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Review Article

Michael D. Reed*, Andrzej S. Baran, John H. Telting, Roy H. Østensen, Christopher S. Jeffery,
Joshua W. Kern, Laura Ketzer, John Crooke, and A. Slayton

A review of seismic observations of Kepler and
K2-Observed sdBV stars
https://doi.org/10.1515/astro-2018-0015
Received Nov 15, 2017; accepted Dec 31, 2017

Abstract: This paper reviews recent seismic findings from Kepler and K2 data. Using three years of short cadence Kepler
(K1) data, it is possible to examine time evolution of pulsations in an unprecedented way. While K2 observations are
shorter, only three months, they are important as they are finding more sdBV stars than K1 did. Most importantly, K2 is
discovering more p−mode pulsators with coverage not possible to get from the ground.

Keywords: Kepler & K2 observations of sdBV stars

1 Introduction
The Kepler spacecraft is a 0.95m Schmidt telescope with a
CCD array which originally covered 105 square degrees. Its
primary mission (K1) obtained data from May 2009 until
May 2013 with the first four quarters dedicated to monthly
surveys of targets. For many stars, three years of continu-
ous datawere obtainedwith a 92%duty cycle, allowing for
unprecedented continuous monitoring.

While the mission was designed for detecting plane-
tary transits, it also provided revolutionary data sets for
variable stars. Continuous stellar monitoring meant that
pulsation cycle after pulsation cycle would be observed.
Therefore theKepler space telescope is an ideal instrument
for asteroseismology.

The main goal of asteroseismology is to provide ob-
servational constraints for stellar models. Those can in-
clude pulsation frequencies, but a list of frequencies with-
out mode identifications is not especially constraining.
Therefore the major goal of asteroseismology is to corre-
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late pulsations with modes, which are described by spher-
ical harmonics. The pulsation geometry is described by
three quantized quantities dsignated as n, ℓ, andm, which
represent the number of radial nodes, surface nodes, and
surface nodes which pass through the pulsation axis, re-
spectively. When observational mode identifications can
bemade, then overtone spacings are also constrained, and
trapped modes can also be detected.

During theK1mission, 18 pulsating subdwarf B (sdBV)
stars were discovered. All were observed in short-cadence
mode, which obtained a new image every 58.85 seconds.
Over the course of K1 observations, this totaled over
1.55million observations with a 1/T temporal resolution of
0.007 µHz. All of the sdBV stars observed during K1 were
new discoveries. Of these, 16 are predominantly g−mode
pulsators and two are p−mode pulsators. As reported in
Østensen et al. (2011a) 32 sdB stars with Te� > 28000K
were observed during the K1 survey phase, of which two
are predominantly p−mode pulsators and one predomi-
nantly a g−mode pulsator. Of the 16 sdB stars with Te� <
28000K twelve pulsate with mostly g modes. Guest Ob-
server proposals during K1 obtained data on five known
sdB stars in the old open cluster NGC6791. The two hotter
stars did not pulsate and all three of the cool oneswere dis-
covered to be g−mode pulsators (Reed et al. 2012; Pablo et
al. 2011).

After the second reaction wheel failed, the spacecraft
began a new campaign called K2, where it observes along
the ecliptic, using solar pressure and thrusters to main-
tain pointing (Howell et al. 2013). The spacecraft is typi-
cally in a rear-facing position which can maintain point-
ing balance and thermal and light shields constraints for
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nomore thanabout 95 days. Campaign0 (C0) began inMay
of 2008 and, as of this writing, data through Campaign 12
(C12) have been released, which covers observations end-
ing in March of 2017. Through C12 our collaboration has
received SC data for 71 of our proposed targets. Of these,
four were previously known to be pulsators and 25 new
sdB pulsators have been discovered. K2 campaigns span
roughly 80 days, which is a resolution of 0.14 µHz. For SC
data this results in roughly 115 000 images, and unlike K1,
these are not processed into lightcurves and deposited at
the Mikulski Archive for Space Telescopes (MAST). There
are available PyKE programs for image processing (Still &
Barcklay 2012), but we found these to be less-than-optimal
for sdB stars and sowedevelopedour owncustomprocess-
ingmethod (Baran et al. 2017). In brief, we calculate image
centers and then extract fluxes using apertures which fol-
low the stellar motion across pixels. Drift across differing
pixel sensitivies (termed “thruster firings” as that is part
of the cause) is then corrected using custom decorrelation
programs. In this manner, we examine each K2-observed
sdB star for variability one at a time.

Table 1 lists properties of 33 Kepler-observed sdBV
stars, plus one BHB star, reflecting roughly the state of
publications from our collaboration. As several of these
publications are “in progress”, final numbersmay change.

As part of our follow-up work, our group has been
obtaining spectra, mostly at the Nordic Optical Telescope
(NOT; Telting et al. 2014). These spectra are used to deter-
mine Te� and log g, but also to look for velocity variations
indicative of binarity. An additional benefit of obtaining,
processing, and analyzing our own spectroscopy is that
our Kiel (Te� − log g) diagrams are on a common scale. The
values might have systematic shifts but relative values are
accurate and so we can examine things like the transition
from p to g modes.

During the first year of the K1 mission, seismic tar-
gets were observed for one month in SC mode. For sdBV
stars, those data were sufficient to discover asymptotic pe-
riod sequences for g−mode pulsations (Reed et al. 2011),
making mode identification possible. Asymptotic period
sequences have previously been reviewed (Reed & Foster
2014; Heber 2016), so we will not repeat that here. As of
thiswritingnineK1-observed sdBV stars havehad their full
data sets analyzed. Typically 60-80% of the periodicities
are able to be associatedwith asymptotic ℓ = 1 or 2modes.
The g−mode asymptotic period spacings are provided in
Table 1.

Baran et al. (2012) discovered rotationally-split fre-
quency multiplets in the K1 predominantly-p−mode pul-
sator KIC 10139564 (AKA and hereafter Saradoc). As each
degree produces 2ℓ + 1 azimuthal modes (ℓ = 1 form

triplets, ℓ = 2 form quintuplets, etc., depending on in-
clination angle) this allowed another method for mode
identification of both ℓ andm quantumnumbers. Rotation
(combined with the Ledoux factor; Ledoux 1951)) usually
removes the azimuthal degeneracy, and so the frequency
splittings ofmultiplets indicate the rotation period. If mul-
tiplets are observed then rotation periods can be deter-
mined. As the Ledoux constant is near zero for p modes
but is approximately 1/ [ℓ (ℓ + 1)] for g modes, it can be
used as another tool for identifying pulsation modes. This
is especially useful when multiplets are incomplete and
for distinguishing ℓ = 1 triplets from ℓ = 2 quintuplets
which are missing the m = |1|modes because of viewing
inclination. Thismakes frequencymultiplets an extremely
useful tool as they provide two means of mode identifi-
cations; the number of multiplet members and the fre-
quency splittings between them. In addition, as pulsations
are a geometric effect, the pulsation amplitudes can be af-
fected by inclination of the pulsation axis Pesnell (1985).
For cases where pulsation amplitudes remain nearly con-
stant, this was used to constrain the pulsation inclination
angle (Baran et al. 2012; Reed et al. 2014; Foster et al. 2015).

We also discovered that many pulsators are hybrid,
with both p and g modes. As p modes are most sensi-
tive to surface conditions and g modes are more sensitive
deeper towards the core, hybrid pulsators are able to sam-
ple a range of the stellar interior. Table 1 and Figure 1 list
and show the spectroscopic properties of the various pul-
sation types. Solid red squares are 24 K1-observed non-
pulsating sdB stars with Te� and log g determined using
the same techniques as the pulsators, for comparison. Pre-
dominantly g−mode pulsators all have Te� < 30000K and
five of the twelve are hybrid pulsators. However, they do
not crowd around the hot edge, but rather appear inter-
mixed with g−mode only pulsators. It might be expected
that with K1 sensitivity of 1.5 million observations, that
all could be detected as hybrid, but this is not the case as
both the hottest and coolest hybrids have been discovered
with K2 data. An additional, currently unknown, parame-
ter or multiple parameters must be responsible for the dif-
ference.

With K1’s extended duration of observations, more
than three years in many cases, we can examine the time
evolution of pulsations. Such an examination has brought
about the development of other tools. Sliding Fourier
transforms (hereafter sFTs) were found to be exquisitely
useful for examining how pulsations evolve over time. An
important example is shown inFig 2. If only the firstmonth
of K1 data were examined for KIC 10670103, many multi-
plets would have appeared as singlets. However, over the
course of the K1 observations, all members are excited
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Table 1. Spectroscopic and seismic properties of Kepler-observed sdBV stars. Column 1 provides the KIC or EPIC identifications, column 2
the pulsation type where p are p−mode only pulsators, p + g are predominantly p mode hybrid pulsators, g are g−mode only pulsators,
and g + p are predominantly g mode hybrid pulsators. Column 3 provides the number of pulsation periodicities, columns 4 and 5 provide
spectroscopic properties, and column 6 the g−mode asymptotic period spacing for ℓ = 1. Column 7 provides the binary status where sdB
is listed for single stars, sdB+WD for those with white dwarf companions, sdB+dM for those with M-dwarf main sequence compansions
and sdB+F or sdB+G for those with main sequence F or G companions. Column 8 provides the rotation rate and if two values are given, the
first is for the envelope and the second for deeper interior. Column 9 provides the binary period and Column 10 a reference. The references
are 1: Østensen et al. (2014a), 2: Baran et al. (2012), 3: Baran (2012), 4: Baran (2012); Kern et al. (2017), 5: Reed et al. (2011), 6: Usundag et
al. (2017), 7: Reed et al. (2012), 8: Baran et al. (2015), 9: Reed et al. (2014), 10: Telting et al. (2014), 11: Østensen et al. (2014b), 12: Telting
et al. (2012), Kern et al. (2017) (in press), 13: Baran et al. (2016), 14: Østensen et al. (2010a); Reed et al. (2011), 15: Baran & Winans (2012),
16: Østensen et al. (2012a), 17: Reed et al. 2017 (in press), 18: Crooke et al. 2017 (in preparation), 19: Ketzer et al. 2017 (in preparation),
20: Baran et al. (2017), 21: Ketzer et al. (2017), 22: Bachulski et al. (2016), 23: (in preparation), 24: Reed et al. (2014), 25: Jeffery & Ramsary
(2014), 26: Jeffery et al. (2017).

KIC # Type No. of Te� log g ∆Πℓ=1 Binary Pspin Porbit Ref.
periodicities (K/1 000) (dex) (s) status (d) (d)

2991276 p 8 33.9 5.82 – sdB 6.3 – 1
(0.2) (0.04) – – –

10139564 p + g 57 31.86 5.673 – sdB 25.6 – 2
(0.13) (0.026) – (1.8) –

2697388 g + p 256 23.39 5.29 240.06 sdB 41.9/52.8 – 3
(0.12) (0.02) (0.19) (3.6)/(9.3) –

3527751 g + p 251 27.82 (0.16) 5.35 (0.03) 266.4 (0.2) sdB 45 – 4
(0.16) (0.03) (0.2)

5807616 g + p 18 27.1 5.51 242.12 sdB – – 5
– – – – –

10001893 g + p 110 26.7 5.3 268.0 sdB – – 6
– – (0.5) – –

2437937 g 9 23.84 5.31 242.6 sdB – – 7
(0.68) (0.09) (1.5) – –

2569576 g 4 24.25 5.17 234.6 sdB – – 7
(0.46) (0.05) (0.6) – –

8302197 g 30 27.45 5.439 258.61 sdB – – 8
(0.20) (0.033) (0.62) – –

10670103 g 278 21.485 5.14 251.6 sdB 88 – 9
(0.540) (0.05) (0.2) (8) –

7668647 g + p 132 27.7 5.50 248 sdB+WD 50.5 14.174 10
(0.3) (0.03) – (0.5) (0.004)

10553698 g + p 162 27.423 5.436 263.15 sdB+WD 42.9 3.387 11
(0.293) (0.024) – – (0.014)

11558725 g + p 244 27.91 5.41 244.45 sdB+WD 45 10.055 12
(0.32) (0.012) (0.32) – (0.005)

7664467 g 61 27.44 5.38 260.02 sdB+WD 35.1 1.5591 13
(0.12 ) (0.02) (0.77) (0.6) (0.00006)

9472174 g + p > 100 29.6 5.42 255.63 sdB+dM 0.1258 0.1258 14
– – (0.3) – –

11179657 g + p 43 26 5.14 231.02 sdB+dM 7.2 0.394 15
– – (0.02) – –

2438324 g 19 27.10 5.69 240.3 sdB+dM 9.6 0.398 15
(0.82) (0.10) (2.9) – –

2991403 g 38 27.3 5.43 268.52 sdB+dM 10.46 0.443 15
– – (0.74) – –

1718290† g 54 21.796 4.67 276.3 BHB 96.5 – 16
(0.144) (0.03) – – –
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Table 1. ... continued

EPIC # Type No. of Te� log g ∆Πℓ=1 Binary Pspin Porbit Ref.
periodicities (K/1 000) (dex) (s) status (d) (d)

211823779 p 16 36 6 – sdB+F1V 11.5 – 17
– – – (0.8) –

211938328 p 8 32 5.8 – sdB+F6V 21.5 635 17
– – – (0.6) (146)

212508753 p + g 79 37 – – sdB+G 16 – 18
– – – (1) –

220614972 p + g 223 35 5.6 – sdB+G 4.39/> 45 – 19
– – – (0.48)/– –

211779126 g + p 133 28.542 5.39 253.3 sdB 16 – 20
(0.082) (0.01) (0.8) – –

203948264 g 22 26.76 5.26 261.34 sdB 45.9 – 21
(0.61) (0.09) (0.78) (.8) –

212707862 g 13 28.298 5.479 252.6 sdB 80 – 22
(0.162) (0.025) (1.1) – –

215776487 g 16 28.3 5.8 – sdB – – 23
– – – – –

217280630 g 7 22.3 5.0 – sdB – – 23
– – – – –

218366972 g 47 28.2 5.4 251 sdB – – 23
– – – – –

218717602 g 17 24.85 5.26 260 sdB – – 23
– – – – –

201206621 g 14 27.954 5.32 267.9 sdB+WD > 45 0.54109 24
(0.054) (0.01) (1.0) – (0.00002)

211696659 g 10 27.12 5.419 227.05 sdB+WD 28.4 3.1621 17
(0.64) (0.069) (0.56) (1.4) (0.0013)

202065500 g + p 16 29.85 5.71 234 sdB+dM 10 0.80 25
– – – – –

211623711† g 4 38.9 5.97 – He-sdB – – 26
(0.27) (0.11) – – –

for some of the time. As had been previously reported,
sdBVpulsationamplitudes canvary inunpredictableways
(Reed et al. 2004; Killkenny 2010). Sliding FTs clearly show
this phenomenon, with the outcome that amplitude vari-
ations complicate the FT, often creating sidelobes and
forked peaks. The practical upshot is that the traditional
method of non-linear least-squares lightcurve fitting and
prewhitening will not work for characterizing the pulsa-
tions. Instead, we have most often used Lorentzian fitting
where the width represents the frequency error. In solar-
like oscillators, Lorentzianwidths are an indicator ofmode
lifetimes (Aerts et al. 2010), though with one exception
(discussed below), we do not use them in that manner. We
only use them as a proxy for frequency error as they indi-
cate thewidth of the peak in the FT as caused by amplitude
and/or phase variations. With the incredible precision of
K1 data, frequencies can also readily be determined using
by-eye fits, which has also been done. Amplitude varia-
tions make the reporting of amplitudes difficult and with
little meaning. Should authors report the maximum am-

plitude or the average amplitude? Both have been done.
Another complication is determiningwhich frequencies to
report. Ground-based data may typically span one or two
weeks, at best (e.g. Reed et al. 2007) and so if onemonth of
K1 data has a frequency with an amplitude at, say 6σ but
that frequency is only observed during that month and so
in the full data set it only has an amplitude of 2σ, should it
be reported? If that particular month were observed from
the ground, it surely would be included. Again, in some
cases such frequencies have been reported (e.g. Ketzer et
al. 2017) and in some cases they have not.

It is presumed that frequencymultiplets are caused by
rotation lifting the azimuthal degeneracy with frequency
splittings of ∆ν = ∆mΩ

(︀
1 − Cn,ℓ

)︀
where ∆ν is the fre-

quency splitting from the m = 0mode, Ω is the stellar ro-
tation frequency, and Cn,ℓ is the Ledoux constant (Ledoux
1951). For p modes, the Ledoux constant is small, while
for g modes it is Cn,ℓ ≈ 1

ℓ(ℓ + 1) . Using this information,
if frequency multiplets are observed, the rotation period
can readily be determined. Table 1 lists determined rota-
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Figure 1. Te� − log g (Kiel) diagrams of sdBV stars. K1 (open points) and K2 (filled points) sdBV stars. Red asterisks are non-pulsators (from
Østensen et al. 2010b; Østensen et al. 2011a) and the magenta points are the BHB pulsator of (Østensen et al. 2012a) and the He-sdB pul-
sator of (Jeffery et al. 2017). Pulsator colors and point types provided in the figure. The dashed line is the zero-age extended horizontal
branch for a total mass of 0.5M⊙ with varying envelope mass.

tion periods and the top right panel of Fig. 3 shows then
against Te� . The first discovery is that they tend to be long,
tens of days. This solves the issue of why they weren’t of-
ten detected in most ground-based observations (see the
discussion in Reed 2008). It also brought to light a surpris-
ing discovery: All sdB stars in binaries with orbital periods
longer than a few hours rotate subsynchronously, in defi-
ance of previous assumptions of tidal locking (e.g. Geier et
al. 2011). This includes several binaries with periods near
half a day! Another interesting trend which is starting to
appear, and previously mentioned in Reed et al. (2014) is
that lower Te� tend to have longer rotation periods. This is
especially apparent once the sdB stars with dM compan-
ions are excluded. Typically, hotter stars have hadmore at-
mosphere stripped off, and perhaps rotation is a remnant
indicator of thatmechanism, but it is too early to tell if that
is the case. Unfortunately, K2 observations can only detect
rotationperiods ≤ 45days and so canonlyfill in the shorter
periods.

It has been observed in white dwarfs that changes in
density (or mean molecular weight) can create “bound-

aries”which trapmodes (Winget et al. 1981) and prior to K1
observations, it was presumed that mode trapping would
disrupt asymptotic gmode sequences to the point of mak-
ing them undetectable. However, asymptotic sequences
are usually observed in every g−mode sdBV star, some-
times with extremely long, uninterrupted sequences (e.g.
Reed et al. 2014). But trappedmodes have been discovered
in a few stars (Østensen et al. 2014b; Foster et al. 2015; Kern
et al. 2017; Usundag et al. 2017). It is hoped that trapped
modes in otherwise smooth sequences will be able to dis-
cern internal conditions, but it is somewhat early and all
K1 sdBV stars need to be carefully examined for trapped
modes.

1.1 K1 enigmas

Frequency multiplets can discern rotation and when hy-
brid pulsators show both p− and g−mode multiplets, ro-
tation can be examined at differing radial depths. To date,
there are five cases where this can be examined. In three
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Figure 2. Sliding Fourier transforms (sFTs; top panel) shown with
the FT (bottom) of the total data set. Figures from Reed et al. (2014).

stars (Kern et al. 2017; Crooke et al. 2017; Baran et al. 2012),
multiplets indicate solid-body rotation while in two oth-
ers (Ketzer et al. 2017; Foster et al. 2015) the g−mode rota-
tion period is several times longer than the p−mode one.
Again, there is no pattern as two of the solid-body rotators
are p + g mode hybrids and one g + p mode hybrid while
there is one each of the differential rotators. As there are
still many Kepler-observed sdBV stars to analyze, perhaps
enough will be discovered for a pattern to emerge, though
at this time we have no explanation.

Asymptotic g−mode period spacings can determine
overtones, but we do not have a similar tool for p modes.
The only way to test overtone spacing is to have secure
mode identifications via frequency multiplets. A some-
what less secure method has involved using “groupings”

of pulsations if there is a barren stretch between. This was
first done with ground-based data for Balloon090100001
(hereafter BA09) where Baran et al. (2008) determined
overtone spacing near 1000 µHz, as expected from mod-
els. A similar pattern was seen in the g + p-mode pul-
sator KIC 3527751 (AKA and hereafter Samwise) with a sim-
ilar overtone spacing (Foster et al. 2015). The only rich
p−mode sdBV star observed during K1 is Saradoc, and it
has an abundance of frequency multiplets, for which se-
cure mode identifications could be determined. In that
case, the p−mode overtone spacings were much smaller,
ranging from 124 to 241 µHz. There are two K2-observed
rich p−mode pulsators with many multiplets (Ketzer et al.
2017; Crooke et al. 2017), and while analysis is not com-
plete, it seems their overtone spacing is alsomuch smaller
than models predict. These stars, and any others we de-
tect like them,will be extremely important for determining
p−mode overtone spacing.

Another enigma stemming from frequency multiplets
are evolving frequency splittings of multiplets. Kern et al.
(2017) discovered converging frequency multiplets in ℓ =
2 and 4 g modes of KIC 2697388, while the ℓ = 1 mul-
tiplets appear constant. Kern et al. (2017) have now de-
tected diverging frequency splittings in KIC 11558725, but
only for ℓ = 6models while the ℓ = 1 and 2 multiplets are
constant. An examination of Fig. 9 of Telting et al. (2014)
shows an sFT of an ℓ = 8 mode, and while mentioned in
their paper, it appears to be converging. Possible explana-
tions for this phenomenon were examined in Kern et al.
(2017) and include angular momentum exchange between
pulsations and rotation (Perez et al. 2011), resonant mode
coupling (Zong et al. 2016), and strong magnetic fields (as
in Kurtz et al. 2011) . However, all of these mechanisms
are seemingly ruled out, firstly because only very weak
magnetic fields have been observed for sdB stars (O’Toole
et al.), and the other two mechanisms do not fit the ob-
served time scales andarepredominant effects for pmodes
while these are g modes. So once again, we have an unex-
plained enigma. Additionally, other sdBV starswill have to
be closely examined for this phenomenon.

2 K2 discoveries
K2 continues the K1 mission, but with reduced observing
duration. So while this is a disadvantage when extracting
pulsations, it has the advantage of observing many more
stars. Table 1 lists 14 K2-observed sdBV stars, and we have
many more that are in analysis. Certainly, an important
contribution of K2 are the pmode pulsators and thosewith
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FandGcompanions, forwhichwehadnone inK1.Wehave
discovered twomore p + g stars, fromwhich we can exam-
ine differential rotation, and they are rich enough to test
p-mode overtones.

K2 has added five more p−mode pulsators where we
have detected frequency multiplets. This includes four
stars with main sequence F or G companions. The K1
p−mode pulsators had the shortest rotation periods of
non-binary stars and this continues with K2. Additionally,
none of the p or p + g mode stars are in post-common-
envelope binaries. Four of the five K2 p or p + g mode
stars have F or Gmain sequence companions, and perhaps
this points to a connection between rotation and mass-
loss mechanisms. While it is too early to make such con-
nections, we are beginning to see interesting relationships
which may be useful once all of the Kepler-observed stars
are analyzed.

As signal-to-noise (S/N) in a temporal spectrum (FT) is
proportional to 1/

√
n where n is the number of measure-

ments Kjeldsen & Frandsen (1992), in the absence of other
noise correlations, we would expect to find fewer pulsa-
tions in K2 data. However, this is a complex issue for Ke-
pler data as there is a large dependence on field crowding
(contamination caused by nearby stars as Kepler’s pixel
size is 4"), pulsation amplitude stability, intrinsic pulsa-
tion amplitudes, and stellar brightness. The top left panel
of Fig. 3 indicates the number of pulsation frequencies de-
tected (including multiplet members) compared with the
listed Keplermagnitude (Kp).While it is commonly known
that Kp usually understimates the brightness of blue stars,
it provides a first-approximation to K2’s success. All of the
K1 stars with < 20 frequencies are stars for which the full
data set has not been examined and so it is apparent that
K2 will not detect as many frequencies as K1 did. However,
this is mostly caused by the lack of frequency multiplets
when the rotation period is longer than K2’s sensitivity.
With three years of data, only two K1-observed sdBV stars
do not showmultiplets when their entire data set has been
analyzed (Usundag et al. 2017; Baran et al. 2015). However,
themajority ofK2-observed sdBVstarsdo showat least one
multiplet, and sowe have had reasonable success in deter-
mining rotation periods within K2’s limitations.

2.1 K2 enigmas

Ourfirst surprise arrivedwithdata from thefirst full-length
K2 campaign. TheK2-observed star PG 1142-037 (Reed et al.
2014, hereafter PG1142) was found to be in a 3.1 day binary
with a white dwarf companion. A decomposition of the bi-
nary portion of the lightcurve found both Doppler boost-

ing, as expected, but also ellipsoidal variation. This is the
longest orbital period sdB stars to show ellipsoidal vara-
tion, which is an interesting discovery, but the real sur-
prisewas the lack of rotationally-induced frequencymulti-
plets. The radial velocity and lightcurve variations indicate
an orbital inclination well-positioned to detect multiplets,
but none were found. This indicates that PG1142’s rotation
period is longer than K2-data sensitivity, roughly 45 days.
Certainly an unexpected result as it would be presumed
thatwhen tidal forces are sufficient todeform the star, even
if just by a small amount, they are sufficient to significantly
decrease the rotation period. However, PG1142’s rotation
period, if near to 45 days, is similar to the K1-observed
sdBV+WD stars.

Another new phenone mon we have observed are
unusually-split p−mode multiplets. Those in K1’s Saradoc
were very well-behaved, consistent, and easy to interpret,
but our two rich pulsators do not show that. PG0048+091
(Ketzer et al. 2017, hereafter PG0048) is a rich pulsator over
200 periodicities detected, mostly in multiplets. However,
the multiplet splittings range from 2.03 to 3.53 µHz, aver-
aging to 2.6 µHz. This star has quite a high signal-to-noise
and so the variation is not due to a lack of precision but
something intrinsic within the star. Values can even range
by > 20%within the samemultiplet (see Ketzer et al. these
proceedings). No multiplets are detected for PG0048’s g
modes, though the resolution is ample for their detection.
From this, we presume PG0048 to be a differential rota-
tor with an interior rotation period > 45days. The situa-
tion for PG 1315-123 (Crooke et al. 2017, hereafter PG1315)
is considerably worse, though the S/N is also worse than
for PG0048. But in this case, the g modes show a con-
sistent splitting while the p modes have a large spread.
The best p−mode multiplets have spacings of 0.75 µHz,
which agree with the g modes, when Cn,ℓ differences are
accounted for, but some other high S/N multiplets have
spacings of 2.4 µHz, or even 5.4 and 6.4 µHz! These results
are very preliminary and perhaps a pattern will emerge
with further analyses, but currently we do not know how
to interpret the unusual multiplet splittings.

Another pattern which has emerged from examining
K2 pulsators are complex peak patterns in the tempo-
ral spectra (FTs). In PG0048, we see regions with many-
peaked complex patterns which can span up to 50 µHz.
Similar signals were seen in the second overtone of p
modes in BA09 and Samwise. As we were anticipating
stochastic features in the oscillations of PG0048 from pre-
viouswork (Reedet al. 2007),wehave examined thebroad,
multi-peaked features in that context. We have found sim-
ilarities and so we are investigating the possibilities of
stochastic features in stars which also include sharp, well-
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Figure 3. Comparisons of Kepler-observed pulsators. Point types are the same as in Fig. 1. Top left: Number of pulsation frequencies ob-
served (provided in Table 1 compared with magnitude. Arrow indicates a lower limit, as that star is still in analysis. Top right: Rotation pe-
riod with Te�. Arows indicate lower limits and lines indicate radially differential rotators, with the envelope having the shorter period. Bot-
tom panels show g mode ℓ = 1 asymptotic period spacings with log g and Te�. Lines connect the two possible period spacings for Saradoc.

defined peaks which appear very unlike stochastic fea-
tures. See Ketzer et al. these proceedings for more on that
work.

3 Results so far
Kepler observations of sdBV stars has been an astounding
success. This can hardly be understated. Kepler data have
been transformative. Never before has there been a data
set of equally-spaced, long-duration, nearly-continuously
sampled, single-instrument observations. The solar orbit

of the telescope eliminates a lot of Earth-bound system-
atics and precisions could easily reach parts-per-million
precision for stars of reasonable brightness. Prior to these
data, asteroseismology was mostly restricted to matching
model periods with observed ones, without any observa-
tional mode constraints. Now, the situation is clearly re-
versed andwe can identify themajority of observed pulsa-
tion frequencies.

As a summary, from K1 data, over 1 275 pulsation fre-
quencies have been observationally identified. 805 modes
have been identified using frequency multiplets and 925 g
modes have been identified using asymptotic period spac-
ings. As expected, the majority have been identified as
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ℓ = 1 or 2, but 97 have been identified as ℓ = 3 to 9, so
some quite high-degree modes have been detected.

Structurally, long, reasonably smooth asymptotic se-
quences indicate a homogeneous pulsation cavity. As hor-
izontal branch stars, sdB starsmust haveH/HeandHe/C-O
transitions, which can produce significant mode trapping
and disrupt asymptotic sequences. The proposed solution
has been to smooth theH/He transitionwith increased dif-
fusion (Hu et al. 2008; Constantino et al. 2015; Ghasemi
et al. 2017). But now that we know what to look for, we
are findingmore stars with trappedmodes (Østensen et al.
2014b; Foster et al. 2015; Kern et al. 2017; Usundag et al.
2017) too. They are predicted to be caused by convective
core overshoot in the He/C-O transition Constantino et al.
(2015); Ghasemi et al. (2017, and Yan Li et al., these pro-
ceedings).

As we anlyze more sdBV stars and obtain significant
numbers of identified modes, we can begin to look at
trends. We have seen a relationship with rotation period
and Te� (top right panel of Fig. 3). It is expected that the
asymptotic period spacing (∆P) should be closely tied to
the resonant cavity and so we would expect trends in ∆P
for stars of differing core and envelopemasses, and as evo-
lution converts more of the core to C-O. The bottom panels
of Fig. 3 show ∆P against Te� and log g. In neither case are
clear trendsobvious. Recently, our collaborationhasnoted
some stars which both seem to have unusually low mass
and no obvious asymptotic g−mode sequence. Perhaps in
those cases, clear relationships will appear.

4 Where to now?
While we have made terrific progress using K1 & K2 data,
there is still a lot to be done. We have eight more K1 stars
to analyze, over a dozen K2 pulsators to examine, and per-
haps ninemore K2 campaigns to obtain data. To this point,
our collaboration has had incredible success with our K2
proposals and several prevously-known sdBV stars will be
observed and for several of our K2 discoveries, second-
observations will be obtained. Observationally, these are
very exciting times and we anticipate continued success
in associating modes with pulsations. As we continue to
analyze sdBV stars, building up number of differing spec-
troscopic features, we can hope that relationships will ap-
pear, allowing further physical insight into sdB stars and
EHB cores.

One area where we would like to see more progress
is with models to interpret our findings and make use of
the amazing observational constraints provided by Kepler.

A new and emerging tool is the use of MESA evolutinary
models (Paxton et al. 2011) and additional “modules” be-
ing added to that code. To that end, it seems taking a page
out of the white dwarf seismology toolkit would seem ap-
propriate and match “features” rather than specific fre-
quencies. In a star with > 200 pulsation frequencies, us-
ing only the m = 0 component can reduce that number
greatly, but in every case, there are 10-20% of frequencies
which cannot be attributed to modes because they lack
both multiplet structure and asympotic spacings. So how
are those interpreted? Rather, period spacings, asymptotic
“turn-on” and “turn-off’ overtones, “hook” features, and
scatter of the asymptotic sequence seemmore useful. Con-
stantino et al. (2015), though primarily focused on solar-
like oscillators, was able to test core overshooting using
the scatter in the asymptotic sequence for KIC 5807616 and
obtain a match. Also using MESA models, Ghasemi et al.
(2017) were able to match the shape of the mode trapping
sequence for KIC 10553698A. These advances are directly
testing core boundary layers by matching features in the
temporal spectrum. Yan Li (these proceedings) is also us-
ing MESA to examine core overshoot, though at this point,
we have not seen a comparison with seismology. These ef-
forts seem fruitful and we look forward to both finishing
our analyses of K1 & K2 pulsators, and more model fitting
to understand the interiors of these interesting stars.
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