked (Young et al. 2008b).
Finally, plants growing along the borders of the plots
may have been mistakenly assigned to the incorrect
plot, and presumably account for the overestimates
documented when no plants were actually present
(Table 2).

Studies that have addressed the question of whether
observer error represents random variation or a systematic
bias have frequently found no evidence of a systematic
bias (e.g. Smith 1944; Lepš and Hadincová 1992; Klimeš
2003). In a study of five different variables, Archaux et al.
(2007) reported that the magnitude of random variation
was twice as high as that of a systematic bias. Thus, our
finding of a strong systematic bias is somewhat unusual.

Many studies have reported that some observers (or
teams) tended consistently to record under- or overesti-
mates compared to other observers (or teams) (Sykes et al.
1983; Tonteri 1990; Bråkenhielm and Qinghong 1995;
Kercher et al. 2003; Carlsson et al. 2005). Frequently, a
single observer (or team) has been documented to be
relatively far from the group mean. Goodall (1952)
reported that while the cover estimates of two observers
agreed consistently, a third frequently made estimates that
exceeded or fell below those of the other two. Tonteri
(1990) reported that one observer tended to consistently
overestimate cover compared to 10 others.

In a study using indices, Gorrod and Keith (2009)
reported that the total site scores of one observer were
consistently different from the group mean (10 observers
total). Similar findings are evident from studies of species
composition: McCune et al. (1997) reported that 1 obser-
ver out of 11 found very few species and inflated the
between-crew variance, and Oredsson (2000) found that
1 observer out of 6 recorded significantly fewer species.
Thus, in contrast to the relative uniqueness of the observed
systematic bias, the inherent variability we documented
among observers seems to be quite common.

Effect of experience

Perhaps surprisingly, there was no clear effect of experi-
ence on accuracy of estimates. The mechanism underlying
the marginally significant negative relationship between
per cent agreement of estimates with counts and number
of estimates among observers is unclear, although it is the
opposite of that expected given the hypothesis that experi-
ence improves accuracy. Observer fatigue may have
played some role; observer 1, for example, estimated all
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plots in 2 years (2011 and 2012). Additionally, less train-
ing would have been conducted in these 2 years, as no
new observers were involved.

The effect of prior experience has been evaluated in
numerous studies of vegetation sampling. The results have
been mixed, as some studies have found an effect of
experience (Hall and Okali 1978; McCune et al. 1997;
Oredsson 2000; Scott and Hallam 2002; Ringvall et al.
2005; Vittoz and Guisan 2007; Bergstedt et al. 2009)
whereas others have not (Sykes et al. 1983; Kéry and
Gregg 2003; Cheal 2008; Chen et al. 2009; Moore et al.
2011; Burg et al. 2015). It has been suggested that the
equivocal effect of experience may be due to some degree
to wide ranges in the amount of relevant experience
among observers, which differed greatly among studies
(Morrison 2016). Given that all experience in estimating
abundance of P. filiformis in this study was relatively uni-
form, this could not be the explanation for the findings
presented here. Rather, the available evidence suggests
that experience does not increase the accuracy of esti-
mates, or at least not beyond a relatively low threshold.

The effect of training must also be considered, how-
ever, as training for a particular sampling regime is a type
of experience. The literature is less equivocal about the
effect of training, as numerous studies have reported that
training increased the precision or accuracy of estimates to
some degree (Smith 1944; Kennedy and Addison 1987;
Stapanian et al. 1997; Campbell and Arnold 1973; Murphy
and Lodge 2002; Symstad et al. 2008; but see Archaux
et al. 2009 for an exception). All observers in this study of
P. filiformis sampling received training in each year prior
to sampling. Once a certain amount of training has been
done, the additional effect of previous-related experience
may be trivial.

Subjective estimation ability

Estimation error appears to be inevitable to some extent,
reflecting an inherent limitation of our subjective ability to
quantify objects accurately. Categories are frequently
employed for cover estimation due to the inability to
visually estimate cover precisely. Hahn and Scheuring
(2003), using computer simulations to test estimation of
per cent cover, found that estimation error was minimal
when the range of cover was divided into 10 equal cate-
gories. Most test subjects divided the cover range into 10–
20 intervals in their minds, even when they were given the
opportunity to make more precise estimates.

Plots with actual values near the boundaries of the
categories should be the most difficult to categorise. We
evaluated how much of the overall error such plots
accounted for by applying a 10% error factor to densities
occurring near density class boundaries, as in Young et al.
(2008b). For example, an estimate of density class 4 (100–
499 individuals) would be considered correct if the actual
count was between 90 and 549 plants. Of the 208 total
misestimates in which plants were actually present, only

12.5% represented cases in which actual counts were
within 10% of the boundaries (15.7% excluding cases in
which plants were present but 0 plants were estimated).
Thus, relatively few cases of incorrect classification
involved cases in which actual abundances were close to
density class boundaries.

What can be done?

Sykes et al. (1983) suggested that if individual observers
either consistently underestimated or overestimated cover,
a correction factor could be used to reduce inter-observer
bias. In community studies, a separate correction factor
would be necessary for each species, and this approach, to
our knowledge, has not been attempted. For diverse com-
munities, such an approach using multiple correction fac-
tors may be impractical. For a single species, however,
application of a correction factor to individual observer
estimates would be practical. The error rates documented
could be used to assign category-dependent correction
factors as suggested by Young et al. (2008b). Given the
documented inter-observer variability, however, such cor-
rection factors may need to be both density class-depen-
dent and observer-specific (e.g. a separate correction factor
for each observer-density class combination).

Sykes et al. (1983) also suggested ‘screening’ obser-
vers and rejecting individuals who were unable to produce
‘acceptably consistent results’ after training. Given that
many studies have found evidence that single observers
or teams produced estimates that were outliers relative to
the group mean (Goodall 1952; Tonteri 1990; McCune
et al. 1997; Oredsson 2000; Gorrod and Keith 2009), the
existence of such ‘extreme’ observers seems to be com-
mon and rejecting such individuals could increase overall
precision.

Multiple observers are frequently recommended
(Klimeš et al. 2001; Klimeš 2003; Symstad et al. 2008;
Archaux 2009; Archaux et al. 2009; Gorrod and Keith
2009; Vittoz et al. 2010). The advantage of multiple
observers is that extreme estimates may be adjusted (e.g.
Klimeš 2003), and average estimates may be closer to true
values as errors associated with individual estimates are
cancelled out (Wintle et al. 2013). The main disadvantage
of additional observers would be greater cost.

Other factors may also affect the precision or accuracy
of estimates in vegetation sampling (see review in Morrison
2016). Field workers should be vigilant regarding these
sources of error and include error rates as standard compo-
nents of reports (Kercher et al. 2003). Although it will not
usually be possible to eliminate observer error, ignoring
such error is not a responsible practice.
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