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Complement peptide C3a receptor 1
promotes optic nerve degeneration in
DBA/2J mice
Jeffrey M. Harder1, Pete A. Williams1,2 , Catherine E. Braine1,3, Hongtian S. Yang1, Jocelyn M. Thomas1,
Nicole E. Foxworth1, Simon W. M. John1,4,5* and Gareth R. Howell1,6,7*

Abstract

Background: The risk of glaucoma increases significantly with age and exposure to elevated intraocular pressure,
two factors linked with neuroinflammation. The complement cascade is a complex immune process with many
bioactive end-products, including mediators of inflammation. Complement cascade activation has been shown in
glaucoma patients and models of glaucoma. However, the function of complement-mediated inflammation in
glaucoma is largely untested. Here, the complement peptide C3a receptor 1 was genetically disrupted in DBA/2J
mice, an ocular hypertensive model of glaucoma, to test its contribution to neurodegeneration.

Methods: A null allele of C3ar1 was backcrossed into DBA/2J mice. Development of iris disease, ocular
hypertension, optic nerve degeneration, retinal ganglion cell activity, loss of RGCs, and myeloid cell infiltration in
C3ar1-deficient and sufficient DBA/2J mice were compared across multiple ages. RNA sequencing was performed
on microglia from primary culture to determine global effects of C3ar1 on microglia gene expression.

Results: Deficiency in C3ar1 lowered the risk of degeneration in ocular hypertensive mice without affecting
intraocular pressure elevation at 10.5 months of age. Differences were found in the percentage of mice affected,
but not in individual characteristics of disease progression. The protective effect of C3ar1 deficiency was then
overcome by additional aging and ocular hypertensive injury. Microglia and other myeloid-derived cells were the
primary cells identified that express C3ar1. In the absence of C3ar1, microglial expression of genes associated with
neuroinflammation and other immune functions were differentially expressed compared to WT. A network analysis
of these data suggested that the IL10 signaling pathway is a major interaction partner of C3AR1 signaling in
microglia.

Conclusions: C3AR1 was identified as a damaging neuroinflammatory factor. These data help suggest complement
activation causes glaucomatous neurodegeneration through multiple mechanisms, including inflammation.
Microglia and infiltrating myeloid cells expressed high levels of C3ar1 and are the primary candidates to mediate its
effects. C3AR1 appeared to be a major regulator of microglia reactivity and neuroinflammatory function due to its
interaction with IL10 signaling and other immune related pathways. Targeting myeloid-derived cells and C3AR1
signaling with therapies is expected to add to or improve neuroprotective therapeutic strategies.
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Introduction
Glaucoma is a common disease that damages the optic
nerve and impairs vision [1]. Risk for glaucoma is greatly
increased after middle age and by exposure to elevated
intraocular pressure (IOP). Elevated IOP and aging are
associated with neuroinflammation, yet it remains un-
clear when and how neuroinflammation becomes dam-
aging in glaucoma and how to intervene [2, 3]. These
questions underlie a need to develop a comprehensive
understanding of inflammatory processes in glaucoma.
A major type of inflammatory response observed in

glaucoma patients is activation of the complement cas-
cade [4–6]. The complement cascade is activated by
three distinct pathways, the classical, alternative, and
mannose-binding lectin pathways, which play a key role
in responding to tissue damage and infection. The final
product of the complement cascade, the membrane at-
tack complex (MAC), has been identified in optic nerve
tissue from ocular hypertensive patients. This suggests
full activation of the complement cascade has occurred,
including multiple steps that promote neuroinflamma-
tion. The major products of the complement cascade
that regulate neuroinflammation are complement activa-
tion peptides and the MAC [7, 8]. The two primary
complement activation peptides are polypeptides pro-
duced by the cleavage of complement components 3 and
5, and named C3a and C5a. C3a and C5a bind to differ-
ent cell surface G protein coupled receptors, C3AR1 and
C5AR1, respectively. Both receptors can be expressed by
glia, neurons, and infiltrating immune cells in the central
nervous system. However, whereas C5AR1 largely pro-
motes activation of immune cells, the outcome pro-
moted by C3AR1 varies by the type of injury, cell, and
costimulation involved in the inflammatory response [9].
The MAC is a complex formed on plasma membranes
by complement components 5b, 6, 7, 8, and 9 as a result
of opsonized antigens. Low levels of the MAC on target
cells activate intracellular signaling pathways and high
levels induce lysis. Sublytic levels of the MAC amplify
inflammatory intracellular signaling pathways by activat-
ing the NFκB signaling and inflammasome pathways [10,
11]. Due to the potentially damaging role of inflamma-
tion in glaucoma and other neurodegenerative disorders,
the complement activation peptides and the MAC are
predicted to be useful targets for developing anti-
inflammatory therapies [12, 13].
Research in animal models suggests that the complement

cascade contributes to pathology in ocular hypertensive
eyes [4, 14–21]. This includes models of glaucoma like
DBA/2J mice, who develop an ocular hypertensive disease
in which the complement component 1q complex (C1q) or
C5 exacerbates neuroinflammation, retinal ganglion cell
loss and optic nerve degeneration [21–24]. These data fur-
ther support the need to determine the function of pro-

inflammatory products of the complement cascade after an
ocular hypertensive insult. To test the function of comple-
ment activation peptide C3a in a chronic, age-related model
of glaucoma, we backcrossed a null allele of the C3a recep-
tor (C3ar1-) into DBA/2J mice. C3AR1 is a G-protein
coupled receptor expressed in cells in the nervous and im-
mune systems (see review: [25]) and is implicated in neuro-
pathology in several diseases [26–30]. In DBA/2J mice,
C3ar1 deficiency decreased the incidence of optic nerve
damage and RGC loss at a time point consistent with C3a
promoting neurodegeneration.

Methods
Animals and husbandry
C.129S4-C3ar1tm1Cge/J (C3ar1−) mice were obtained
from The Jackson Laboratory (Bar Harbor, ME, USA;
stock number 005712) [31]. The C3ar1 null allele was
backcrossed onto DBA/2J (D2) for 10 generations to
generate the congenic strain D2.129S4(C)-C3ar1tm1Cge/
Sj. Experimental cohorts of mice were produced by
intercrossing heterozygous (C3ar1+/−) mice. Mice of
both sexes were used, with approximately equal numbers
for each age group and genotype. Mice were housed
with a 14-h-light/10-h-dark cycle as previously described
[32]. All animals were treated according to the guide-
lines of the Association for Research in Vision and Oph-
thalmology for use of animals in research. The Animal
Care and Use Committee of The Jackson Laboratory ap-
proved all experimental procedures.

Clinical assessment
Assessment of iris disease was performed using a slit-lamp
biomicroscope as previously reported [33] and mice were
assessed every 2 months beginning at 6 months of age.
IOP was measured by the microneedle method while mice
were under anesthesia (ketamine/xylazine) [34, 35]. Mice
were assessed every 2 months beginning at 8 months of
age. Iris disease and IOP data were collected for at least 40
eyes of each age and genotype.

Optic nerve damage
Damaged axons stain darkly when treated with the sen-
sitive chemical marker paraphenylenediamine (PPD)
[36]. We assessed optic nerve damage by staining cross-
sections of the retro-orbital optic nerve with PPD. Two
masked investigators assigned each optic nerve one of
three damage levels: no or early (NOE; no readily detect-
ible axon loss), moderate (MOD; less than 50% of axons
damaged/lost), and severe (SEV; more than 50% of axons
damaged/lost). This method of evaluating optic nerve
damage has been carefully validated by counting axons
[21, 37–40]. Glaucomatous axon damage was assessed in
10.5- and 12-month-old C3ar1+/+ and C3ar1−/− mice
(55 nerves for each age and genotype).
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RGC soma loss
Eyes were fixed overnight in 4% paraformaldehyde. Ret-
inas were dissected, flat-mounted, and Nissl-stained with
cresyl violet as previously described [39]. Images of 40×
fields of the RGC layer were obtained using a Zeiss
AxioImager. To account for regional variation in RGC
density, two 40× fields were counted in each retinal
quadrant equidistant to the periphery. The counts in the
eight fields were averaged to obtain a single count per
eye. Eight eyes were counted per optic nerve damage
level and genotype. It is important to note that the RGC
layer consists of roughly 50% RGCs. This limits the ex-
tent of total neuron loss measured because only RGCs
die in standard DBA/2J mice. Loss of RGCs by Nissl
staining correlates well with loss of RGCs by axon count
in optic nerves with severe damage [21, 37–40].

Pattern electroretinography
PERG was performed as previously described [41].
Briefly, mice were anaesthetized using ketamine/xylazine
[35] and their body temperature was maintained at 37
°C. Eyes were stimulated asynchronously by contrast-
reversal of gratings (0.05 cycles/degree, 100% contrast)
generated on LED tablets. PERG signals were acquired
using subcutaneous needles placed in the snout. Wave-
forms were determined using the average of three con-
secutive repetitions.

RNA isolation from cultured microglia
Primary mixed cortical cultures of glial cells from 3-day-
old pups were generated and microglia were fluores-
cently labeled and sorted as previously described [18]. In
brief, 17 days after plating, cultures were dissociated
(HyClone Trypsin .25%; Thermo Scientific) and resus-
pended in FACS buffer: HBSS (Gibco; Invitrogen 14025)
supplemented with 2% BSA (Sigma-Aldrich, A7906) and
containing 1 U/μl SUPERase In™ RNase Inhibitor
(Ambion; Life Technologies, AM2694). Cells were cen-
trifuged at 1305 g for 5 min and suspended in 50 μl of
fresh FACS buffer to wash. The cells were stained for 1
h at 4 °C with chicken anti-GFAP (Abcam, ab4674) to
label astrocytes and rabbit anti-IBA1 (Wako, 016-20001)
to label microglial cells. Cells were washed three times
and incubated for 30 min at 4 °C with secondary anti-
bodies: donkey anti-rabbit 647 (Invitrogen, A31573) and
goat anti-chicken 488 (Invitrogen, A11039). Samples
were re-suspended in 200 μl of FACS buffer and sorted
on BD Biosciences LSR II SORP. Purified microglia were
collected separately and stored in RLT Buffer (QIAGEN,
79216) at − 80 °C. Total RNA was isolated (QIAGEN,
74104) from purified samples from D2.C3ar1−/− and
D2.C3ar1+/+ mice.

RNA-sequencing and analysis of differentially expressed
genes
The steps taken to produce sequencing libraries have been
previously reported [18]. In brief, starting with 5 ng of
high-quality RNA, sequencing libraries were constructed
using Ovation RNA-Seq V2 and TruSeq DNA sample
prep kit v2 kits. Libraries were sequenced on a HiSeq
2000 sequencer from Illumina. Reads with 70% of their
bases having a base quality score ≥ 30 were retained for
further analysis. Read alignment and expression estima-
tion were performed using TopHat v 2.0.7 [42] and
HTSeq [43] with default parameters against mouse gen-
ome (build-mm10). Differentially expressed (DE) genes
between groups were identified using edgeR (v 3.8.5) [44]
following the removal of lowly expressed genes (counts
per million < 1 in more than two samples). The DE gene
set was analyzed using ingenuity pathway analysis (IPA)
software. Results for enrichment of IPA canonical path-
ways and upstream regulator terms are shown.

Myeloid-derived cell counting by flow cytometry
Mice were euthanized and eyes were immediately enu-
cleated. Retinas, optic nerves, and spleens were dissected
in ice-cold, filter sterilized HBSS (Gibco; 14175-095) and
placed in HBSS with dispase (5 U/ml) (Stemcell Tech-
nologies), DNase I (2000 U/ml) (Worthington Biochem-
ical), and SUPERase (1 U/μl) (ThermoFisher Scientific).
The tissues were shaken at 350 rpm for 60 min at 37 °C
in an Eppendorf Thermomixer R and then titrated with
a 200 μl pipette to dissociate cells. Cells were centrifuged
at ~ 3000 g for 5 min and suspended in a new solution
by titration. Ovomucoid trypsin inhibitors (10 mg/ml)
were added to the 2% BSA in HBSS block solution to in-
hibit proteases. Samples were kept on ice and protected
from light for blocking and antibody incubations. Primary
antibody solution contained anti-Cd11b, anti-CD45, anti-
Cd11c, and DAPI. Samples were blocked for 1 h, incu-
bated with primary antibodies in block solution for 2 h,
washed 3×, incubated in secondary antibodies for 1 h,
washed 3×, and then suspended in block solution for flow
cytometry on BD Biosciences LSR II SORP. Tissue col-
lected from the spleen and processed the same was used
to guide analysis of the myeloid cell populations.

Statistics
Comparisons of mean IOP levels, RGC layer neuron
counts, PERG amplitudes, and myeloid cell population
numbers were comparisons between C3ar1−/− and C3ar+/+

mice at each age shown and performed using Student’s t
tests. Each assay involved multiple comparisons and P <
0.01 was considered significant. Fisher’s exact test of inde-
pendence was used to compare the number of nerves at
each grade level at a specific age between C3ar1−/− and
C3ar+/+ mice. P < 0.01 was considered significant. DE genes
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from RNA sequencing experiments were adjusted for mul-
tiple testing using FDR. Genes were considered to be differ-
entially expressed between C3ar1−/− and C3ar1+/+ at FDR
< 0.01. Ingenuity pathway analysis software was used to as-
sess enrichment of terms (canonical pathways and up-
stream regulators) by DE genes. Benjamin-Hochberg
adjusted P values < 0.05 were considered significant. The
complete list of genes detected by RNA sequencing was
used as the background gene list. Expression data and ana-
lyses are provided in Tables S1, S2, and S3.

Results
C3ar1-deficient DBA/2J mice developed elevated
intraocular pressure similar to C3ar1 sufficient mice
DBA/2J mice inherit a depigmenting iris disease that leads
to high IOP and glaucoma [33, 39]. Immune cells that are
likely to express C3ar1 contribute to iris damage and the
development of ocular hypertension [45, 46]. To determine
whether C3ar1 deficiency affected iris disease or IOP eleva-
tion, eyes of C3ar1−/− mice and their C3ar1+/+ littermates
were examined regularly beginning at 6 months of age. No
differences between genotypes were observed in the onset
and progression of the iris disease (Fig. 1a) or IOP elevation
(Fig. 1b). In C3ar1-deficient mice, high IOP sufficient to
cause ocular hypertensive damage was observed, similar to
standard DBA/2J mice [39].

C3ar1 deficiency lowered the incidence of glaucomatous
degeneration in D2 mice at 10.5 months of age
The presence of optic nerve degeneration in an eye can be
explicitly determined by identifying degenerating axons and

scarred regions with axon loss in the optic nerve (Fig. 2a)
[21, 37–40]. The percentage of eyes with optic nerve degen-
eration in C3ar1−/− and C3ar1+/+ mice was compared at
10.5 and 12.5 months of age. At 10.5 months of age, signifi-
cantly fewer eyes from C3ar1−/− mice had degeneration (Fig.
2b), suggesting that C3ar1 deficiency decreased the risk of
ocular hypertensive injury. By 12.5 months of age, C3ar1-de-
ficient mice were no longer protected from glaucomatous
degeneration (Fig. 2b). Thus, C3ar1 was not the sole trigger
for degeneration, but did promote optic nerve damage.
Eyes from C3ar1−/− mice with healthy optic nerves

had a normal number of RGC layer neurons, suggesting
that C3ar1 deficiency had not caused abnormal loss of
RGCs or amacrine cells (Fig. 2c, d). In eyes with optic
nerve degeneration, the loss of RGC layer neurons was
independent of C3ar1 genotype (Fig. 2c, d). The ob-
served loss of approximately half of RGC layer neurons
is consistent with cell loss due to optic nerve injury,
where the majority of RGCs die and amacrine cells are
not affected [37, 40]. These data indicate that C3ar1−/−

mice had the same type of injury as standard D2 mice.
To investigate changes in RGC function in C3ar1−/−

mice, pattern electroretinography was used. PERG ampli-
tude is a sensitive measure of RGC activity and detects
RGC dysfunction in ocular hypertensive DBA/2J mice [47,
48]. PERG amplitude was recorded at 4 months of age,
prior to the elevation of IOP, and 10 months of age, when
lower amplitudes are expected due to ocular hypertension
and not due to the degeneration that typically occurs at
slightly older ages. C3ar1 deficiency had no effect on the
average PERG amplitude in young mice. C3ar1−/− mice also

Fig. 1 C3ar1 deficient DBA/2J mice developed iris disease and ocular hypertension similar to C3ar1 sufficient mice. a Regular anterior eye exams
were performed using broad beam and transillumination. The pattern of iris depigmentation observed was similar in C3ar1+/+ (not shown) and
C3ar1−/− mice (N = 80). b Elevated IOP compared to young mice was observed in a small subset of mice at 8 months of age and became more
prevalent in older mice. No significant difference in IOP was found in C3ar1−/− mice compared to C3ar1+/+ mice at any age (8 mos., N = 80, P =
0.44; 10 mos., N = 80, P = 0.23; 12 mos., N = 80, P = 0.19). Boxes define the 75th and 25th percentiles and their middle line indicates the median
value. The diamonds define the 95% confidence interval and their middle line indicates the mean value
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had a similar decrease in PERG amplitude due to chronic-
ally elevated IOP as C3ar1+/+ mice. Thus, C3ar1 deficiency
did not prevent changes in RGC activity associated with
ocular hypertension (Fig. 2c).

Ocular hypertension affects C3ar1 expression in the optic
nerve head
In DBA/2J mice, observable injury occurs at the optic
nerve head (ONH) prior to other regions of the optic

nerve [37]. At this same time point, the expression of
C3ar1 increased in the ONH (2.0- to 3.4-fold; q < 0.05),
but not in the retina (1.0-fold; q = 0.85) based on pub-
licly available data [49]. In the healthy brain, it is well
established that microglia primarily express C3ar1, with
low or no expression in other cells (Fig. 3a, b, [50–52]).
In addition, higher levels of expression have been ob-
served in subsets of microglia thought to mediate neuro-
inflammation, such as disease-associated microglia in

Fig. 2 Optic nerve and soma degeneration in C3ar1−/− and C3ar1+/+ mice. a Degeneration in PPD-stained optic nerve cross-sections was evaluated based
on the presence of axon loss, degenerating axons, and scarring. Examples of degenerating axons (arrow) and glial scarring (asterisk) are indicated. Optic
nerve damage in each nerve was classified as ‘no or early’ (NOE), ‘moderate’ (MOD), and ‘severe’ (SEV; see the ‘Methods’ section). Similar signs of
degeneration were observed in C3ar1−/− and C3ar1+/+ mice. b Distribution of optic nerve damage by genotype and age. At 10.5 months of age (mos.), a
significantly lower percentage of eyes in C3ar1−/− mice had identifiable glaucomatous degeneration (MOD or SEV damage level; N = 110; P < 0.0001). At
12.5 mos, there was no longer a difference in the incidence of optic nerve degeneration between genotypes (N = 110; P = 0.59). c, d As axonal and somal
degeneration of RGCs can be uncoupled by some mutations [40], RGC layer cells were assessed in Nissl stained retinal flat mounts from mice with and
without optic nerve degeneration (SEV and NOE, respectively). Genotype had no effect on RGC degeneration in relation to axon loss. The number of RGC
layer cells in eyes with healthy optic nerves was similar in C3ar1−/− and C3ar1+/+ mice. Loss of RGC layer cells in eyes with severe optic nerve damage was
independent of C3ar1 genotype. e Mean PERG amplitudes were determined in the eyes of young (3 mos.), normotensive and older (10 mos.), ocular
hypertensive mice. At 10 months of age, a majority of standard DBA/2J mice do not have significant optic nerve degeneration. C3ar1 deficiency had no
influence on mean PERG amplitude at ages before or after they were affected by ocular hypertension. Boxes define the 75th and 25th percentiles and
their middle line indicates the median value. Scale bars: 50 μm
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5xFAD mice, a widely used mouse model of Alzheimer’s
disease and Ccl3/Ccl4-positive microglia in aged and
white matter-injured brain, as well as at embryonic and
postnatal ages of development (Fig. 3c, [53, 54]). This

expression pattern is consistent with cell-type specific
data from DBA/2J mice. ONH microglia and infiltrating
monocytes express C3ar1 at high levels, while RGCs ex-
press C3ar1 at a lower level (Fig. 3d, [55, 56]). Thus,

Fig. 3 Microglial expression of C3ar1 in healthy and inflammatory states. a Average data from single cell RNA sequencing of healthy brain tissue
performed by the Betsholtz laboratory [50, 51] show little to no expression C3ar1 in cell types other than microglia. b Average data from single
cell RNA sequencing of brain tissue performed by the Barres laboratory [52] show little to no expression C3ar1 in cell types other than microglia.
c Single-cell RNA sequencing data are shown from the laboratories of Amit† [53] and Stevens‡ [54]. These studies defined sub-types or clusters of
microglia based on differences in gene expression. The relative expression of C3ar1 in microglia was higher in microglia sub-types associated with
macrophage-like activity or inflammation, which are shown here. d Expression of C3ar1 in RNA sequencing data from pooled cells of the
indicated cell type sorted from retina or optic nerve tissue from 9 month old DBA/2J mice performed by the John laboratory [55, 56]. Astrocytes
(AC), disease-associated microglia for 5xFAD mice (DAM), endothelial cells (EC), endothelial-related cells (E), fibroblast-like (FB), microglia (MG),
monocytes (Mono), neurons (N), oligodendrocytes (OL), OL progenitors (OPC), pericytes (PC), smooth muscle cells (SMC), and microglia subtype
clusters from Stevens: embryonic microglia (C1), postnatal microglia (C4), Ms4a7-positive microglia (C6), Ccl4-positive microglia (C8), sub-type in
aging mice (AC2)
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C3ar1 deficiency in microglia and monocytes may affect
their function or number in the ONH of ocular hyper-
tensive eyes based on these expression data.

C3ar1 deficiency altered the inflammatory phenotype of
cultured microglia
To determine how C3ar1 deficiency may alter microglia
function, RNA sequencing was performed on microglia
sorted from primary co-cultures of postnatally derived
astrocytes and microglia. In culture, where gene expres-
sion is more uniform compared to DBA/2J mice, glial
cells express many neuroinflammatory genes expressed
in the optic nerve head of DBA/2J mice, including C3
[18]. Microglia were identified by fluorescence-activated
cell sorting as IBA1-positive and GFAP-negative cells
(Fig. 4a). The selected cells expressed high levels of
genes associated with microglia and low levels of genes
associated with astrocytes (Fig. 4b). Four hundred and
eight genes were differentially expressed (DE) in micro-
glia due to C3ar1 deficiency (Fig. 4c; N = 6, FDR <
0.005).

The biological pathways most significantly enriched in
DE genes included ‘role of pattern recognition receptors in
recognition of bacteria and viruses,’ ‘phagosome formation,’
and ‘TREM1 signaling’ (Fig. 5a). A network of the top 20
enriched pathways, with connections based on having more
than five genes in common, suggested that most pathways
were closely interrelated and relevant to neuroinflammation
and immune cell recruitment (Fig. 5b). Thus, the pathways
altered by C3ar1 deficiency regulate homeostatic and
pathological responses in microglia and other immune cells.
Upstream regulators of DE genes were analyzed to deter-
mine how C3ar1 deficiency may have this effect (Fig. 5c).
The most significantly enriched upstream regulators
were ‘TCL1A,’ ‘IL10,’ and ‘LDLR.’ The endogenous
regulator that had the highest interconnectivity was the
anti-inflammatory cytokine IL10 (Fig. 5d). In addition, the
predicted regulator associated with the most DE genes
was dexamethasone, a corticosteroid that prevents inflam-
mation. These data show that C3ar1 deficiency signifi-
cantly altered the expression of inflammatory genes and
signaling pathways in microglia.

Fig. 4 Isolation and RNA sequencing of C3ar1−/− and C3ar1+/+ microglia from primary culture. a Cells from primary mixed glial cultures were
sorted using FACS. A population of microglia was selected for sequencing from live cells (P1) based on high expression of IBA1 and low
expression of GFAP (P2). Conversely, a population of astrocytes with high GFAP expression is indicated by P3. b The sequenced cells were
enriched in microglia based on a high level of expression of microglia genes Cx3cr1 and Tmem119 and a low level of astrocyte genes Aldh1l1 and
Gfap. c Changes in gene expression between C3ar1−/− and C3ar1+/+ microglia visualized by MA plot. Points that represent the 408 differentially
expressed genes (FDR < 0.005) are colored red
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C3ar1 deficiency altered myeloid cell populations in the
optic nerve head
In C3ar1-deficient DBA/2J mice, changes in inflamma-
tory gene expression are likely to change the localization
or reactivity of microglia and monocytes. To investigate
this in DBA/2J mice, the population of myeloid-derived
cells in the retina and the optic nerve head was assessed
by flow cytometry at 10 months of age (Fig. 6a). In the
retina, no difference was observed between C3ar1+/+ and
C3ar1−/− mice in the percentage of myeloid-derived
cells, including CD45hi and Cd11c+ monocytes (Fig. 6b).
Thus, C3ar1 deficiency did not have a general effect on
the number of these cells in neural tissue exposed to
ocular hypertension. In contrast to the retina, the ONH
is a very small region of tissue more sensitive to ocular
hypertensive stress and a location where myeloid cells

likely have beneficial and harmful effects at different
stages of disease [21, 55, 57]. In the ONH of C3ar1−/−

mice, the number of myeloid cells was more variable
compared to in C3ar1+/+ mice (Fig. 6c). These data sug-
gest a role for C3ar1 in regulating myeloid cells in ONH
under chronic ocular hypertensive stress.

Discussion
Interventions that target complement activation are be-
ing evaluated in many types of neurological injury and
disease (reviewed in [58]). DBA/2J mice are a useful
model for testing whether neurodegeneration caused by
chronic ocular hypertension is prevented by targeting
specific components of the complement cascade. DBA/
2J mice have an inborn deficiency in C5 that prevents
secretion of C5 and formation of both C5a and the

Fig. 5 Network analyses identified clusters of changes in neuroinflammation and IL10 signaling pathway gene expression. a Top 20 canonical
pathways in IPA ranked by P value for enrichment in genes differentially expressed between C3ar1−/− and C3ar1+/+ microglia. b A network of
canonical pathways was generated with edges representing that more than 5 genes were shared between two pathways. This network identified
that the pathways shown in (a) had common biological function related to neuroinflammation (salmon) and immune cell activation (yellow). c
Top 20 upstream regulators in IPA ranked by P value for enrichment in regulating genes differentially expressed between C3ar1−/− and C3ar1+/+

microglia. d A network of upstream regulators was generated with edges representing that more than 5 genes were shared between two
upstream regulators. Only endogenous upstream regulators were included in the network. IL10 had the most connections to other upstream
regulators (thick gray edges) and is a potential driver of changes associated with C3ar1 deficiency
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MAC (which requires C5b). Therefore, optic nerve dam-
age in these mice is independent of secreted C5, which
has been shown to be detrimental if present [22]. How-
ever, optic nerve damage in DBA/2J mice is still
dependent on C1q based on the protection against ocu-
lar hypertension observed in C1qa−/− mice [38]. To de-
termine how C1q causes permanent damage and vision
loss, there are a limited number of targets remaining to
investigate, such as C3, C4, and receptors for C1q. As
shown here, C3a contributes to degeneration caused by
ocular hypertension based on the decreased incidence of
optic nerve damage at 10.5 months of age in C3ar1−/−

mice.
Understanding why C3ar1 deficiency did not provide

long-lasting protection requires understanding other dam-
aging consequences of complement activation. Greater

protection in DBA/2J mice has been achieved by disrupt-
ing C1qa [38] compared to C3ar1, suggesting that C1qa
triggers multiple damaging responses. A therapy targeting
sites opsonized by C3b and C4b, achieved by expression
of CR2-Crry in retinal ganglion cells, has produced results
more similar to C1qa deficiency [15]. Crry would be pre-
dicted to inhibit C3 convertase activity of the classical
pathway (through C4b) and alternative pathway (through
C3b) [59], severely limiting accumulation of both C3a and
C3b in the treated DBA/2J mice. The results of treatment
with CR2-Crry suggest that inhibition of C3a and C3b
may protect in an additive manner. In fact, DBA/2J mice
that lack the C3b receptor CR3, by disruption of Itgam,
are less vulnerable to optic nerve degeneration [55]. Simi-
lar to C3ar1−/− mice, Itgam−/− mice are not protected as
well as C1qa−/− and CR2-Crry treated mice. These results

Fig. 6 C3ar1 deficiency altered the population of myeloid-derived cells in the ONH in a subset of eyes. a Diagram of the gating strategy used in
flow cytometry to identify sub-populations of myeloid-derived cells isolated from retina and optic nerve head tissue. b No gross difference in the
population profile of these cells was observed in the retinas from ocular hypertensive C3ar1−/− and C3ar1+/+ mice. c The number of myeloid cells
detected in optic nerve head tissue was more variable C3ar1−/− mice than in C3ar1+/+ mice
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suggest that complement activated peptides and
opsonization products may independently contribute to
optic nerve degeneration. Thus, targeting both types of re-
ceptors, such as by disrupting both C3ar1 and Itgam ex-
pression, may protect to a greater degree than targeting
C3ar1 or Itgam alone and explain the full effect of treat-
ment with CR2-Crry or disrupting C1q.
Complement activation is primarily expected to guide

a targeted immune cell response in DBA/2J mice, given
the deficiency of secreted C5 and lack of MAC activa-
tion. A type of targeted response to C1q and C3a by
microglia and other myeloid cells is to phagocytose
neuronal blebs or dying neurons and limiting pro-
inflammatory cytokine production [60–62]. C1q regu-
lates dendritic and synaptic pruning during development
and ocular hypertension in the retina [23, 63]. C3ar1 has
been implicated in mediating synaptic plasticity [26] and
phagocytosis by microglia [64] in cell culture and a
mouse model relevant to Alzheimer’s disease, but has
not yet been in models of glaucoma. In this study, C3ar1
deficiency did not influence PERG readings that occur in
conjunction with synapse loss and dendritic remodeling.
It is possible that C3AR1 signaling does not strongly
affect phagocytosis or synapse loss in an ocular hyper-
tensive setting and that C3AR1 signaling has detrimental
effects in glaucoma through a different mechanism.
To predict how C3ar1 deficiency might affect micro-

glial cell biology, cell culture of microglia was used as a
model to identify differences in gene expression caused
by C3ar1 deficiency. Numerous genes associated with
inflammation were affected by C3ar1 expression raising
the possibility that the effect of disrupting C3ar1 on
neurodegeneration may be caused by a change in inflam-
mation. More specifically, a significant number of
changes in gene expression were associated with down-
stream effects of IL10 signaling. These data predict
crosstalk between C3AR1 and IL10 in microglia. An
interaction between C3AR1 and IL10 has been shown
previously in another type of immune cell; C3AR1 inhib-
ited IL10 production by CD8+ tumor-infiltrating lym-
phocytes [65]. Interestingly, microglia can produce IL10
and autocrine signaling by IL10 has been suggested to
regulate microglial activation [66]. However, it has not
been determined whether C3AR1 has an effect on IL10
production or the expression of related genes and pro-
teins in microglia in an ocular hypertensive setting. Fur-
thermore, little is known about whether IL10 signaling is
activated or has a function in glaucomatous neurodegen-
eration. Addressing these questions will help resolve
whether C3ar1 deficiency altered disease risk by modu-
lating inflammation or through a different mechanism.
C3a may also recruit monocytes that express C3ar1. A

subclass of monocytes (CD11b-positive, CD45-hi, and
Cd11c-positive) that express C3ar1 increase in number

in tissue affected by ocular hypertension [21], but how
they are recruited is not known. C3a may influence their
recruitment based on flow cytometry data presented
here, although this is unresolved. In some eyes from
C3ar1−/− mice, the number of myeloid cells in the optic
nerve head appeared to be increased as observed by flow
cytometry. It is possible that myeloid cells have a pro-
tective role early in disease and that this increase helped
prevent optic nerve damage. In this study, it was not
feasible to address these possibilities in more depth due
to the spontaneous nature of IOP elevation, variability
between eyes, and the unexpected increase in myeloid
cell population variability in the ONH of C3ar1−/− mice.
A larger study using DBA/2J mice or another model
with chronic ocular hypertension could address how
C3ar1 alters microglia and monocyte localization and
function in this type of glaucoma. All of the hypotheses
are consistent with the idea that targeting myeloid cells
with therapy may improve disease outcomes in glaucoma.
In DBA/2J mice, ONH astrocytes express C3 [18], a

marker associated with a neurotoxic phenotype in some
conditions [67]. However, C3 deficiency was shown to
increase vulnerability of the optic nerve to ocular hyper-
tensive damage [18]. This is counterintuitive to harmful
effects of C3a and C3b and was suggested to implicate
early protective responses by astrocytes in glaucoma.
The role of C3 in neuroprotective and neurotoxic func-
tions of astrocytes needs to be determined. Astrocytes in
DBA/2J mice may be capable of both neuroprotective
and neurotoxic function that depends on the activation
of specific extracellular receptors. In this case, C3ar1 de-
ficiency may protect by decreasing the extracellular sig-
nals produced by microglia and infiltrating monocytes,
including C1Q, IL1A, and TNF [67], that trigger a neuro-
toxic response. Testing the function of C1q receptors
and C3 in astrocytes in DBA/2J mice could better define
the effects of complement activation and show whether
astrocytes directly contribute to optic nerve
degeneration.

Conclusion
Signaling through C3AR1 promoted neurodegenerative
processes in a model of glaucoma with chronic ocular
hypertension and neuroinflammation. C3ar1 deficiency
caused changes to IL10-related signaling pathways in cul-
tured microglia, pathways predicted to have an important
effect on microglia reactivity. In this regard, genetic and
other factors that influence expression of C3ar1, C3, or
other members of the complement cascade may predis-
pose people to beneficial or harmful neuroinflammatory
responses by affecting microglial or astrocytic reactivity.
Targeting myeloid cells and complement-mediated in-
flammation pathways with therapies will likely be a
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beneficial addition to neuroprotective therapeutic strat-
egies by reducing the impact of harmful inflammatory
processes.
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