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Issue Topic: “Towards Robust Situation Awareness in Autonomous Vehicles“ 

Real-time 3D Perception of Scenes with Monocular 

Camera 

 

 
Abstract— Depth is a vital prerequisite for the fulfillment of 

various tasks such as perception, navigation, and planning. 

Estimating depth using only a single image is a challenging task 

since the analytic mapping is not available between the intensity 

image and its depth where the features cue of the context is 

usually absent in the single image. Furthermore, most current 

researchers rely on the supervised Learning approach to handle 

depth estimation. Therefore, the demand for recorded ground 

truth depth is important at the training time, which is actually 

tricky and costly. This study presents two approaches 

(unsupervised learning and semi-supervised learning) to learn 

the depth information using only a single RGB-image. The main 

objective of depth estimation is to extract a representation of the 

spatial structure of the environment and to restore the 3D shape 

and visual appearance of objects in imagery. 

Keywords— Depth estimation single image, unsupervised 

learning, semi-supervised learning, realt time. 

I. INTRODUCTION 

Understanding of visual scenes is a vital component of 
many applications of Artificial Intelligence, ranging from 
autonomous vehicles to the navigation of household robots 
and even automatic annotation of imagery for the blind. The 
real-time and reliable extraction of high-level semantic 
information from the visual world is the crucial factor for the 
safety and correctness of these critical tasks such as pose 
estimation, recognition task, semantic labeling, and 3D Object 
Detection [1, 2, 3]. There are many potential advantages that 
could be obtained by gaining more knowledge about the 3D 
geometry of scenes, for example, integrated object detection 
with distance estimation [4]. Moreover, the majority of 
obstacle detection and avoidance methodologies are based on 
predefined object lists, in which the model is trained to detect 
specific object types within the scene, such as pedestrians and 
vehicles. The above does not, however, hold for different 
object types such as debris and roadside obstacles that may 
appear in the scene. That means the model is not able to detect 

objects in case of unidentified obstacles, misclassification, or 
object occlusion situations. Therefore, accurate depth 
perception for moving and stationary obstacles can provide 
more knowledge about the environment, which helps 
autonomous vehicles to take valid action in critical situations 
based on 3D perception information.  

This problem in stereo vision sensors is resolved by 
computing a disparity image from the stereo image pair to 
extract depth information as described [8]. The alternative 
solution for obtaining the depth would be to employ range 
sensors such as Lidar or radar. These are naturally highly 
accurate sensors that provide highly precise depth 
measurements. However, these sensors did not provide high-
resolution information and are more expensive than a 
traditional monocular camera and therefore not very common 
in the average consumer vehicle.  In fact, working on the depth 
estimation and particularly in the application of the 
autonomous vehicle, it is a real challenging task due to several 
factors such as occlusion, the dynamic object in the scene, and 
imperfect stereo correspondence. Furthermore, at high levels, 
reflective, transparent, mirroring surfaces are the major enemy 
of the stereo matching algorithm. For instance, the windshield 
of a vehicle usually decreases the matching and therefore the 
quality of the estimated depth. 

Based on depth information the system is able to perform 

the proper procedures to avoid collisions with obstacles that 

are determined to be too close. Therefore, by employing more 

robust depth estimation from a monocular camera, the 

advantages of active safety systems could be used by a larger 

segment of the vehicle fleet. In addition, most studies rely on 

labelled data for depth estimation. In this study, an adaptive 

deep-learning approach will be used to bridge the gap between 

labelled and unlabeled data, and thus, only queries the samples 

that would lead to increase the accuracy. The objective is to  
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reduce model complexity and consequently the number of 

samples required for training in order to maximize the 

accuracy and speed of deep learning algorithms. 

II. RESEARCH QUESTIONS AND OBJECTIVES 

Depth perception refers to the ability of our eye and brain 
to add a third dimension. Human is able to easily perceive a 
3D structure of scene from a single 2D image. Starting from 
how people generally perceive depth, this will provide us with 
valuable insights into estimating depth, as most of these 
methods (for estimating depth) are derived from our human 
visual system. Both machine vision and human perception 
share similarities in the way the image is formed. In theory, 
light beams that strike surfaces from a source are reflected and 
redirected back to our retina, where they are projected, and our 
eye then handles them as 2D, same as how the camera image 
is formed on a 2D image plane. 

As illustrated in Figure1, we could easily make the 
assumption that the gray car is closer to the camera than the 
white car and that the white car is closer to the camera than 
the building in the background. We would also be able to 
recognize that the road is flat or facing the sky. Moreover, we 
can even observe that the gray car has a cuboid shape without 
looking at its hidden surfaces. This is a remarkable talent, as a 
single 3D image is in itself a quite ambiguous task because 2D 
image could be the projection from an infinite number of 
different 3D perspectives, therefore, we have to depend on our 
visual experience to figure out how to resolve this ambiguity. 
Our eyes are able to perceive 2D projections of the 3D world 
as we move and view the 3D world from different viewpoints. 
However, we have learned, after observing millions of 2D 
projections, how to infer 3D from a single image. The 
mechanism at work here is that our brain begins to process the 
input visual signals by recognizing patterns such as size, 
texture, and motion around the scene referred to as depth cues. 
There is no depth information about the image, however, we 
could somehow easily analyze and reconstruct the depth 
information. We are able to perceive which aspects of the 
image are close and which are further away from us. 
Furthermore, these depth cues allow us to observe objects and 
surfaces that are assumed to be in flat images as 3D scene. 

In this study, we follow a similar approach and try to learn 

3D perception of scene from a large number of 2D views with 

a few labeled ground truths. Our main objective is to predict 

the 3D perception of a scene represented as a depth image, 

acquired by a monocular camera using edge computing 

hardware, in order to estimate a paradigm/model of the 3D 

geometry of the scene for estimation of freely navigable space 

with minimal space and power consumption requirements as 

well as real-time capability. Specifically, we address the 

following research question: Is it feasible to retrieve dense, 

complete depth image information with 3D object detection 

from a single RGB frame using edge computing hardware 

with real-time capability? 

III. PROPOSED SOLUTION APPROACH 

Our approach will employ a highly efficient live video 
streaming from a monocular camera and state-of-the-art 
adaptive depth learning approach for 3D perceptual object 
recognition by integrated depth estimation with object 
recognition, which is able to perceive 3D spatial information 
from the environment in real-time. where adaptive depth 
learning integrates the previous developments of rule-based, 
primitive machine learning and deep learning strategies for 
machine intelligence to provide more reliable, faster and more 
easily interpretable models, as shown in Figure 2. Our 
proposed approach would implement two adaptive deep 
learning models. In the first model, a sequence of RGB images 
acquired by a monocular camera using a live streaming video 
model is fed as input into a robust depth estimation model 
where the relevant depth is estimated, and then the predicted 
depth information helps us to retrieve the 3D features. On the 
other hand, the second model integrates detected objects with 
depth information to estimate and 3D object perception. 

IV. DEPTH ESTIMATION TECHNIQUES 

Estimating depth using only a single RGB frame is often 
considered an ill-posed and inherently ambiguous challenge, 
because the analytic mapping is not available between the 
intensity image and its depth where the features cue of the 
context is usually absent in the single image. Traditionally in 
computer vision, the depth is estimated from 2 well-known 
methodologies. Namely: 

 Depth derived from monocular images (either 
static or sequential images). 

 Depth of stereoscopic images by utilizing the 
epipolar geometry. 

The estimated depth on the basis of visual sensors has gained 
much in attraction and outstanding outcomes since the 
introduction of depth learning. A considerable number of 
ongoing researches has been carried out to solve these 
challenges. Deep learning approach has proven its outstanding 
performance in high-level perceptual and cognitive tasks such 
as detection, detection, and understanding of scenery. Depth   

 
 

Figure2: Proposed Approach for 3D Perception of Scene with Monocular 

Camera  

 

 
Figure1: perceiving 3D sense from 2D image. 
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natural approach forward. Currently, there are 3 broad, deep 
learning frameworks for obtaining depth information: 

Supervised Learning Depth Estimation: Estimation of 
learning depth under supervision: In this approach, the depth 
is estimated directly from monocular 2D images via a labeled 
dataset by reducing regression loss function. Since then, 
various approaches have been developed to enhance 
representational learning by providing new deep learning 
architectures or loss functions. 

Self-supervised Depth Estimation: This method is based on 
the Structure from Motion (SFM) framework. In this 
approach, the problem is framed as learning to create a novel 
view from a sequence of images. The main task is to construct 
the target view I_t from the original view by taking frames in 
multiple time steps I_t-1, I_t+1 and employing a learned 
transformation from a pose deep learning neural network to 
perform the frame warping. 

Self-supervise Depth Estimation: In this approach, the depth 
is estimated from the monocular camera based on the stereo 
information. Therefore, instead of using a sequence of frames 
as input, the model will estimate the disparities (left and right) 
d_l, d_r only using the left RGB frame, where a spatial 
transformer neural network warps the RGB frame pair I_l, I_r 
based on the disparity. This approach is based on the 
assumption that the baseline must be horizontal and known. 
The frame pair have to be rectified so that the transformation 
over the disparity is valid. 

In this study, two methods are implemented to estimate the 

depth map from a single RGB-frame using an adaptive deep 

learning approach. This work depends on solving depth 

prediction as an image reconstruction problem. The main idea 

is that, we will try to learn how we could be able to obtain the 

right image from left, and when that is achieved, it means 

learning something about the 3D shape of the view is done. 

Therefore, the depth is obtained by inferring the disparities 

that match the left image to the right one and vice-versa.   

A. Depth Estimation based on Semi-Supervised Learning 

In this approach, a semi-supervised learning model is 

implemented to predict depth maps from a single frame 

without prior knowledge of the surroundings, by leveraging 

knowledge from both supervised and unsupervised learning. 

This approach is achieved by using a few annotated depth 

dataset and stereo pairs of RGB images provided by the KITTI 

dataset [5] as shown in Figure 3. The model is trained with 

LIDAR data which provides sparse depth information and the 

stereo image pair to predict high depth information during the 

inference phase.  

In addition to the training, we try to explore the left-right 

consistency in a stereo reconstruction through a loss function. 

The evaluation of our model is being tested on the popular 

KITTI dataset which tests images and corresponding to the 

test images the depth maps are predicted. 

B. Result & Evaluation based on Semi-Supervised Learning 

For evaluating the performance of our model, 5 equation 

metrics have been used, namely RMSE, RMSE (log), 

accuracy, ARD and SRD.  RMSE metrics calculate the 

number of information of depth which we produced through 

our model and compare it ground truth depth for the total 

number of pixels in that image. In the RMSE metrics, the 

lower output value shows the model performance is good and 

when the value is high the model is not a good model. In the 

ARD and SRD which calculate the absolute and squared 

relative difference of the generated depth to the ground truth 

depth. In this scenario, the lower the value of ARD and SRD 

show a model is performing good and higher value shows that 

the model needs some improvement. The minimum amount 

of depth which our model can get is zero meter and the 

maximum depth is about 80 meter in a given scene. This 

evaluation is done base on the KITTI split [6].  

The splits comprised of 28689 left depth image and Right 

depth image which is a supervised part of the model. For the 

unsupervised, we have to use the 28689 Left RGB image and 

Right RGB image. Figure 4 illustrates the input image on the 

left side and the predicted output depth map on the right side. 

The close (blue color) in this means zero meters from the 

viewpoint and the far (dark red color) means the 80-meter 

depth information from the viewpoint. Figure 5 shows us the 

accuracy of our model in comparison to the other researchers' 

work. According to the evaluation metrics, the RMSE value 

 
Figure 3: Semi-Supervised Training framework for Depth Estimation. 

 

 

 
Figure 4: Semi-Supervised results for depth estimation. 

 
 

 
Figure 5: KITTI Split evaluation results. 
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was 3.928, and when compared to the other results, we are 

very close to the state of the art. The RMSE value defines how 

many per pixel in the image we are able to calculate the depth 

pixels. 

V. CURRENT PROGRESS 

A. Updated Results based on Semi-Supervised Learning 

In current progress, we try to improve the prediction 

model by employing a bunch of tips and techniques such as 

data transform, feature selection, and tuning algorithm, and 

our current updated results are shown in Figure 6. 

Furthermore, we try to transform the model into a light version 

to run on Edge computing hardware such an NVIDIA Jetson 

Nano model and evaluate our solution with respect to resource 

consumption and run times. 

B. Depth Estimation based on Unsupervised Learning 

As it is illustrated previously, it is not sufficient to use the 

ground truth depth information and even it is hard and costly 

(such as LIDAR). However, we could be able to learn from 

unlabeled streaming video clips. As we observed, the 

individual frames within each streaming video clip are not 

arbitrary but are projections the same 3D sense from various 

angles that means, if we were able to model the 3D sense and 

camera perspectives of the sequences of video frames, we 

could correctly synthesize the video frames through geometric 

projection. This is known as geometry-based view synthesis 

and has been studied extensively in the literature. Our work 

follows a similar approach, as described in [7], but in a more 

flexible way. However, we could be able to train our model 

on videos captured by a single moving camera. This solution 

depends on the unsupervised learning approach. 

C. Premilinary Result based on Unsupervised Learning 

In this approach, different models for depth and pose 

networks are jointly trained from the unlabelled dataset, in 

order to produce a better depth estimation, in this solution no 

ground truth 3D or pose labels are available. Figure 7 shows 

us the accuracy of our model in comparison to the other 

researchers' work. 

VI. CONCLUSION & FUTURE SCOPE 

In the presented study, different approaches are studied 

and implemented to estimate the depth map from a single 

RGB-image using the adaptive deep learning network. This 

work depends on solving depth prediction as an image 

reconstruction problem. The self-supervision with stereo data 

is still required during the training time. However, this should 

be addressed and optimized in future work. Moreover, the 

transparent surfaces and occlusion regions will output invalid 

depths. These limitations and results should be improved in 

future work. In addition, we are going to develop pruning 

strategies that rely on embedded GPUs to minimize model 

complexity and consequently reduce the number of samples 

that are necessary for training to maximize the accuracy and 

speed of deep learning algorithms. Moreover, it is essential to 

estimate the full occupancy map of the scene and extend the 

presented approach to obtain the depth map from the video. 
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Figure 6: Semi-Supervised updated results. 

 

 
Figure 7: Unsupervised Learning evaluation results. 


