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ARTICLE

Genetic variant effects on gene expression in
human pancreatic islets and their implications
for T2D
Ana Viñuela et al.#

Most signals detected by genome-wide association studies map to non-coding sequence and

their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-

types required for functional inference are absent from large-scale resources. Here we

explore the relationship between genetic variants influencing predisposition to type 2 dia-

betes (T2D) and related glycemic traits, and human pancreatic islet transcription using data

from 420 donors. We find: (a) 7741 cis-eQTLs in islets with a replication rate across 44 GTEx

tissues between 40% and 73%; (b) marked overlap between islet cis-eQTL signals and active

regulatory sequences in islets, with reduced eQTL effect size observed in the stretch

enhancers most strongly implicated in GWAS signal location; (c) enrichment of islet cis-eQTL

signals with T2D risk variants identified in genome-wide association studies; and (d) colo-

calization between 47 islet cis-eQTLs and variants influencing T2D or glycemic traits,

including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional

and regulatory studies in disease relevant tissues.

https://doi.org/10.1038/s41467-020-18581-8 OPEN
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Genome-wide association studies (GWAS) have generated a
growing inventory of genomic regions influencing type 2
diabetes (T2D) predisposition and related glycemic

traits1–3. However, progress in defining the mechanisms whereby
these associated variants mediate their impact on disease risk has
been slow4. Over 90% of the associated signals map to noncoding
sequence5,6 complicating efforts to connect T2D-associated var-
iants, with the transcripts and networks through which they exert
their effects. One approach for addressing this variant-to-function
challenge is to use expression quantitative trait loci (eQTL)
mapping to characterize the impact of disease-associated reg-
ulatory variants on the expression of nearby genes7.

Demonstrating that a disease-risk variant colocalizes with a cis-
eQTL signal is consistent with a causal role for the transcript
concerned, a hypothesis that can then be subject to more direct
evaluation, for example, by perturbing the gene in suitable cellular
or animal models. However, eQTL signals are often tissue spe-
cific8: consequently, the power to detect mechanistically infor-
mative expression effects is dependent on assaying expression
data from sufficient numbers of samples across the range of
disease-relevant tissues7.

The pathogenesis of T2D involves dysfunction across multiple
tissues, most obviously pancreatic islets, adipose, muscle, and
liver. Risk variants that influence T2D predisposition through
processes active in each of these have been reported (e.g., KLF14
in adipose9, TBC1D4 in muscle10, ADCY5 in islets11, and GCKR
in liver12). However, multiple physiological and genomic analyses
consistently indicate that islet dysfunction makes the greatest
contribution to T2D risk5,13,14. Research access to human pan-
creatic islet material is therefore essential, and previous studies
have demonstrated the potential of islet expression information to
characterize T2D effector genes, such as MTNR1B and ADCY5
(refs. 15–17). However, access to human islet material is limited,
and the largest published human islet RNA sequencing (RNA-
Seq) dataset includes only 118 samples17.

We constituted the InsPIRE (Integrated Network for Sys-
tematic analysis of Pancreatic Islet RNA Expression) consortium
as a vehicle for the aggregation and joint analysis of human islet
RNA-Seq data15–18. Here, we report analyses of 420 human islet
preparations that provide a detailed landscape of the genetic
regulation of gene expression in this key tissue, and its relation-
ship to mechanisms of T2D predisposition.

Our research addresses questions with relevance beyond T2D.
When a disease-relevant tissue is missing from reference datasets,
such as GTEx, what additional value accrues from dedicated
expression profiling from that missing tissue? What is the impact
of tissue heterogeneity on the interpretation of eQTL data? What
does the synthesis of tissue-specific epigenomic and expression
data tell us about the coordination of upstream transcription
factor (TF) regulators of gene expression? And, finally, what
information do tissue-specific eQTL analyses provide about the
regulatory mechanisms mediating disease predisposition?

Results
Characterization of genetic regulation of gene expression in
islets. We combined islet RNA-Seq with dense genome-wide
genotype data from 420 individuals. Data from 196 of these
individuals have been reported previously15–18. We aggregated,
and then jointly mapped and reprocessed, all samples (median
sequence-depth per sample ~60M reads) to generate exon- and
gene-level quantifications, using principal component (PC)
methods to correct for technical and batch variation (“Methods”
section; Supplementary Fig. 1).

To characterize the regulation of gene expression for the 17,914
protein-coding and long noncoding RNAs genes with quantifiable

expression in these samples, we performed eQTL analysis
(fastQTL19) on both exon- and gene-level expression measures,
using all 8.05M variants that passed quality control (QC;
“Methods” section; Supplementary Data 1–4). In the gene-level
analysis, we identified 4311 genes (eGenes) with significant cis-
eQTLs at the gene level (FDR < 1%; cis defined as within 1Mb of
the transcription start site (TSS)). In the complementary exon-
level analysis, which should enable a broader range of transcrip-
tional effects to be captured, particularly those involving splicing,
we detected 6039 eGenes (FDR < 1%, Supplementary Fig. 2)20,21.
Stepwise regression analysis (after conditioning on the lead
variant) identified a further 1702 independent exon-level islet cis-
eQTLs in 1291 of the eGenes (21.3% of all eGenes), giving a total
of 7741 eQTLs (Supplementary Data 1–4). At the 1291 eGenes
with at least two independent exon–eSNPs, most primary eSNPs
mapped closer to the canonical TSS than secondary eSNPs
(Wilcoxon test P= 6.3 × 10−30): however, there were 503 (39.0%)
of these genes for which the second eSNP identified during
stepwise conditional analysis was more proximal to the TSS
(Supplementary Fig. 2).

Tissue-specific regulatory variation in islets. For many complex
traits of biomedical interest, the value of targeting the specific cell
types of interest for dedicated eQTL discovery—as opposed to
relying on existing eQTL data from more accessible tissues—
remains unclear. To examine this, we considered the degree to
which the set of 7741 exon-level islet eQTLs overlapped eQTLs
detected in 44 tissues (N > 70) from version 6p of GTEx8. To
allow direct comparison with InsPIRE, we reprocessed GTEx data
to generate exon-level eQTLs (“Methods” section).

Of the 6039 islet eGenes, 5% (337) had no significant eQTLs, in
either exon- or gene-level analyses in any of the 44 tissues
examined in GTEx (Supplementary Data 5). We used p-value
enrichment analysis (π1)22 to measure the proportion of islet
eQTLs shared with other GTEx tissues, generating estimates
ranging from 0.40 (hypothalamus) to 0.73 (adipose). By
comparing the p-value distributions across tissues, this analysis
can detect evidence of sharing which does not depend on
arbitrary statistical thresholds. We detected the expected positive
linear relationship between π1 measures and sample sizes for the
respective tissues in GTEx8 (Fig. 1a). However, π1 enrichment
only reached 0.65 and 0.57 (respectively) for skeletal muscle (n=
361), and whole blood (n= 338), the tissues with the largest
representation in this version of GTEx (see “Influence of sample
size” in Supplementary Discussion). Whole pancreas, often
naively used as a surrogate for the T2D-relevant islet component,
represented an imperfect proxy for islet (π1= 0.65 with islets).
This is not purely a consequence of low sample sizes: tissues with
slightly larger sample sizes showed both higher (π1= 0.71, artery)
and lower sharing of eQTLs (π1 0.64, skin no sun exposed). These
data demonstrate that there is a component of tissue-specific
genetic regulation that could, at these sample sizes, only be
detected in islet, illustrating the value of extending current
expression profiling efforts to additional tissues and cell types of
particular biomedical importance.

Cellular heterogeneity. The human islets analyzed in this, and
other, studies include a mixture of cell types, including the
hormone-producing α, β and δ-cells, and a variable amount of
adherent exocrine material. From the perspective of T2D
pathogenesis, the transcriptomes of the endocrine compartment
are of most interest. However, the eQTLs identified could have
their origins from any of the cellular components. We used a
number of approaches to address interpretative challenges
resulting from this cellular heterogeneity.
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First, we performed tissue deconvolution analysis to estimate
the proportion of exocrine contamination: these analyses were
performed prior to the PC adjustment used to generate the main
results and used reference expression signatures for exocrine
pancreas, β-cells, and islet non-β-cells. The last two of these were
generated from a subset (n= 26) of the islet preparations after
FAC sorting using the zinc-binding dye Newport Green18

(“Methods” section and in Supplementary Discussion). Estimates
of the proportion of exocrine pancreas contamination ranged
from 1.8 to 91.8% (median 33.5%): these were significantly
correlated (spearman correlation, ρ=−0.406, P= 1.4 × 10−11)
with independent estimates of exocrine content obtained at islet
collection by dithizone staining (n= 232; Supplementary Fig. 3).
Within the islet endocrine fraction, median estimates of β-cell
(58.8%, IQR 43.2–66.9%) and non-β-cell (41.2%, 33.1–56.8%)
fractions are in agreement with estimates from morphometric
assessment23. In 37 samples from donors annotated as having
T2D, median estimates of β-cell composition were lower than
those from nondiabetic donors (n= 330; linear model, P= 3.3 ×
10−2, Supplementary Fig. 3). This provides independent support,
based on transcriptomic signatures, of evidence, from morpho-
metric and physiological studies, that the functional mass of β-
cells is reduced in T2D24,25.

Of the 420 InsPIRE samples, β-cell-enriched transcriptomes
were available for 26 following FAC sorting. With this limited
sample size, the only eQTL reaching significance, and then only at
a less stringent threshold of FDR < 5% (Supplementary Data 6)
was at ADORA2B (P= 3.8 × 10−10, slope=−1.20): this signal
was also detected in InsPIRE islets (P= 3.9 × 10−51, slope=
−0.65) and GTEx pancreas (P= 1.6 × 10−16, slope=−0.73;
Supplementary Fig. 4 and Supplementary Data 7). By comparing
the p-value distributions of the eQTLs in islets vs β-cells22, we
estimate that 46% (π1= 0.46) of islet eQTLs are active in β-cells
(Fig. 1b). By reevaluating significance for eQTLs in β-cell

association results using the 7741 independent significant
SNP–exon pairs, we were able to replicate 227 islet eQTLs in β-
cells (FDR < 1%, Supplementary Data 8). Genes with cell-type-
specific regulatory effects were sought by testing for interactions
between genotype and cellular fraction estimates, controlling for
technical variables (“Methods” section). We identified 18 islet cis-
eQTLs with a genotype-by-β-cell proportion interaction and eight
with a genotype-by-exocrine cell proportion interaction (FDR <
1%, Supplementary Data 9, 10 and 11).

We conclude that a substantial proportion of the regulation of
gene expression detected in pancreatic islets derives from cell-
type-specific effects. Ongoing efforts to develop a single-cell view
of islet transcriptional signatures should inform these analyses,
although the limited sample size of current studies26–30 and the
paucity of genotype information means they offer little direct
insight into the relationship between genetic variation and cell-
type-specific transcript abundance.

Functional properties of islet genetic regulatory signals. Using
previously published islet chromatin states derived from histone
modification data15, we observed a significant enrichment of islet
eSNPs in active islet chromatin states, including active TSS (fold
enrichment= 3.84, P= 5.5 × 10−206), active enhancers (fold
enrichment > 1.73, P < 4.8 × 10−04 between active/inactive enhan-
cer states), and stretch enhancers (fold enrichment= 1.57, P=
2.7 × 10−13), with concomitant depletion of eSNPs in repressed
and quiescent states (fold enrichment < 0.66; Supplementary Fig. 5
and Supplementary Table 1). This recapitulates the enrichment
observed for T2D GWAS signals within active islet chromatin
(Supplementary Fig. 6 and Supplementary Table 2)11,15,31,32. Next,
we examined the relationship between the chromatin context of
islet eSNPs and their effect sizes (Fig. 2a): not only that the active
TSS chromatin states showed high enrichment of eSNPs, but that
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the eSNPs that overlap active TSS chromatin states had larger
effects than those in repressed or weak-repressed polycomb states
(Wilcoxon rank-sum test P= 3.9 × 10−2).

A major portion (65.7%) of the islet-active TSS chromatin state
territory is occupied by islet ATAC-seq peaks. When we focused
the analysis on eSNPs within islet ATAC-seq peaks (Supplemen-
tary Fig. 7 and Supplementary Table 3), those within stretch
enhancers (islet-specific enhancer chromatin state segments >3 kb
(ref. 29)) had smaller effects than those in active TSSs (Wilcoxon
rank-sum test P= 3.4 × 10−3; Fig. 2b). Given the inverse
relationship between eQTL effect size and the number of samples
required to identify significant association, one corollary is that
eSNPs in tissue-specific stretch enhancers, which have smaller
effect sizes compared to those in more ubiquitous TSSs, are likely
to require larger sample sizes for eQTL discovery.

We previously reported enrichment of selected TF footprint
motifs at islet eSNPs15. Here, with a larger eSNP catalog, we sought
to determine how eSNP effect size and target gene expression
directionality is associated with base-specific TF-binding prefer-
ences. Using published TF footprint data (in vivo-predicted TF
motif binding) from human islet ATAC-seq analyses15, we
partitioned eSNPs into two equally sized bins (absolute slope ≥
vs < 0.254 standard deviation units). Higher effect size eSNPs were
preferentially enriched (<1% FDR) for footprint motifs character-
istic of islet-relevant TF families, such as GLIS3 (motif GLIS3_1,
P= 1.2 × 10−6). Other footprint motifs, including the RFX and
ETS families of TFs, were significantly enriched for low effect size
eSNPs (P < 2 × 10−4; Fig. 2c and Supplementary Data 12).

Finally, since TFs can act as activators, repressors, or both33,
we asked, using previously published massively parallel reporter
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assay (MPRA) data from HepG2 and K562 cell lines34, whether
eSNP alleles matching the base preference at TF footprint motifs
have a consistent directional impact on gene expression. We
defined a motif directionality fraction score (ranging from
repressive [0] to activating [1]) for each TF footprint motif
(“Methods” section). Of the 109 motifs reported as consistently
activating or repressive across HepG2 and K562 cell lines that
were also present in our study, 16.5% (n= 18) showed skewed
activator preference in islets (<10% FDR; Fig. 2d, Supplementary
Fig. 8 and Supplementary Table 4). The activator motifs we
identified include many ETS family members that have a known
preference for transcriptional activation34.

Our analyses demonstrate the value of contrasting tissue-
specific stretch enhancers with more ubiquitous TSS states to
delineate the role of underlying chromatin on function, and
illustrate how the integration of eQTL information with ATAC-
seq and high-resolution TF footprinting reveals the in vivo
activities of these upstream regulators.

Islet eQTLs are enriched among T2D and glycemic GWAS
variants. Diverse lines of evidence emphasize the contribution of
reduced pancreatic islet function to the development of T2D, with
many T2D GWAS loci acting primarily through reductions in
insulin secretion5,11,13,24. To examine the relationships between
tissue-specific regulation of gene expression and T2D predis-
position alleles, we focused on 403 lead GWAS SNPs with the
strongest associations to T2D in Europeans (as reported in
Mahajan et al.5) and 56 variants significantly associated with
T2D-relevant continuous glycemic traits, including fasting glu-
cose and β-cell function (HOMA-B) in nondiabetic individuals
(Supplementary Data 13)3,35–37. For comparison, we included 55
GWAS variants implicated in T1D predisposition38. To deter-
mine the extent to which the GWAS variants were selectively
enriched for islet eQTL associations, we extracted exon-level
eQTL information for each of these variants from InsPIRE and
the 44 GTEx8 tissues. We compared observed effect size estimates
to those derived from a null distribution of 15,000 random
eSNPs, matched to the GWAS SNPs with respect to the number
of SNPs in linkage disequilibrium (LD), distance to TSS, number
of nearby genes, and minor allele frequency (MAF; “Methods”
section). Figure 3 shows the enrichment in eQTL effect sizes at
T2D/glycemic GWAS-associated variants for five tissues impli-
cated in T2D pathogenesis (subcutaneous adipose tissue, skeletal
muscle, liver, islets, and plus hypothalamus), with pancreas and
whole blood for comparison.

We detected nominally significant enrichment for islet eQTLs
for variants associated with continuous glycemic traits (normal-
ized enrichment score (NES)= 1.27; P= 3.7 × 10−3; Supplemen-
tary Fig. 9 and Supplementary Data 14): of all the tissues
considered, islets generated the most significant enrichment for
this phenotype. Islet cis-eQTLs were also enriched amongst the
403 T2D variants (NES= 1.09; p= 5.3 × 10−3), as were eQTLs
from pancreas, skeletal muscle, adipose, and eight other GTEx
tissues. In a subset of 43 variants (from the 403) considered to be
mediated through defects in insulin secretion (thereby implicat-
ing islet dysfunction)5,37, the degree of enrichment was increased
(NES= 1.15, p= 3 × 10−2). No evidence of enrichment of islet
eQTL signals was seen for T1D-risk variants (NES= 1.01; p=
0.47), consistent with the consensus that genetic risk for T1D is
largely mediated through immune mechanisms38. These data
reveal tissue-specific patterns of genetic regulatory impact for
variants at T2D- and glycemic-trait loci similar to the
mechanistic inferences generated by physiological analysis of
those signals. They also highlight the importance of matching the
tissue origin of the transcriptomic data used for mechanistic

inference to the tissue-specific impact of each GWAS signal on
disease predisposition.

Identifying effector transcripts for T2D and glycemic traits.
Previous studies have identified 27 GWAS signals displaying
apparent overlap between islet eQTLs and the T2D/glycemic
GWAS signals15–17, but not all of these signals have been eval-
uated with respect to the statistical evidence for colocalization and
not all coincident signals have replicated despite ostensibly
similar designs and power17. Here, we took the opportunity
offered by increases in the sample sizes available for both T2D
GWAS5 and islet cis-eQTL analyses, to undertake a systematic
reanalysis to identify effector transcripts mediating the activity of
T2D and glycemic traits GWAS variants. There are multiple
methods for evaluating the evidence for colocalization, but these
make different assumptions and often lead to discrepant results39.
We focused on the colocalization evidence provided by two
complementary algorithms: COLOC40, which assesses differences
in regression coefficients of variants associated to two traits, and
RTC41, which assesses the differences in ranking of SNPs asso-
ciated with one trait after conditioning on the most associated
SNP for the other.

We detected evidence for colocalization (using either method)
for islet eQTLs at 46 GWAS loci (47 independent signals, Fig. 4b,
Supplementary Figs. 10 and 11). Of those, signals at 22 loci were
supported by both methods (constituting 23 signals, given
2 signals at DGKB): 21 of these signals reflect associations with
T2D, and 6 with glycemic traits (4 were signals for both T2D and
glycemic traits, Supplementary Data 15). Amongst this set of
23 signals, we confirmed colocalization with T2D or glycemic
associations at several previously reported cis-eQTL signals,
adding to the evidence for ADCY5, HMG20A, CAMK1D, and
DGKB11,15,17,42, as candidate effector transcripts. At 13 other
signals, including CLUAP1, EIF3C, and RNF6, we observed islet
cis-eQTL colocalization not reported before (Supplementary
Data 15). At the remaining 24 (of 47) signals, colocalization
was supported by either RTC or COLOC but not both, 19 of these
reflecting associations with T2D, 8 with glycemic traits (3
overlapping). This included 7 previously reported islet cis-eQTL
signals (including those at NKX6-3, IGF2BP2, or KLHL42), plus
17 signals never reported before (including those at ADRA2A,
PDE8B, and SLC12A8) (Supplementary Table 5).

For example, previous efforts to characterize the mechanism of
action at the TCF7L2 locus have demonstrated that the fine-
mapped T2D-risk allele at rs7903146 influences chromatin
accessibility and enhancer activity in islets43, but evidence linking
these events to TCF7L2 expression was not previously detected in
genome-wide eQTL studies. Our data reveal that the C allele of
rs7309146 increases islet expression of the last (3′) exon of
TCF7L2 (eQTL slope= 0.21, P= 1.9 × 10−7, Fig. 3b). A direc-
tionally consistent signal (p < 0.05) was seen for 15 more of the 18
exons expressed. The same eQTL signal was also detected in the
smaller β-cell-specific analysis (n= 26; eQTL slope= 0.72; p=
1.0 × 10−3). The association between rs7903146 and TCF7L2
expression was restricted to islets, consistent with evidence that
nondiabetic carriers of the TCF7L2 risk-allele display markedly
reduced insulin secretion44. Recent studies have proposed ACSL5
(ref. 45) as a possible effector transcript at this locus, but we found
no support—in any tissue—that rs7903146 influences ACSL5
expression.

Of the 27 previously reported signals of GWAS/islet eQTL
overlap (Supplementary Table 5), 12 were not observed in our
exon-eQTL-based analysis. Potential explanations include low
expression level of targeted genes, and between-study differences
in analytical approach and significance thresholds. For example,
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the primary eQTL for MTNR1B has shown consistent islet cis-
eQTL signals in previous studies17,46, but the low level of
expression of MTNR1B in islets meant that the exon-level read
coverage fell below our threshold for inclusion. However, in the
complementary gene-level analyses, there remained strong
evidence of colocalization between the lead T2D variant
(rs10830963) and MTNR1B expression (p= 5.3 × 10−21; Supple-
mentary Data 2). At ZMIZ1, the previously reported cis-eQTL
was nominally significant (rs185040218; p= 3.0 × 10−5), but did
not reach the 1% FDR threshold for inclusion in colocalization
testing.

At some loci, complex, but divergent, patterns of association
between the eQTL and T2D GWAS signals challenged the
assumptions of these colocalization methods. At the MAP3K11
locus, for example, the association plots indicate two independent

islet eQTL signals for LTBP3 (rs11227223 and rs1194077), but
only the latter signal colocalizes with the T2D GWAS signal at
rs1783541 (Supplementary Fig. 10). RTC detects this as
colocalization as it controls for additional eQTL signals, but this
was not possible with COLOC that assumed a single eQTL
variant to be active.

We further attempted to characterize eGenes that overlapped
T2D/glycemic GWAS signals by assessing the impact of changes
in glycemic status on islet expression. We used data from a recent
analysis of islets recovered from diabetic and nondiabetic donors,
focussing on transcripts that showed acute changes in expression
when exposed to glucose levels in culture that contrasted with
those to which they had been habituated47 (Supplementary
Data 16). Islet eGenes, such as STARD10, WARS, SIX3, NKX6-3,
and KLHL42, which may be of particular interest in that their
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expression in islets is regulated both by T2D-associated variation
and by acute changes in glucose exposure.

Experimental validation at DGKB. The DGKB locus features
three independent T2D GWAS signals. In the T2D meta-analysis
of Mahajan et al.5, these are represented by the lead SNPs
rs2191349, rs17168486, and rs2908334. In the current study, we
also report three independent islet cis-eQTLs influencing DGKB
expression represented by the lead eSNPs rs10278505, rs17168486,
and rs10231021. There is colocalization of these associations at

two signals: we refer to these as the 5′ signal (rs17168486) and the
3′ signal (rs10231021, which is in perfect LD with rs2191349 in
Europeans (r2= 1, D′= 1); Fig. 4a). There was no evidence for
colocalization of the third GWAS signal (located on the 3′ end of
the region (15.2Mb)) and the third eSNP (located in the far 5′ of
the region (14.3Mb)): these are not discussed further. For both
colocalizing GWAS signals, the T2D-risk allele is associated with
increased islet expression of DGKB (Fig. 4a–c), and physiological
analyses for these variants are consistent, with mediation through
islet dysfunction5,48.
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For functional follow-up of the 3′ signal (Fig. 4a, b), we
considered seven variants that mapped to ATAC-Seq peaks in
bulk islets and islet β-cells (islet single nuclei ATAC-seq49) and
were in high LD (r2 > 0.8) with rs2191349 (Fig. 4d). Three
(rs7798124, rs7798360, and rs7781710, Fig. 4d, element 1) overlap
an ATAC-seq peak shared across islets/β-cells, skeletal muscle,
and the lymphoblastoid cell line GM12878 (ref. 50): four others
(rs10228796, rs10258074, rs2191348, and rs2191349, Fig. 4d,
element 2) lie in a smaller but more islet/β-cell-specific peak 8145
bp away. We cloned these putative regulatory elements into
luciferase reporter constructs and performed transcriptional
reporter assays in three widely used cellular models of the β-
cell (human EndoC-βH1 (ref. 51), rat INS-1-derived 823/13, and
mouse MIN6 (ref. 52); see “Methods” section). Element 1 showed
consistently high enhancer activity across all three lines (when
cloned in the forward orientation), but no allelic differences
consistent with the eQTL direction of effect (Supplementary
Fig. 12). Element 2 showed reduced luciferase expression in all
three β-cell lines when in forward orientation with respect to
DGKB (Fig. 4e). The T2D-risk haplotype showed higher
expression than the non-risk haplotype in 832/13 (p= 1.9 ×
10−4) and MIN6 (p= 1.1 × 10−6; Fig. 4e), which is consistent
with the eQTL direction (Fig. 4c). Equivalent data for the human
EndoC-βH1 cell line was directionally consistent but not
significant (Fig. 4e). Luciferase assays using element 2 in reverse
orientation also showed consistent trends across the cell lines,
reaching significance in 832/13 (Supplementary Fig. 13). In
electrophoretic mobility shift assays (EMSAs) performed using
MIN6 nuclear extract, three element 2 variants (rs10228796,
rs2191348, and rs2191349) showed allele-specific binding to
nuclear proteins (Fig. 4f, filled arrows), supporting a functional
regulatory role for all these variants. Given that the three variants
are in a relatively small region and show allelic differences in
binding to proteins, one explanation is that a complex of TFs
binds to this regulatory element, with the T2D-risk alleles also
alleviating the regulatory element repression in a direction
consistent, with the observed effects of the 3′ signal on DGKB
expression (Fig. 4c).

At the 5′ eQTL, we focused attention on rs17168486, which
was both the lead SNP for islet cis-expression and T2D
association and located in an islet ATAC-seq peak (Supplemen-
tary Fig. 14a). However, luciferase reporter constructs found no
consistent allelic effects on transcriptional activity (Supplemen-
tary Fig. 14b).

Discussion
We have used transcriptome sequencing in 420 human islet
preparations to address issues of general relevance to the
mechanistic interpretation of noncoding association signals
detected by GWAS. We report an increase in the catalog of
eQTLs from pancreatic islets from ~4000 published in Varshney
et al.15 to >7000 and document the degree to which RNA-Seq of a
disease-relevant tissue missing from a reference set (e.g., GTEx)
provides a more complete survey of islet eQTLs. We used this
information to extend the number of association signals for T2D
and related glycemic traits from 27 loci overlapping with islet
eQTLs to 46 (47 signals, including 23 signals supported by two
different methods), identifying candidate effector transcripts at
several loci. We also explored how cellular heterogeneity (both
within the tissue of interest, and reflecting contamination with
cells not of direct relevance) can complicate the interpretation of
GWAS signal colocalization. We integrated our eQTL catalog
with islet epigenomic data to reveal effect size heterogeneity
attributable to local chromatin context and to infer in vivo TF
directional activities.

Analyses of the physiological association patterns and reg-
ulatory annotation enrichment signals of T2D-risk alleles indicate
that many, though by no means all, act through the
islet9,10,12,14,53. A major motivation behind development of this
enhanced catalog of islet eQTLs was to support identification of
effector transcripts mediating the downstream consequences of
these noncoding alleles. At DGKB, for example, evidence that
both the T2D signals colocalize with islet eQTLs with direction-
ally consistent impacts on DGKB expression lends credibility to a
causal role for DGKB in T2D predisposition.

However, it is important to emphasize that robust inference
from the coincidence of eQTLs and GWAS signals is difficult.
First, the expression data in our study was derived from human
islets cultured in basal glycemic conditions: eQTL signals
restricted to a subset of the cells within those islets would have
been hard to detect, and the same is true for genes whose
expression is dependent on stimulation. Since not all T2D loci act
through the mature islet, some of the eQTLs detected may reflect
tissue-specific regulation that is not germane to the development
of the diabetic phenotype.

Second, confident assignment of colocalization can be difficult.
There are multiple algorithms to assess the evidence that two
association signals are likely to reflect the same causal variants,
but agreement between them is incomplete39. An additional
challenge arises from the complex architecture of many GWAS
signals, such that conditional decomposition is required before
colocalization across multiple overlapping signals can be accu-
rately assigned54. This is especially important when the sets of
GWAS and cis-eQTL signals at a given locus are not completely
overlapping, since obvious colocalization at one of the con-
tributing signals can be masked by differences in the overall shape
of the association signals that confounds simplistic analysis.

Third, recent studies have shown that functionally constrained
genes—which are depleted for missense or loss-of-function var-
iants—are also less likely to have eQTLs, indicating uniform
intolerance of both regulatory and coding variation55–57. Com-
plementary studies focusing on regulatory elements have shown
that large, cell-specific stretch enhancers harbor smaller effect size
eQTLs than ubiquitous promoter regions58 and that genes with
more cognate enhancer sequence are depleted for eQTLs57. Our
finding that islet eQTLs that map to the islet stretch enhancers
most frequently implicated in GWAS regions had smaller eQTL
effect sizes is consistent with these observations.

Finally, it is critical to emphasize that, even when colocalization
has been demonstrated between a GWAS variant and a tissue-
appropriate eQTL signal, this does not constitute proof that the
eGene concerned mediates disease predisposition. Causal rela-
tionships other than variant-to-gene-to disease are possible,
including the possibility the variant has horizontally pleiotropic
effects on each59. Growing understanding of the extent of shared
local regulatory activity and regulatory pleiotropy makes such an
alternative explanation all the more credible60. It is best to regard
genes highlighted by coincident GWAS and eQTL signals as
candidate effector transcripts, and to proceed to experimental
approaches that enable direct tests of causality. These may
involve perturbing the gene across a range of disease-relevant
cell lines and animal models, and determining the impact on
phenotypic readouts that represent reliable surrogates of disease
pathophysiology.

Methods
Cohort characteristics. The samples from 420 donors included 189 males and 231
females, with an age range of 16–81 years (median= 54 years, 11 not available). Of
the 420 individuals, 37 were identified as diabetic. BMI information was available
for 334 individuals (median, 26.3 kg/m2), while HbA1c measurements were
available for 198 (median, 5.8%). Due to the historical nature of some of the
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samples used in this study, QC information about the pancreatic islet isolation was
limited: 254 samples listed their purity (median, 75%) and 26 samples listed their
viability (median, 93.5%). No other biological information was available in the
historical records. This information is available in the covariate files included in the
EGA submission.

Pancreatic islet sample collection and processing. Samples collection and
processing is summarized in Supplementary Fig. 17.

The processing of the Geneva samples from Nica et al.18 were originally done
using RNA libraries with 49-bp paired-end reads; however, in order to allow joint
analysis with the other available datasets for this study, mRNA samples were
reprocessed using a 100-bp paired-end sequencing protocol. The library
preparation and sequencing followed customary Illumina TruSeq protocols for
next generation sequencing as described in the original publication18. All
procedures followed ethical guidelines at the University Hospital in Geneva.

The 89 Lund samples from Fadista et al.16 were jointly processed with 102 new
islet samples that were processed uniformly following the same protocol. These
islet samples were obtained from 191 cadaver donors of European ancestry from
the Nordic Islet Transplantation Programme (http://www.nordicislets.org). Purity
of islets was assessed by dithizone staining, while measurement of DNA content
and an estimate of the contribution of exocrine and endocrine tissue were assessed
as previously described61. Total RNA was isolated with the AllPrep DNA/RNA
Mini Kit following the manufacturer’s instructions (Qiagen), sample preparation
was performed using Illumina’s TruSeq RNA Sample Preparation Kit according to
manufacturer’s recommendations. The target insert size of 300 bp was sequenced
using a paired-end 101 bp protocol on the HiSeq2000 platform (Illumina). Illumina
Casava v.1.8.2 software was used for base calling. All procedures were approved by
the ethics committee at Lund University.

The Oxford dataset included samples collected in Oxford and Edmonton that
were jointly sequenced in Oxford are included in this set of samples. Islet sample
procurement, mRNA processing, and sequencing procedure has been described in
van de Bunt et al.17. To the 117 samples previously published (78 from Edmonton
and 39 from Oxford), 57 samples were added and processed following similar
protocols as before (27 from Edmonton and 30 from Oxford). Briefly, freshly
isolated human islets were collected at the Oxford Centre for Islet Transplantation
in Oxford, or the Alberta Diabetes Institute IsletCore (www.isletcore.ca) in
Edmonton, Canada. Additional islets were obtained from the Alberta Diabetes
Institute IsletCore’s long-term cryopreserved biobank. Freshly isolated islets were
processed for RNA and DNA extraction after 1–3 days in culture in CMRL media.
Cryopreserved samples were thawed as described in Manning et al.62 and Lyon
et al.63. RNA was extracted from human islets using Trizol (Ambion, UK or Sigma-
Aldrich, Canada). To clean remaining media from the islets, samples were washed
three times with phosphate-buffered saline (Sigma-Aldrich, UK). After the final
cleaning step 1 mL Trizol was added to the cells. The cells were lysed by pipetting
immediately to ensure rapid inhibition of RNase activity and incubated at room
temperature for 10 min. Lysates were then transferred to clean 1.5 mL RNase-free
centrifuge tubes (Applied Biosystems, UK). RNA quality (RIN score) was
determined using an Agilent 2100 Bioanalyser (Agilent, UK), with a RIN score > 6
deemed acceptable for inclusion in the study. Samples were stored at −80 °C prior
to sequencing. PolyA selected libraries were prepared from total RNA at the Oxford
Genomics Centre using NEBNext ultra directional RNA library prep kit for
Illumina with custom 8 bp indexes64. Libraries were multiplexed (three samples per
lane), clustered using TruSeq PE Cluster Kit v3, and paired-end sequenced (100 nt)
using Illumina TruSeq v3 chemistry on the Illumina HiSeq2000 platform. All
procedures were approved by the Human Research Ethics Board at the University
of Alberta (Pro00013094), the University of Oxford’s Oxford Tropical Research
Ethics Committee (OxTREC Ref. 2–15), or the Oxfordshire Regional Ethics
Committee B (REC reference: 09/H0605/2). All organ donors provided informed
consent for use of pancreatic tissue in research.

The USA samples from Varshney et al.15 were originally processed as follows:
39 islet samples from organ donors were received from the Integrated islet
Distribution Program, the National Disease Research Interchange, and Prodo-
Labs. Total RNA from 2000–3000 islet equivalents was extracted and purified using
Trizol (Life Technologies). RNA quality was confirmed with Bioanalyzer 2100
(Agilent); samples with RNA integrity number (RIN) > 6.5 were prepared for
mRNA sequencing. We added External RNA Control Consortium spike-in
controls (Life Technologies) to one microgram of total RNA. PolyA+, stranded
mRNA RNA-Seq libraries were generated for each islet using the TruSeq-stranded
mRNA kit according to manufacturer’s protocol (Illumina). Each islet RNA-Seq
library was barcoded, pooled into 12-sample batches, and sequenced over multiple
lanes of HiSeq2000 to obtain an average depth of 100 million 2 × 101 bp sequences.
All procedures followed ethical guidelines at the National Institutes of
Health (NIH).

Β-cell sample collection and processing. To the 11 FAC-sorted beta-cells
population samples previously published18, we added 15 more samples that were
processed following the same protocols. Briefly, islets were dispersed into single
cells, stained with Newport Green, and sorted into “beta” and “non-beta” popu-
lations. The proportion of beta (insulin), alpha (glucagon), and delta (somatostatin)
cells in each population (as percentage of total cells) was determined by

immunofluorescence. mRNA extractions as well as sequencing followed the same
details described for islets samples processing for the Geneva samples.

Read mapping and exon quantification. The 100-bp sequenced paired-end reads
were mapped to the GRCh37 reference genome65 with GEM66. Exon quantifica-
tions were calculated for all elements annotated in GENCODE67 v19, removing
genes with >20% zero read count. All overlapping exons of a gene were merged into
meta-exons with identifier of type ENSG000001.1_exon.start.pos_exon.end.pos, as
described in Lappalainen21. Read counts over these elements were calculated
without using read pair information, except for excluding reads where the pairs
mapped to two different genes. We counted a read in an exon if either its start or
end coordinates overlapped an exon. For split reads, we counted the exon overlap
of each split fragment, and added counts per read as 1/(number of overlapping
exons per gene). Gene-level quantifications used the sum of all reads mapped to
exons from the gene. Genes with >20% zero read counts were removed.

Genotype imputation. Genotypes for all islet samples, including 19 β-cell samples,
were available from OmniExpress and Omni2.5 genotype arrays. Quality of gen-
otyping from the shared SNPs in both arrays was assessed before imputation
separately and, samples were excluded if they had an overlap genotype success rate
<90%; and MAF differences >20% compared to the 1000 G reported European
MAF. The two panels were separately pre-phased with SHAPEIT68 v2 using the
IMPUTE2-supplied genetic maps. After pre-phasing, the panels were imputed with
IMPUTE2 (ref. 69) v2.3.1 using the 1000 Genomes Phase I integrated variant set
(March 2012) as the reference panel70. SNPs with INFO score > 0.4 and HWE p >
1e−6 (for chrX this was calculated from female individuals only) from each panel
were kept. A combined vcf for each chromosome was generated from the inter-
section of the checked variants in each panel. Directly genotyped SNPs with a
MAF < 1% (including the exome components of the chips not shared between all
centers) were merged into the combined vcfs: (i) If SNPs were not imputed they
were added and (ii) If SNPs had been imputed, the imputed calls for the individual
were replaced by the typed genotype. Dosages were calculated from the imputation
probabilities (genotyped samples) or genotype calls (WGS samples). For the 22
autosomes, the dosage calculation was: 2 × ((0.5*heterozygous call)+ homozygous
alt call). For chromosome X (where every individual should be functionally
hemizygous), the calculation was: (0.5*heterozygous call)+ homozygous alt call).
Genotype calls for males can only be “0/0” and “1/1”. The total number of variants
available for analysis after quality assessment was 8,056,952.

For the 26 β-cell samples, 19 had genotypes available from OmniExpress arrays,
whereas 7 had DNA sequence available. Variant calling from DNA sequence has
been previously described in Nica et al.18. Briefly, the Genome Analysis Toolkit71

v1.5.31 was used following the best practice variant detection v3 to call variants.
Reads were aligned to the hg19 reference genome with BWA72. A confidence score
threshold of 30 for variant detection was used and a minimum base quality of 17
for base calling. Good confidence (1% FDR) SNP calls were then imputed on the
1000 Genomes reference panel and phased with BEAGLE73 v3.3.2. Imputation of
variants from samples with arrays genotyping were imputed together with
genotypes from individuals with islets samples as described before and then merged
with genotypes from DNA sequences. SNPs with INFO score > 0.4, HWE p > 1e−6
and MAF > 5%, were kept for further analysis. The total number of variants
available for analysis after quality assessment was 6,847,993.

RNA-Seq quality assessment and data normalization. Heterozygous sites per
sample were matched with genotype information to confirm the ID of the sam-
ples74. Eleven samples did not match with their genotypes, six of which would be
resolved by identifying concordant matches. For the remaining samples, no mat-
ches were found on the genotypes and they were removed from the dataset, giving
a total of 420 samples with genotypes. Raw read counts from exons and genes were
scaled to ten million to allow comparison between samples with different libraries.
Scaled raw counts were then quantile normalized.

We used PC analysis to evaluate and control the effects of unwanted technical
variation, and the expected batch effects due to the islet sample processing and
mRNA sequencing being performed across four labs. The main differences in
samples processing, and sequencing differences were grouped in a variable
identifying the lab of origin of the samples. Since each institution handled samples
in a different way with different processing and sequencing protocols, we expect
differences across samples from different labs to be greater than the differences
between samples from the same lab. Supplementary Fig. 1 shows these differences,
while comparing the samples distribution in PC1 vs PC2, with the colors
identifyinand g the lab of origin (GEN, OXF, LUN, USA). This analysis also
identified internal batch effects for OXF and LUN samples, as a second set of
samples were sequenced for this study in both institutions. Therefore, to control for
these and other potential sources of unwanted global variation, we included 25 PCs
of expression, as covariates in the linear model used to identify eQTLs (see below).

To identify the optimal number of PCs require to control for differences in the
origin of the samples for the discovery of eQTLs, we performed a permutation test:
expression sample labels and expression covariates were permuted within each of
the four laboratories before performing a standard eQTL analysis against non-
permuted genotypes (and matched PCs for genotypes), using different numbers of
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PCs for expression. Significant eQTLs beyond a 5% FDR in any of these analyses
are considered false positives due to technical differences across laboratories. Our
results indicate that controlling for ten PCs was sufficient to minimize the number
of false positives due to batch effects originating from differences in processing of
the islet samples. In addition, we performed an eQTL discovery controlling for 1, 5,
10, 20, 30, 40, and 50 PCs for expression, as well as gender, 4 PCs derived from
genotype data, and a variable defining the laboratory of origin (coded as: OXF,
LUN, GEN, and USA). After evaluation of the results, we conclude that controlling
for 25 PCs for expression was optimal as this controlled for differences across and
within laboratories, while maximizing the discovery of eQTLs.

eQTL analysis. eQTL analysis for islets and β-cells were performed using
fastQTL19 on 420 islet samples and 26 FAC-sorted β-cell samples with available
genotypes. Cis-eQTL analysis was restricted to SNPs in a 1 MB window upstream
and downstream the TSS for each gene, and SNPs with MAF > 1%. For the analysis
of β-cell samples, we used a filter of MAF > 5%. Exon-level eQTLs identified best
exon–SNP association per gene (using the –group flag), while gene-level eQTLs
used gene quantifications and identified the best gene–SNP association. Variables
included in the linear models were the first 4 PCs for genotypes, the first 25 PCs for
expression, gender, and a variable identifying the laboratory of origin of the
samples. Significance for the SNP–gene association was assessed using 1000 per-
mutations per gene, correcting p-values with a beta approximation distribution19.
Genome-wide multiple testing correction was performed using the q-value cor-
rection22 implemented in largeQvalue75.

Results of this joint analysis were highly correlated with those obtained from a
fixed-effects meta-analysis of the four component studies, indicating appropriate
control for the technical differences between the studies (Supplementary Fig. 16).

To discover multiple independent eQTLs, we applied a stepwise regression
procedure has also been described in Brown et al.76. We tested significant eGenes
(FDR < 1%) for secondary associations in any exon. The maximum beta-adjusted
p-value (correcting for multiple testing across the SNPs and exons) over these
genes was taken as the gene-level threshold. The next stage proceeded iteratively for
each gene and threshold. A cis-scan of the window was performed in each iteration,
using 1000 permutations and correcting for all previously discovered SNPs. If the
beta-adjusted p-value for the most significant exon–SNP or gene–SNP (best
association) was not significant at the gene-level threshold, the forward stage was
complete and the procedure moved on to the backward step. If this p-value was
significant, the best association was added to the list of discovered eQTLs as an
independent signal and the forward step proceeded to the next iteration. The exon-
level cis-eQTL scan identified eQTLs from different exons, but reported only the
best exon–SNP in each iteration. Once the forward stage was complete for a given
gene, a list of associated SNPs was produced that we refer to as forward signals. The
backward stage consisted of testing each forward signal separately, controlling for
all other discovered signals. To do this, for each forward signal we ran a cis-scan
over all variants in the window using fastQTL, fitting all other discovered signals as
covariates. If no SNP was significant at the gene-level threshold the signal being
tested was dropped, otherwise the best association from the scan was chosen as the
variant that represented the signal best in the full model.

GTEx eQTLs. We identified exon-level eQTLs for 44 GTEx tissues using fastQTL19

following the same procedure as for the islet eQTLs. Covariates included followed
the previously published number of PCs for expression8 and included 15 PCs for
expression for tissues with <154 samples; 30 PCs for samples between 155 and
254 samples; and 35 PCs for samples with >254 samples. Independent eQTLs from
exons were identified as described for islet eQTLs. The proportion of shared eQTLs
between islet and β-cell eQTLs and the eQTLs from GTEx tissues were identified
using Π1

22.

Tissue deconvolution. To identify the contribution of β-cells, non-β-cells and
exocrine (non-islet) cells to overall gene expression measured in islets, we per-
formed an expression deconvolution analysis. Expression profiles from GTEx
whole pancreas was used as a model for the exocrine component of expression8,
while FAC-sorted expression profiles from β-cell and non-β-cells from Nica et al.18

were used to identify the fraction of expression derived from islet cells. First, we
performed differential expression analysis of (a) exocrine vs whole islet samples; (b)
β-cell vs whole islet samples; and (c) non-β-cell vs whole islet samples. The top 500
genes from each analysis were combined, and a deconvolution matrix of log2-
transformed median expression values was prepared for each cell type. Next,
deconvolution was performed using the Bioconductor package DeconRNASeq77.
Deconvolution values per sample are included in the covariates file, together with
the expression values in the EGA submission.

Genotype-by-cell type associations. Genotype-by-cell-type-specific regulatory
effects were identified by testing for interactions between SNPs and cellular fraction
estimates. We performed the analysis using a linear model and residuals from
expression in gene quantifications. Residuals were extracted using a linear mixed
model controlling for fixed effect variables (batch effects, islets purity, GC mean,
and merge), and random variables (tag/primers and date of sequencing). The
merge variable identified samples that were sequenced multiple times, with a final

set of reads merged from multiple files. Significance for the genotype-by-cell
interactions were evaluated using FDR and 100 permutations in each analysis:
genotype-by-β-cell proportions, genotype-by-non-β-cell proportions, and
genotype-by-exocrine cell proportions.

Enrichment of eQTLs in T2D and glycemic GWAS. Within each tissue, we asked
if the magnitude of the eQTL effect for a given set of GWAS SNPs were larger than
expected for a randomly selected matched set of SNPs (as described below). We
performed enrichment analysis separately for each trait and tissue type using the
following procedure. For each trait, we used lead GWAS variants from the fol-
lowing sources: T2D (all; n= 403)5; subsets of these T2D-associated variants that
likely act via β-cell action (n= 43); glycemic traits (fasting glucose and β-cell
function (HOMA-B) in nondiabetic individuals; n= 56); and for comparison T1D
(n= 55)38 (Supplementary Data 13)3,36,62. As InsPIRE pancreatic islet and GTEx
tissue-based estimates of the variant exon effect, we used eQTL beta coefficients for
exons tested for each gene within 1 Mb of the GWAS lead variant. For each GWAS
lead variant for a given trait, we identified the eQTL with the largest absolute effect
size estimate among all the tested exons (max individual SNP beta). Across the lead
GWAS variants, we took the median of the max individual SNP betas (observed
median of the maxes). To generate a null distribution of the medians of the maxes,
we repeated the analysis 15,000 times. For each replicate, we matched each GWAS
SNP to a SNP present in the eQTL data based on the number of SNPs in LD,
distance to TSS, number of nearby genes and MAF, and calculated the median of
the maxes (null median of maxes). To form a distribution of the effect size
enrichment we divided the observed median of the maxes by the null medians of
the maxes. For each tissue and GWAS trait, we defined the median of the effect size
enrichment distribution as the enrichment. We estimated the one-sided 95%
confidence intervals as the fifth percentiles of the effect size enrichment distribu-
tion. We calculated the one-sided p-value for enrichment as the proportion of
replicates with enrichment values <1.

Colocalization of islet eQTL with T2D GWAS. Colocalization of GWAS variants
and eQTLs was performed using both COLOC40 and RTC19. For the analysis using
COLOC, all variants within 250 kb flanking regions around index variants were
tested for colocalization, using default parameters from the software. The analysis
used summary statistics from T2D GWAS6 and fasting glucose35. GWAS variants
and eSNPs pairs were considered to colocalize if the COLOC score for shared
signal was >0.9. RTC analysis was also performed using defaults parameters from
the software with a list of 459 lead GWAS variants for T2D and fasting glucose
(Supplementary Data 13). Associations between GWAS and gene expression were
considered as colocalizing if RTC score was >0.9. The plots showing colocalization
of GWAS and eQTLs were generated using LocusCompare54.

Chromatin states, islet ATAC-seq, and TF footprints. We used a previously
published 13 chromatin state model that included pancreatic islets along with 30
other diverse tissues15. Briefly, these chromatin states were generated from cell/
tissue ChIP-seq data for H3K27ac, H3K27me3, H3K36me3, H3K4me1, and
H3K4me3, and input control from a diverse set of publically available data31,78–80

using the ChromHMM program81. Chromatin states were learned jointly from 33
cell/tissues that passed QC by applying the ChromHMM (version 1.10) hidden
Markov model algorithm at 200-bp resolution to five chromatin marks and input15.
We ran ChromHMM with a range of possible states and selected a 13-state model,
because it most accurately captured information from higher-state models and
provided sufficient resolution to identify biologically meaningful patterns in a
reproducible way. As reported previously15, stretch enhancers were defined as
contiguous enhancer chromatin state (active enhancers 1 and 2, genic enhancer,
and weak enhancer) segments longer than 3 kb, whereas typical enhancers were
enhancer state segments smaller than the median length of 800 bp (ref. 31).

We downloaded raw ATAC-seq data (fastq files) for a total of 33 islet samples
from nondiabetic donors: 14 from ref. 82, 17 from ref. 11, and two from ref. 15. We
processed these data uniformly by trimming all reads to 36 bp, mapping to hg19
using bwa-mem (version 0.7.15-r1140)83, removing duplicates using Picard (http://
broadinstitute.github.io/picard), and pruning reads to retain properly paired and
mapped reads (samtools view -F 256 -F 1024 -F 2048 -q 30). Since these 33 samples
were obtained from different studies, we sought to obtain the set of peaks that were
reproducible. We subsampled each ATAC-seq sample bam file to the minimum
read depth across samples of 27,994,993 reads, merged these subsampled bam files
across all samples and called peaks, using (1) the merged bam file that uniformly
represents each sample and (2) each individual sample bam file. We used MACS2
(https://github.com/taoliu/MACS), version 2.1.0, with flags -g hs–nomodel–shift
-100–extsize 200 -B–broad–keep-dup all, to call peaks and filtered out regions
blacklisted by the ENCODE consortium due to poor mappability
(wgEncodeDacMapabilityConsensusExcludable.bed and
wgEncodeDukeMapabilityRegionsExcludable.bed). We then selected peaks from
the merged bam file that were reproducibly called across the majority (at least 17)
of the 33 individual samples, resulting in 64,129 peaks that we used for downstream
analyses.

TF footprint motifs are occurrences of TF motifs (obtained from databases of
DNA-binding motifs for several TFs) in accessible chromatin regions (identified
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from assays such as ATAC-seq). We downloaded previously published islet TF
footprint motifs15, which were generated in a haplotype-aware manner using
ATAC-seq and genotyping data from the phased, imputed genotypes for two islet
samples using vcf2diploid81 v0.2.6a and DNA-binding motif information for 1995
publicly available TF motifs84–86. We subset the footprint motifs selecting
occurrences within the new set of reproducible ATAC-seq peaks described above.

Filtering eQTL SNPs. Since low MAF SNPs, due to low power, can only be
identified as significant eQTL SNP (eSNPs) with high eQTL effect sizes (slope or
the beta from the linear regression), we observed that absolute effect size varies
inversely with MAF (Supplementary Fig. 15). To conduct eQTL effect size based
analyses in an unbiased manner, we selected significant (FDR 1%) eSNPs with
MAF >= 0.2. We then pruned this list to retain the most significant SNPs with
pairwise LD (r2) < 0.8 for the EUR population using PLINK87 and 1000 genomes
variant call format (vcf) files (downloaded from ftp://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/release/20130502/) for reference (European population). This filtering
process resulted in n= 3832 islet eSNPs.

Enrichment of genetic variants in genomic features. To calculate the enrich-
ment of islet eSNPs to overlap with genomic features, such as chromatin states,
ATAC-seq peaks, and TF footprint motifs, we used the GREGOR tool88. For each
input SNP, GREGOR selects ~500 control SNPs matched for MAF, distance to the
gene, and number of SNPs in LD (r2) ≥ 0.99. A unique overlap is reported if the
feature overlaps any input lead SNP or its LD (r2) > 0.99 SNPs. Fold enrichment is
calculated as the number unique overlaps over the mean number of loci at which
the matched control SNPs (or their LD (r2) > 0.99 SNPs) overlap the same feature.
This process accounts for the length of the features, as longer features will have
more overlap by chance with control SNP sets. We used the following parameters
in GREGOR for eQTL enrichment: r2 threshold (for inclusion of SNPs in LD with
the lead eSNP)= 0.99, LD window size= 1Mb, and minimum neighbor number
= 500. Since eQTL loci can only occur within ~1Mb from TSSs of genes actually
tested for eQTLs, we checked what fraction of the GREGOR control loci occurred
within 1 Mb of tested genes. Out of total 6,031,279 control loci, 98.6% (5,949,654)
variants occur within 1Mb of the TSS for genes for which exon-level eQTL were
tested.

For enrichment of T2D GWAS SNPs in islet chromatin states, we downloaded
the list of T2D GWAS SNPs from Mahajan, et al.5. We pruned this list to retain the
most significant SNPs with pairwise LD (r2) < 0.2 for the EUR population using
PLINK87 and 1000 genomes variant call format (vcf) files (downloaded from ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) for reference (European
population). This filtering process resulted in N= 378 T2D GWAS SNPs. We
used GREGOR to calculate enrichment using the following specific parameters:
r2 threshold (for inclusion of SNPs in LD with the lead eSNP)= 0.8, LD
window size= 1Mb, and minimum neighbor number= 500.

We investigated if footprint motifs were more enriched to overlap eQTLs of
high vs low effect sizes. We sorted the filtered (as described above) eQTL list by
absolute effect size values and partitioned these into two equally sized bins (N
eSNPs= 1916). Since TF footprints were available for a large number of motifs (N
motifs= 1995), the enrichment analysis had a large multiple testing burden and
limited power with 1916 eSNPs in each bin. Therefore, we only considered
footprint motifs that were significantly enriched (FDR < 1%, Benjamini and
Yekutieli method from R p. adjust function, N motifs= 283) and that overlap the
bulk set of eSNPs (LD r2 < 0.8 pruned but not MAF filtered, N eSNPs= 6,468,
Supplementary Data 12) for enrichment with the binned set of eSNPs. This helped
reduce the multiple testing burden. We then calculated enrichment for the selected
footprints to overlap SNPs in each bin using GREGOR with same parameters as
described above (Supplementary Data 12).

eSNP effect size distribution in chromatin states. We identified the islet eQTL
eSNPs (after LD pruning and MAF filtering as described above) occurring in
chromatin states or ATAC-seq peaks within chromatin states using BEDtools
intersect89. Similar to the enrichment calculation procedure, we considered a
unique eQTL overlap if the lead eSNP or a proxy SNP with LD (r2) > 0.99 occurred
in these regions. We considered the effect size as the slope or the beta from the
linear regression for the eQTL overlapping each region. P-values were calculated
using the Wilcoxon rank-sum test in R (ref. 90).

TF motif directionality analysis. We selected TF footprint motifs that were sig-
nificantly enriched (after Bonferroni correction accounting for 1995 total motifs) to
overlap islet eQTL (considering LD r2 < 0.8 pruned lead eSNPs or their r2 > 0.99
proxy eSNPs as a locus) with at least ten eQTL locus overlaps, resulting in N= 329 TF
motifs. We determined the overlap position of the eSNP with each TF footprint motif.
We considered instances where the eSNP overlapped the TF footprint motif at a
position with information content >=0.7 and either the eSNP effect or the non-effect
allele was the most preferred base in the motif. For each TF footprint motif and eSNP
overlap, we rekeyed the direction of effect on the target gene being positive or
negative, with respect to the most preferred base in the motif. For each TF motif, we
compiled the fraction of instances where the SNP allele that was most preferred in the
TF footprint motif (i.e., base with highest probability in the motif) associated with

increased expression of the associated gene. We refer to this metric as the motif
directionality fraction where fractions near 1 suggest activating and fractions near
0 suggest repressive preferences toward the target gene expression. Motif directionality
fraction near 0.5 suggests no activity preference or context dependence.

We compared our results to a previously published study that quantified
transcription activating or repressive activities based on massively parallel reported
assays in HepG2 and K562 cells34 (Supplementary Fig. 8). We found that the motif
directionality measures metric were largely concordant (Spearman’s r= 0.69, p=
7.7 × 10−17) with orthogonal motif activity measures derived from MPRAs
performed in HepG2 and K562 cell line34 (Supplementary Fig. 8). We then
considered 109 motifs from our analyses that were reported to have significant (p <
0.01) activating or repressive scores from MPRAs in both HepG2 and K562. With
the null expectation of the motif directionality fraction being equal to 0.5, i.e., TF
binding equally likely to increase or decrease target gene expression, we used a
binomial test to identify TFs that show significant deviation from the null (N= 18
at FDR < 10%, Supplementary Data 12).

Cell culture and transcriptional reporter assays. MIN6 mouse insulinoma beta-
cells52 were grown in Dulbecco’s modified Eagle’s Medium (DMEM; Sigma-
Aldrich, St. Louis, Missouri/USA) with 10% fetal bovine serum, 1 mM sodium
pyruvate, and 0.1 mM beta-mercaptoethanol. INS-1-derived 832/13 rat insulinoma
beta-cells (a gift from C. Newgard, Duke University, Durham, North Carolina/
USA) were grown in RPMI-1640 medium (Corning, New York/USA) supple-
mented with 10% fetal bovine serum, 10 mM HEPES, 2 mM L-glutamine, 1 mM
sodium pyruvate, and 0.05 mM beta-mercaptoethanol. EndoC-βH1 cells (Endocell)
were grown according to Ravassard et al.49 in DMEM (Sigma-Aldrich), 5.6 mmol/L
glucose with 2% BSA fraction V fatty acid free (Roche Diagnostics), 50 μmol/L 2-
mercaptoethanol, 10 mmol/L nicotinamide (Calbiochem), 5.5 μg/mL transferrin
(Sigma-Aldrich), 6.7 ng/mL selenite (Sigma-Aldrich), 100 U/mL penicillin, and
100 μg/mL streptomycin. Cells were grown on coating consisting of 1% matrigel
and 2 µg/mL fibronectin (Sigma). We maintained cell lines at 37 °C and 5% CO2.

To test haplotypes for allele-specific effects on transcriptional activity, we PCR
amplified a 765-bp genomic region (element 1) containing variants: rs7798124,
rs7798360, and rs7781710, and a second 592-bp genomic region (element 2)
containing variants: rs10228796, rs10258074, rs2191348, and rs2191349 from DNA
of individuals homozygous for each haplotype. The oligonucleotide primer
sequences are listed in Supplementary Table 6. We cloned the PCR amplicons into
the multiple cloning site of the Firefly luciferase reporter vector pGL4.23 (Promega,
Fitchburg, Wisconsin/USA) in both orientations, as described previously91. Vectors
are designated as “forward” or “reverse” based on the PCR-amplicon orientation
with respect to DGKB gene. We isolated and verified the sequence of five
independent clones for each haplotype in each orientation. For the 5′ eQTL a 250
bp construct containing the rs17168486 SNP (Origene) was subcloned into the
Firefly luciferase reporter vector pGL4.23 (Promega) in both orientations.

We plated the MIN6 (200,000 cells) or 832/13 (300,000 cells) in 24-well plates
24 h before transfections and plated the EndoC-βH1 cells (140,000 cells) 48 h prior
to transfection. We co-transfected the pGL4.23 constructs with phRL-TK Renilla
luciferase reporter vector (Promega) in duplicate into MIN6 or 832/13 cells, and in
triplicate for EndoC-βH1 cells. For the transfections, we used Lipofectamine LTX
(ThermoFisher Scientific, Waltham, Massachusetts/USA) with 250 ng of plasmid
DNA and 80 ng Renilla for MIN6 cells, Fugene6 (Promega) with 720 ng of plasmid,
and 80 ng Renilla for 832/13 cells per each welll and Fugene6 with 700 ng plasmid
and 10 ng renilla for EndoC-βH1 cells. We incubated the transfected cells at 37 °C
with 5% CO2 for 48 h. We measured the luciferase activity with cell lysates using
the Dual-Luciferase® Reporter Assay System (Promega). We normalized Firefly
luciferase activity to the Renilla luciferase activity. We compared differences
between the haplotypes using unpaired two-sided t-tests. All experiments were
independently repeated on a second day and yielded comparable results.

Electrophoretic mobility shift assays. EMSAs were performed as previously
described. We annealed 17-nucleotide biotinylated complementary oligonucleotides
(Integrated DNA Technologies) centered on variants: rs10228796, rs10258074,
rs2191348, and rs2191349 (Supplementary Table 7). MIN6 nuclear protein extract
was prepared using the NE-PER kit (Thermo Scientific). To conduct the EMSA
binding reactions, we used the LightShift Chemiluminescent EMSA kit (Thermo
Scientific) following the manufacturer’s protocol. Each reaction consisted of 1 μg poly
(dI-dC), 1× binding buffer, 10 μg MIN6 nuclear extract, and 400 fmol biotinylated
oligonucleotide. We resolved DNA–protein complexes on nondenaturing DNA
retardation gels (Invitrogen) in 0.5× TBE. We transferred the complexes to Biodyne B
Nylon membranes (Pall Corporation), and UV cross-linked (Stratagene) to the
membrane. We used chemiluminescence to detect the DNA–protein complexes.
EMSAs were repeated on a second day with comparable results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available within the article
and its Supplementary Information files or from the corresponding author upon
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reasonable request. Genotype, technical and biological covariates, and sequence data have
been deposited at the European Genome-phenome Archive (EGA; https://www.ebi.ac.uk/
ega/) under the following accession numbers: EGAD00001006149; EGAS00001004042;
EGAS00001004056. Complete summary statistics for eQTL associations are accessible in
the following link: https://zenodo.org/record/3408356. In addition, Source data are
provided with this paper.
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