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Interpretation of psychiatric genome-wide association studies
with multispecies heterogeneous functional genomic data
integration
Timothy Reynolds 1,2, Emma C. Johnson 3, Spencer B. Huggett4, Jason A. Bubier1, Rohan H. C. Palmer 4, Arpana Agrawal 3,
Erich J. Baker2 and Elissa J. Chesler 1

Genome-wide association studies and other discovery genetics methods provide a means to identify previously unknown biological
mechanisms underlying behavioral disorders that may point to new therapeutic avenues, augment diagnostic tools, and yield a
deeper understanding of the biology of psychiatric conditions. Recent advances in psychiatric genetics have been made possible
through large-scale collaborative efforts. These studies have begun to unearth many novel genetic variants associated with
psychiatric disorders and behavioral traits in human populations. Significant challenges remain in characterizing the resulting
disease-associated genetic variants and prioritizing functional follow-up to make them useful for mechanistic understanding and
development of therapeutics. Model organism research has generated extensive genomic data that can provide insight into the
neurobiological mechanisms of variant action, but a cohesive effort must be made to establish which aspects of the biological
modulation of behavioral traits are evolutionarily conserved across species. Scalable computing, new data integration strategies,
and advanced analysis methods outlined in this review provide a framework to efficiently harness model organism data in support
of clinically relevant psychiatric phenotypes.

Neuropsychopharmacology (2021) 46:86–97; https://doi.org/10.1038/s41386-020-00795-5

PROMISES AND CHALLENGES IN HUMAN GENETICS OF
PSYCHIATRIC DISORDERS
Psychiatric disorders are highly polygenic and show a continuous
range of variation influenced by both environmental and genetic
factors [1]. A major goal of psychiatric genetic research is to better
understand the molecular mechanisms through which genetic
variants act to influence liability to these traits. The identification
of novel genetic variants provides a foothold into the complex
genetic architecture that undergirds psychiatric traits. Model
organisms provide an avenue into understanding the biological
mechanisms that are impacted by genetic variation. In this review,
we outline big data approaches that efficiently weave the vast
amounts of convergent genomic data from other species into
human genetic findings to elevate the likelihood of uncovering
biologically meaningful pathways for further experimental follow-
up and therapeutic discovery.

The utility of genome-wide association studies (GWAS) in
psychiatry
GWAS of psychiatric traits have generated an outpouring of recent
discoveries in risk variant identification and polygenic prediction.
From highly heritable traits, such as schizophrenia (for which >100
common loci have been reported with N= 150,064 [2]) to
common but less heritable conditions such as problematic alcohol
use (for which 29 independent loci have been reported with N=
435,563 [3]) and major depression (for which 102 common loci

were detected with N= 807,553 [4]), as well as for liability across
psychiatric disorders (109 loci with N= 727,126 [5]) progress
abounds. In addition, for substance use, a recent large GWAS of
tobacco smoking (N for smoking initiation= 1,232,091) and typical
drinking (N for drinks/week= 941,280) has identified over 400 loci
[6]. The increased power accumulated across studies of major
psychiatric disorders, arising from collaborative research, has
revealed clues into novel mechanisms of susceptibility to mental
illnesses and substance use disorders. These large-scale GWAS
have also revealed patterns of genetic variation associated with
multiple disorders as well as disorder-specific loci, e.g., CADM2 has
been linked to multiple substances and common addiction
mechanisms (e.g., risk-taking cognition), while the alcohol
dehydrogenase genes remain alcohol-specific (e.g., [7, 8]).

Challenges and opportunities within GWAS for psychiatric genetic
studies
The recent gains in psychiatric genetic studies outlined above
amplify the need to address several enduring challenges within
GWAS. First, at a variant level, the bulk of GWAS “hits” fall in
noncoding regions of the genome. A major advantage of GWAS as
a means of discovering the biological basis of psychiatric disorders
is that the lack of a priori, gene centric hypotheses enables
discovery of trait regulatory variants in enhancer and promotor
regions, lncRNAs, microRNAs, and any other molecular entity that
is part of the gene-regulatory mechanism. However, in contrast to
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variants within coding genes, it is far more difficult to link
statistically significant genetic associations to the gene products
and biological mechanisms through which they act [9]. Inter-
pretations of significant GWAS findings are complicated by
patterns of related inheritance (e.g., linkage disequilibrium), such
that the most strongly associated genetic variant in a locus may
not be “causal” but could “tag” a true causal variant. This, coupled
with long distance genomic regulation, poses challenges for
unveiling specific genes and variants underlying human traits via
GWAS [10]. In this review, we highlight how regulatory genetic
variants can be integrated coherently with coding genes within
and across species using unifying data structures.
A second challenge with GWAS is that power analyses reveal

that the massive polygenicity underlying psychiatrically relevant
traits and illnesses requires larger sample sizes for additional
discoveries from GWAS data alone [11]. Likewise, the predictive
power of a polygenic risk score (PRS), an index of aggregated
genetic susceptibility to a disorder, for psychiatric disorders is also
directly linked to the current statistical power of discovery GWAS
[12]. However, the identification of additional trait-associated
variants continues to substantially augment SNP-heritability
estimates, especially in the case of rare variants, suggesting that
there is more signal to be found in GWAS and sequencing studies
[13], provided that higher sample sizes continue to be attained. In
this review, we highlight approaches that exploit complementary
data resources from model organisms that, when placed in an
integrative framework with GWAS data, are showing some
promise in prioritizing variants that are detected.
Third, consistent with indications from early family and twin

studies, there is evidence for pleiotropy among psychiatric traits to
a degree suggestive of an underlying dimension of genetic
liability that parallels the general factor model of psychopathology
[5, 14]. Thus, it is important to consider variants in context of both
the underlying neurobiological mechanisms in which they
function, and the multiple traits that are influenced by that
variation to find the specific, as well as the overlapping biological
mechanisms underlying behavioral traits.
A landmark contribution to our current ability to annotate

GWAS signals arise from FUMA [15], a platform for functional and
regulatory annotation of variants. Summary statistics from a GWAS
can easily be aligned with tissue and cell-type-specific expression
data and to a variety of regulatory and chromatin signatures with
no computational burden on the user, making FUMA widely
accessible. As an alternative to gene-based mapping techniques,
software tools can also map variants to the noncoding tran-
scriptome (e.g., LincSNP 3.0 [16]). Beyond variant mapping,
harnessing multiple sources of omics data can be utilized in a
multivariate framework to implicate “causal” gene sets for a
disease state (e.g., SMR [17], iRIGs [18], PAINTOR [19], FOCUS [20]).
Efforts are also underway, with varying degrees of success, to
demonstrate to what extent similar regulatory enrichment of PRSs
could enhance prediction (e.g., AnnoPred [21], LDpred-funct [22]).
However, most of these approaches have been limited to human
genetics and genomics data. In this review, we highlight
approaches that bring together the breadth and depth of well-
controlled model organism studies that place genetic and
genomic findings in biobehavioral context that can expand on
this or other interpretive tool sets.

MULTI-SPECIES GENOMICS TO ADDRESS CHALLENGES IN
GWAS VARIANT INTERPRETATION
Across these historical and contemporary research challenges, Big
Data approaches that harness information from additional
sources, including cross-species genomic analyses, can provide
elegant solutions to current barriers in psychiatric genetics
[18, 23]. It cannot be understated that we need better-powered
GWAS, especially as we look to polygenic scores as a means of

leveraging the modest effect sizes from GWAS. However,
increasing the sample size alone may be merely a theoretical
solution for certain traits where rare variation and modest effect
sizes contribute substantially. Incorporating evidence from mole-
cular and cellular biology shifts the focus of genome-wide
analyses from variant detection and identification to evaluating
the relative contribution of a prioritized subset of loci. This helps
control the family-wise error rate, thus increasing power, and
provides context about the genome at multiple levels (i.e.,
structure, function, and regulation) while also accounting for the
polygenicity of a trait. Leveraging information from annotated
genomic regions that affect gene function was shown to robustly
increase the power to identify genomic associations across 27
human traits [24].
There is extensive information available from human and model

organism functional genomics that may be brought to bear on
human GWAS findings in the context of specific behaviors, tissues,
and molecular mechanisms [25, 26]. Prior to the widespread
availability of human ‘omics data, some of the earliest efforts to
characterize the mechanism of variants detected in human
association studies relied on expression of orthologous genes
from studies performed in animal models. The rich data resources
from these studies continue to be valuable due to the breadth and
depth of studies that are possible in animal models, under
precisely controlled conditions of drug exposure and other
neurobiological or behavioral processes. Further, model organism
data also contain a rich source of expression regulatory
information including expression quantitative trait locus (eQTL)
and epigenetic data from many tissues and brain regions, some of
which is collected in populations that facilitate the global
correlation of transcript abundance to neurobiological and
behavioral parameters [27]. Integration of functional genomic
information from multiple species into GWAS provides new clues
about the biological context and consequences of genetic
associations and PRSs, and provides insight into how to model
such variation in in vivo preclinical models with intact central
nervous systems and expression regulatory machinery.
Below, we illustrate the promise of harnessing these model

organism data, for which decades of comparative behavioral
research has produced numerous experimental paradigms aimed
at consilience, such as drug self-administration and response
studies across multiple mouse and rat populations in genetics and
genomics [28]. We propose methods for integrating valuable and
ever-expanding complementary model organism and human
genetics and genomics data (such as GTEx [29] and GeneNet-
work.org [30], psychENCODE [31] and modENCODE [32]) and
highlight new approaches for boosting power in human genetics
through Bayesian inference in heritability and polygenic analyses,
outline exciting developments aimed at bridging the “analytic
currency” gap between human and model organism research, and
present some technical and philosophical challenges. The over-
arching goal of this review is to focus on ways in which we might
utilize the complementary strengths of human and animal
genetics to advance their common research mission: gaining a
better understanding of the biology of complex traits.

Potential and challenges for model organism data integration
There is considerable and growing interest in employing nonhu-
man animals to meet some of the challenges for human genetics
outlined above. There is a tremendous depth and breadth of
model organism genetics and genomics studies spanning many
areas of behavioral and neurobiological parameters. These include
differential expression studies following various behavioral and
drug exposure paradigms [33], large-scale screens of gene-
targeted deletion mutants [34], and genetic studies in populations
such as the BXD RI mouse lines [35] and inbred strain panels [36],
which often combine gene expression and genetic analysis.
Numerous QTL positional candidates have been identified from a
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large number of behavioral and neurobiological mapping studies
[37]. Selective breeding in rats and mice have been able to
separate alcohol preferences [38, 39] and chronic use/withdrawal
[40]. These data provide a rich backdrop and context in which to
interpret the more global phenotype or disease information that is
the frequent subject of GWAS analysis.
Animal geneticists have a rich history of using model

organisms to study behavioral traits that mirror aspects of human
psychopathology. Many of the genes and variants identified in
model organisms are also now also being found in human GWAS
studies (Table 1), indicating that convergence of these studies is
feasible. To date, model organism evidence has largely been used
as a form of post-GWAS validation to characterize significant SNP/
gene effects (e.g., [41, 42]). There have been a few promising
recent examples of model organism research that, when coupled
with human GWAS findings, have revealed insights into the
biological mechanisms underlying psychiatric disorders. Model
organism data have also produced experimental insight into
disease mechanism. For example, researchers used mouse
models to study the effect of a particular protein, complement
component 4 (C4), on synaptic mediation during development
[43]. By using a mouse model in conjunction with convergent
evidence from human genomic studies, researchers were able to
study the effects of C4 gene deficiencies on synapse elimination
during postnatal development in a way that is not possible in
humans. Researchers are beginning to leverage model organism
genomics directly in the context of human genetic studies. For
instance, gene co-expression networks associated with mouse
neurodegeneration phenotypes demonstrated enrichment for
human GWAS associations with Alzheimer’s disease [44]. Inte-
grative methods for jointly analyzing model organism data
directly with human GWAS are under active development. One
recent example identified novel brain mechanisms of alcohol use
and dependence by coanalyzing human GWAS, human
protein–protein interaction networks, and mouse gene co-
expression data. In doing so, the researchers interrogated
ethanol-responsiveness genes obtained from mouse gene
expression data of the PFC, VTA, and NAc [45].
Despite this substantial progress, there remain conceptual and

technical challenges for data integration across species. These
occur at the levels of phenotypic comparison, genetic conserva-
tion, and computational scale. A major challenge at the phenomic
level is that any effort to integrate evidence across model
organisms and humans must acknowledge that human psychiatric
diagnoses and classifications are often based upon clinical
instruments and nosology that are not easily transferable to
model organisms, therefore efforts to “diagnose” animal models
are discouraged. However, it is apparent that aspects of a disorder
can transfer across species and be easily captured with experi-
mental data, and increasingly, GWAS of psychiatric disorders are
providing corroborating support for variants that influence both
disorders and their trait-like manifestations that may be recapi-
tulated in model organisms [46]. For example, it was recently
shown that ethanol responsive genes in mouse prefrontal cortex,
nucleus accumbens and ventral tegmental area were over-
represented in GWAS for alcohol dependence in the Irish Affected
Sib-Pair Study of Alcohol Dependence and the Avon Longitudinal
Study of Parents and Children [26]. The identification of network-
level associations between humans and mice suggests shared
sensitivity in ethanol responding, and thus can serve as support
for nominal GWAS signals. However, far more complexity and
heterogeneity than ethanol response underlies alcohol depen-
dence in humans. Recent genomic distinctions identified between
the consumption (AUDIT-C items 1–3) and the problematic
(AUDIT-P items 7–10) subscales of the Alcohol Use Disorder
Inventory Test (AUDIT) [8], [47] echo similar findings in model
systems, the data from which will be critical for the interpretation
of molecular mechanisms [48].

There is concern that comparative, multispecies approaches will
not be as readily feasible for certain psychiatric traits. Behavioral
characteristics including speech, language, and certain executive
and metacognitive functions are also impossible to assess in
model organisms. It should be noted that, most studies that
attempt comparative genomics across species are based on
limited genetic diversity, often comparing a single idiosyncratic
strain to a small sample of the population of humans, e.g., [49],
and therefore cannot discern between individual differences
within populations and between species. For some disorders,
there is a substantial role of brain structures that are under
developmental control of poorly conserved genomic regions,
leading to significant cross-species differences in these structures
[50]. This potentially could preclude detection of genetic variants
that regulate disorders through effects on the development of
these structures. Following this logic, some aspects of substance
use disorders are served by neural structures that show more
conservation and may be more likely to provide convergent
mechanistic evidence for overt characteristics of drug intake,
withdrawal, compulsive responding even with choice and punish-
ment, but perhaps not “desire to quit” or other metacognitive and
psychosocial aspects of addiction.
However, all psychiatric disorders including SUDs are highly

complex traits likely involving many risk loci. Some of these effects
are manifest across species, even if the end result in humans
includes behavioral output not readily observable in nonhuman
model organisms. Therefore, one can model the effects of genetic
risk variants on more proximal biological consequences; for
example, one might study the influence of C4 variation [43] on
endophenotypes captured in Research Domain Criteria (RDoCs)
including synaptic excitability, or neuronal reactivity and the
various startle phenotypes it is associated with, but not all of the
species-specific cognitive and behavioral output that are central to
the disease pathology. Historically, the field has been distracted by
pharmacologically predictive characteristics that have little face
validity with the disorders to which they are applied [51]. Below
we describe how cross-species comparative genomics provides a
tool that can be used to identify what aspects of the human
disorder are reflected in model organism genomics, allowing data-
driven discovery of the relations among traits across species [52].
At the genetic conservation level, cross-species genetic research

has been hindered by the “analytic currency” problem. Human
geneticists typically work at the variant level, and genomics data,
particularly from expression studies, are often reported at the
gene or transcript level. Prior efforts at model organism follow-up
of human GWAS data were limited to human variants that could
be positionally assigned to a gene, but as described below, this is
no longer the case. As is evident from regulatory mapping
analyses, the action of a variant does not readily correspond to the
most proximal gene, or even a single gene. Further compounding
the problem, noncoding regulatory variants are often found in
poorly conserved regions of the genome, which renders cross-
species gene orthology mapping challenging and variant map-
ping through sequence alone, impossible in many cases. There-
fore, approaches that exploit both gene orthology and
convergence of variant regulatory relations are most promising
toward relating trait regulatory variation across species.
In the case of intragenic variants, current methods use

transcript and protein annotations to identify causal SNPs based
on the severity of mRNA and protein modifications [53] and other
functional consequences [54]. However, the majority of SNPs are
intergenic, suggesting the involvement of distal gene-regulatory
mechanisms (e.g., chromatin accessibility). Therefore, the common
approach of associating SNPs to nearby downstream and
upstream genes can elicit false positives [55] and therefore it is
necessary to use data from gene eQTLs, epigenetics, and 3D
genomics to assess the relationships among regulatory variants
and their distal targets. Although most prior variant-to-gene
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annotation efforts have relied on positional approaches, i.e.,
assigning SNPs to genes based solely on physical proximity (e.g.,
MAGMA software [56]), modern approaches in humans rely on
extensively curated functional and regulatory mapping from
‘omics data (e.g., S-PrediXcan software [57], TWAS [58], Hi-C
coupled MAGMA or H-MAGMA software [59]).
However, all of these approaches have almost exclusively used

data from human genomic analyses. Similar approaches have been
deployed in model organisms, but the integration of resources
across species has remained rather incomplete, limiting the

approach to a small number of applications. To facilitate cross-
species analysis, integrative data analyses have historically relied on
gene homology associations from model organism databases [60]
and gene orthology services [61]. Analysis involving multiple species
therefore most often occurs at the gene level, introducing a GWAS-
specific integration challenge: the need to associate genetic variants
with genes. For complex disorders, such as schizophrenia and SUDs,
this often requires characterization of the regulatory nature of
genetic variants associated with disease, or identifying functional
variants in submolecular domains of drug targets that could confer

Table. 1. Genes identified in both human GWAS and model organism genetic studies.

Human gene Model
organism

Year of
publication

Model organism
publication (PMID)

Trait Date Human publication (PMID)

Trait

MPDZ Mouse 2002 11978849 Alcohol withdrawal 2009 19175764 Alcoholism

MC1R Mouse 2003 12663858 Analgesia 2003 12663858 Analgesia

OPRM1 Mouse/Rat 1994/1998 7982048/9512064 Pain genetic variation/
alcohol intake

1998 9756053/
9689128

Alcohol dependence/opioid
binding, addiction

GAD1 Mouse 1994 8974318 Alcohol withdrawal 2007 17034009 Alcoholism

CHRM5 Mouse 2002 11900778 Increased drinking 2004 15292665 Schizophrenia

GABRB2 Mouse 2003 12490572 Action of alcohol 1999 10195814 Alcohol dependence

ALDH2 Rat 1991 2053491 Alcohol drinking behavior 1982 7180842 Alcohol metabolism
Caucasian/Asian

ALDH1 Mouse 1996 4015840 Alcohol metabolism inbred 1983 6354999 Alcohol metabolism
Caucasian/Asian

FAM53b Mouse 2016 26581503 Cocaine 2014 23958962 Cocaine dependence

PPP1R1B Mouse 1998 9694658 Drugs of abuse 2006 16237383 Amphetamine experience

CSNK1e Mouse 1999/2005 10591541/16104378 Amphetamine/cocaine-
induced stimulation

2006 16237383 Amphetamine experience

COMT Mouse 1975/1998 1185192/9707588 Differential seizure
susceptibility/KO social
behavior

2003 12716966 Methamphetamine brain
response variation

DBH Mouse 1991/1999/
2000

1684202/10594079/
10777779

Altered norepinephrine and
serotonin/seizure/alcohol

2000 10673769 Cocaine-induced paranoia

DRD1 Mouse 1994 8001143 Cocaine behavior 1997 9154217 Addictive behavior

DRD4 Mouse 1997 9323127 Supersensitive cocaine 1993 8216280/
8268330

Alcoholism/delusional
behavior

DBH Mouse 1992/2000 1542654 /11093800 Ethanol induced 2000 10975602 Smoking cessation

DDC Mouse/Fly 1986/2006 3703899 /16783013 Drug studies locomotor
behavior

2005 15879433 Nicotine dependence

HTR3A Mouse 2001 11685380 Conditioned place preference 2001 11207027 Schizophrenia and bipolar

HTR5A Mouse 1999 10197537 Activity/lsd 2009 19328558 Bipolar

ARRB2 Mouse 1999 10617462 Morphine analgesia 2006 16894395 ADHD

GRIN3A Mouse 2005 15866554 PPI 2009/
2011

20016182/
20084518

Alzheimer/nicotine

NRXN1 Mouse 2009 19822762 PPI, learning, grooming 2005 16451640 COGA

HP1BP3 Mouse 2016 27460150 Cognitive aging

DAT1 Mouse 1998 10195128 Cocaine IVSA 2001 11449401 ADHD

GRIN2B Mouse 1996 8789948 Abnormal startle 2000 10945659 ADHD, ODD and conduct
disorder.

CHRNA3 Mouse 1999 10318955 Megacystis-microcolon-
intestinal hypoperistalsis

1998 9758605 Epilepsy

CHRNB4 Mouse 2004 14996991 Seizure 1998 9758605 Epilepsy

CHRNA6 Mouse 2002 11927835 Nicotine 2002 12195439 Epilepsy

CHRM1 Mouse 2001 11752469 Hyperactivity 2003 14504414 Psychiatric symptomology

CHRM2 Mouse 1999 9990086 Impaired drug response 2002 12116189 Depression

CYP2A6 Mouse 1989 2733794 Altered metabolism 1998 9655391 Nicotine metabolism

CYP2B6 Mouse 2010 19923441 Nicotine pharmacokinetics 1992 1736885 Drug metabolism

NTRK2 Mouse 1993 8402890 Neonatal death 2005 15838534 Eating disorder

SHC3 Mouse 2005 15716419 Spatial memory 2007 17179996 Nicotine

DNM1 Mouse 2007 17463283 Abnormal motor capabilities/
coordination/ movement

2008 18806795 Exercise-induced collapse

TAS2R38 Mouse 2014 mousephenotypes.org Limb grasping 2005 15466815 Taste

APBB1 Mouse 2004 14689444 Abnormal spatial learning 1998 10079843 Alzheimer disease

NRG3 Mouse 2016 27606322 Abnormal behavior 2008 18708184 Schizophrenia

DRD2 Mouse 1995 7566118 Impaired coordination 1991 1832466 Neuropsychiatric disorders
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vulnerability or resistance to various treatments. However, noncod-
ing regions of the genome are often very poorly conserved across
species, and the targets of the variants can be far away. Moreover,
many of the implicated noncoding variants in GWAS reside in gene
expression regulatory regions [62]. Here, we highlight solutions for
the assessment of conserved effects of variants through their
orthologous genomic targets to support a wide-range of applica-
tions in integrative functional genomics (Fig. 1).

SOLUTIONS FOR DATA-DRIVEN CROSS-SPECIES ANALYSIS
Broadly speaking, integration of multispecies functional genomic
data can occur in two ways—from the phenomic or genomic
orientation. For example, top-down, trait-based approaches to
cross-species analysis utilize the similarity of human disease-
related phenotypic profiles to model organism phenotypic profiles
to identify gene-disease associations [63]. These approaches,
embodied in resources developed by The Monarch Initiative [64]
identify similar phenotypes across species through integrated
ontologies and semantic similarity methodologies that apply
semantic reasoners to a unified knowledge graph [65]. Such
phenotype-driven approaches, which leverage multispecies data,
have been effective at assisting rare disease diagnosis [66] and
improving identification of causal genetic mechanisms [67], but
these approaches are challenging to apply in the context of high
phenotypic and genetic heterogeneity due to the extensive
differences among species in the behavioral manifestations of
neurobiological variation.
In highly complex psychiatric disorders in which model

organism traits may only capture a facet of the human disease,
alternative bottom-up strategies that aggregate genomic data
may be more suitable for identification of the driving genetic
mechanisms associated with complex traits and disease. The
varieties of biological entities—genes, proteins, variants, methyla-
tion sites, and chromatin states for example, which can be
characterized via genome-wide experimentation, pose a challenge
for integration and analytic efforts [68]. These challenges may be
mitigated via combinatorial integration of fundamental data
attributes into generalized data structures that can be mined for
patterns or emergent gene-disease relationships. GeneWeaver
[69], for example, relies on a bipartite data model [70] and
heterogeneous data networks [71] to integrate and analyze
functional genomics data such as differential expression studies,
GWAS, curated annotations, and QTL mapping studies through a
single data structure that facilitates aggregation of information.
Harmonizome [72], on the other hand, aggregates functional
genomics studies from a variety of sources by implementing an
association matrix across shared attributes and relying on machine
learning approaches to identify novel patterns.
Fundamental integration through knowledge graphs may also

be applied to large-scale heterogenous analysis. KnowEng [73]
uses a knowledge network to navigate the integration of statistical
experimental data and contextualized user information to identify
human and mouse interactions. Aggregated knowledge networks
can be analyzed using traditional network mining approaches or
machine learning. Other tools, such as HumanBase [74] or the
DIAMOnD [75] algorithm, also take advantage of traversing large
ad hoc networks of functional connectivity. Networks are
navigated through machine learning or association matrices to
connect multispecies gene or variant relationships.
There are many approaches to cross-species comparative

genomics and phenomics integration (e.g., Table 2) and analysis
must optimize among competing needs of computing scalability,
data accessibility, and data scope. For example, the sheer number
of variants in humans and rodents and the unbounded phenotype
dimension lead to the problem of phenomenal computational
scale. The tremendous heterogeneity of model organism datasets,
from mutation characterization studies, curated pathway and

gene annotation sets, and extensive genetic and genomic data at
the level of genes and variants, presents a problem of size, scope,
and complexity, in the realm of big data problems, requiring
computationally scalable solutions.

BIG DATA AND THE INTEGRATION OF HUMAN AND MODEL
ORGANISM STUDIES IN PSYCHIATRIC GENETICS
Cross-species analysis typically happens at the level of abstracted
relations among variants or genes and can thus be quite reduced
in scale. However, (1) the scope of genomic studies is completely
unbounded and it is possible to find hundreds, if not thousands of
animal studies of disease-relevant neurobiology and (2) the
parsing and representation of genomic variants from diverse data
sources and their mappings onto one another does not scale so
easily. Retaining this traceable mapping while allowing integrative
and interactive analysis is a problem of high complexity and scale.
The storage, analysis, distribution, and integration of human and
model organism functional genomic data are especially challen-
ging, as they embody typical problems encountered in the big
data world [76] often referred to as the four V’s of data—volume,
variety, velocity, and veracity.
The sheer volume of data required to support comprehensive

cross-species data integration of genes and individual variants is
staggering. For example, if we assume that the average number of
coding genes in mammalian genomes is ~25,000, then construct-
ing rudimentary connections among the genes in five species
would produce 1/2n(n−1) relationships, where n is the number of
genes in the network. If represented as a graph, with each edge
representing a relationship, the graph would be enormous but
tractable, comprising ~7.8E9 edges. But, the genome is only one
dimension of the problem. The other is the sheer number of
contexts in which that genome is experimentally profiled. With
thousands of human and model organism addiction genomics
datasets, and hundreds of thousands of species-specific pathway
data, brain regional transcriptomes and other relevant data
resources, one quickly reaches a problem requiring scalable
solutions. Analysis of a handful of organisms can therefore be
handled with large, conventional high-performance computing
systems. At the variant level, however, the relationship problem is
greatly compounded. Known variants, which outnumber genes
within the typical model organisms by more than 20,000–1, would
naively require ~1.25E17 edge relationships. While intelligent
approaches for computing on large graphs, such as taking
advantage of partitioning [77], sparse connectivity [78], or
heuristics [79], can aid in the management and analysis of these
relationships, exhaustive examination of static graphs of this
potential size is intractable due to computing limitations, storage,
and real-time accessibility. As the number of genomic experiments
continues to grow, particularly in the model organism space, one
viable option may be the dynamic analysis of datasets using
elastic on-demand cloud services that make use of horizontally
scalable computing to efficiently distribute computing tasks to
address very specific questions.
A corollary to the volume/variety of data associated with variant

mapping across species is the velocity at which it is produced,
and, subsequently, the rate at which it must be collated, curated,
and made accessible. With over 4500 eukaryotic genomes
assembled over the last decade [80], it has been argued that
genome-scale data will be bigger than Big Data associated with
astronomy, YouTube, and Twitter by 2025 [76]. To complicate the
processes used to integrate the vast scope of data are data
sharing policies that historically do not require automated sharing
of model organism data, resulting in data analysis processes that
result primarily from ad hoc relationships [81]. To mitigate the
stresses imposed by data velocity, it is critical to devise a means to
access, integrate, and dynamically update these data in a manner
that avoids redundancies and keeps data provenance intact. While
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it is inevitable that there will be an uneven integration of data
from a variety of sources, it is incumbent on the bioinformatics
community to create systems to rapidly track intentional
methodologies for data cleaning and reduction through the
discovery of duplicated or deprecated data.

By addressing these problems in Big Data, scalable applications in
integrative functional genomics for psychiatric genomics are
enabled (Fig. 2). The integrated, global mapping of trait regulatory
variants across species through target genes can facilitate the
integration of model organism genomic data to fill the mechanistic
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knowledge gap between noncoding human genetic variant and
human disease. This integration can be accomplished through the
aggregation of curated and high-throughput experimental data
from multiple domain-specific resources. Data resources such as
GTEx [29], ENCODE [82], and Roadmap Epigenomics [83] provide
extensive coverage of genomic regulatory features and gene-
regulatory mechanisms. High-level regulatory features including
CTCF binding sites, enhancers, open chromatin, promoter, promoter
flanking, and transcription factor binding site attributes can all be
retrieved from regulation databases [84]. These features can be
annotated to genomic variants from the Ensembl variation database
[85], for example, to identify regulatory variants within regions of
interest. Identifying putative regulatory interactions between
regulatory variants and genes can be accomplished through

layering several approaches. Topologically associated domains,
verified from Hi-C studies and integrated from published studies
and the ENCODE resource, can be used to delineate putative gene-
regulatory boundaries and all combinations of regulatory variants
and genes that are associated within the boundary. Experimentally
confirmed feature-gene interactions mediated by RNA polymerase II
and identified using ChIA-PET studies, sourced from ENCODE and
various publications, can also be used. Finally, eQTLs can identify
variant influences on specific genes.
Compounding the issues encountered by the complexity of raw

data is the potential for underlying data bias and the subsequent
difficulty of attributing veracity to the data. There is an implicit
bias in the sampling of genes represented in an experimentally
derived genomic data set because each genomic technology and

Table. 2. Tools for Functional Genomics Data Integration.

Tool Name Description Strategy

AnnoPred Estimates PRS using genome-wide variants that are differentially weighted based on the
integration of evidence across GWAS summary statistics and multiple annotation
resources for different tissue types, genomic features, and the functional assessment
of SNPs.

Bayesian framework integration

DIAMOnD This tool identifies potential variant-to-gene associations based on module inclusion.
Uses an algorithm for detecting disease modules based on network connectivity.

Algorithm for network module analysis

ENCODE Screen Useful for discovering the potential regulatory role of genetic variants using cis-
regulatory elements from ENCODE data in human and mouse.

Database

FOCUS Used to determine gene–trait associations from transcriptome-wide annotation studies
using LD among SNPs and eQTL weights embedded in a probabilistic model.

Probabilistic systems framework

FUMA Online tool to visualize and aggregate positional, eQTL, and chromatin interaction maps
to perform enrichment analysis of human GWAS data. Can be used to associate genetic
variants to target genes based on eQTL and chromatin interaction studies.

Tools pipeline and visualization

GeneNetwork Set of variant, expression, and eQTL multispecies tissue specific datasets used to link
genetic maps to disease and phenotypes of interest.

Database, statistical and
probabilistic tools

GeneWeaver Multispecies data integration tools that allow users to identify putative genes of interest
based on shared or unique genetic or variant data of interest. Tools available to map,
manage, and analyze large datasets.

Bipartite, k-partite, combinatorics,
network analysis

H-MAGMA A modified version of MAGMA that extends gene-to-variant mapping by including long-
range loci interactions predicted by Hi-C.

Statistical multiple regression models

Harmonizome Online resource for data integration from existing genomic resources. Association matrix, machine learning

HumanBase Online tools for tissue specific gene and network interactions. Association network, machine learning.

KnowEng Integrative analysis following formatted pipelines for knowledge discovery. Knowledge network, machine learning

LDPred-funct Used to derive polygenic scores using multiple genetic variants. LDpred-funct estimates
polygenic effects by employing a model that accounts for LD and identify trait-specific
priors that are based on posterior casual associations.

Probabilistic modeling

MAGMA Software tool used to assign GWAS identified variants to genes, based on physical
proximity, and perform joint and conditional association models that examine gene-,
gene-set, and interaction effects.

Statistical multiple regression models

modENCODE Collaborative data set for genomic functional elements across several species, used to
define genomic regions and variants of interest.

Database, ModMine toolset

Monarch Semantic integration of phenotypic disease associations to identify underlying genes. Knowledge graph

PAINTOR Used to determine SNPs to be tested for phenotypes of interest. Predicts the impact of
multiple casual variants on genomic annotations by incorporating summary associations
statistics, functional annotations, and LD statistics.

Probabilistic systems framework

psychENCODE Collaborative data set for genomic functional elements, used to define genomic regions
and variants of interest in the brain.

Database, ModMine toolset

S-PrediXcan Used to predict gene associations to disease using gene expression levels to mediate
summary GWAS and measured transcriptome studies without the need to use
individual-level data.

SMR Identifies genes with expression levels and pleiotropic associations with diseases of
interest via the integration of GWAS variants and expression data derived from eQTL
studies.

Mendelian randomized analysis

TWAS Identifies expression–trait associations by creating putative transcriptome-wide
associations derived by integrating gene expression measurement with GWAS estimated
associations.
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especially a curated genomic data resource is based on a different
breadth, e.g., individual mutation studies curated from literature
by the model organism databases vs. genome-wide gene
expression by RNA-seq data. Differing approaches affect the rate
of false positives in the data set. For example, QTL positional
candidate sets may have many genes with likely only one or a few
true positives, in contrast to differential gene expression sets for
which the statistical threshold defines a false discovery rate.
Semiquantitative or quantitative scores for these datasets need to
be created to reduce our reliance on qualitative scoring.
Enrichment analyses and systems genetic correlation tools suffer
from annotation bias in that one often retrieves results
representing areas of investigation that are dense with informa-
tion, resulting in apparent patterns and trends that are an artifact
of coverage. Data resources like GTEx also suffer from biases based
on uneven sample size, and the particular tissues and conditions
investigated. The net effect of the uneven statistical power in
these data resources is to upwardly bias well-powered but less
relevant findings, in which tissues or phenotypes are spuriously
associated with disease. Therefore, it is important to consider
error-rate controls, and other procedures, but also the uniformity
of analysis in the data used in analysis.
Multitissue eQTL data can be integrated to provide context-

specific variant mapping. Primarily derived from the GTEx project
or model organism resources such as GeneNetwork [30], data
from mouse, rat, and human genetics experiments represent a
diverse and deep pool of data. Single cell RNA (scRNA) enables the
exciting possibility to investigate eQTLs and gene co-expression in
complex, multicellular tissues. For example, scRNA sequences have
been used to create high fidelity classifications of brain regions
based on local variants [86].
Furthermore, scRNA has been used to identify cell-type-specific

cis-eQTLs and variant co-expression networks [87]. Gene expres-
sion genetics studies in model organisms have tremendous
precision with new populations like the Diversity Outbred
segregating 45 million mouse genetic variants comprising 90%
of the known mouse genetic variome [88]. Recombinations are at
extremely high precision, and large mapping population sample
sizes for an increasing number of brain regions, and the derivation
of this population from eight founder strains provides a means of
reducing eQTLs to a small handful of regulatory variants at the
SNP level [89]. As such, it is possible to identify eQTL variants that

may affect one of several gene-regulatory mechanisms targeting a
human orthologue, and to assess its effect on mouse phenomics,
cellular gene expression, or other endpoints in silico, in vitro, or
in vivo. Many of these tools provide browser-based and limited
scriptable interfaces with continued adoption of new technolo-
gies, but exposing model organism eQTL data to large-scale
dynamic tools for graphical integration would be of tremendous
utility in readily enabling facile interrogation of variant-gene
relations.

MULTIPLE APPLICATIONS ARE READILY POSSIBLE WITH
INTEGRATED DATA STRUCTURES
A compelling approach to the prioritization of GWAS variants
enabled by Big Data integration is the use integrated cross-species
data to identify and characterize those variants with a known
mechanistic role in neurobiological pathways to disease, or to
identify human variants with highly specific hypothesized roles in
particular cases of disease, such as the widely studied ADH1B in
AUDs. Although current applications and analytic implementa-
tions do not fully take advantage of large-scale data resources, the
emerging scale of data and high-volume comparative analyses will
most certainly merit scalable approaches in the near future. Most
present approaches do not yet harness the full capacity of cross-
species comparative analyses at scale, and initial applications have
been necessarily focused on small, single locus problems.
However, these simple applications are ripe for extrapolation to
global questions about the neurobiological mechanisms of
addiction. One promising application of multispecies epigenomic
integration is comparative gene regulation. Now that character-
ization of gene-regulatory components (e.g., enhancers, TF
binding sites) and their putative gene targets is improving,
integrative methods can identify shared genomic regulators
across species. In one example, from studies on alcohol
dependence and cholesterol, at least 4000 SNPs from human
GWAS can be mapped onto the mouse genome [90]. Furthermore,
some of these SNPs, which are involved in human liver function,
can be mapped to liver-specific enhancers in mice [91]. This type
of comparative analysis could be used to identify convergent
regulatory features and variants across species, enabling the
development of mouse models for testing SNP causality in
humans. Integrative systems have successfully been used to
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identify disease-relevant genes and to identify gene-regulatory
SNPs involved in alcohol preference and withdrawal involved in
epigenetic regulation in mice at a distal enhancer element [92].
Query of public genetic data resources indicates that variation in
the same gene occurs in humans, via a promoter variant, rather
than an enhancer [93].
Several recent approaches have been developed for prioritiza-

tion of disease-relevant genes and variants from integrative omics
analysis. These tools utilize large integration pipelines coupled to
networking and statistical tools to establish a relative importance
(e.g., priority indexing) of variants across tissues of interest
focusing on immune-mediated traits. For example, Wang et al.,
develop a risk gene selection method, called iRIGs [18], which
incorporates GWAS and a number of genomic features including
expression, chromatin interactions, and gene-regulatory data into
a Bayesian framework for prioritization. This framework prioritizes
genes within a small 2 Mb region near risk loci identified from
GWAS using a select set of epigenetics including promoter,
enhancer, and chromatin interactions from Hi-C studies. A similar
approach, developed by Fang et al., utilizes a priority index (Pi)
pipeline [94] designed to prioritize genes from GWAS variants for
specific immune traits. Pi combines genomic predictors in the
form of gene proximities, chromatin interactions, and expression
modulation evidence (eQTLs) with network-based models to
prioritize trait–gene associations. To date, these approaches have
not been applied to model organism data, but they most certainly
can be. Furthermore, with the implementation of cross-species
variant mapping such as those presented in Fig. 1, they can exploit
the broad, heterogeneous multispecies data corpus.
Another application is to compare sets of trait-associated

human and model organism genomic data to identify similarly
regulated disease-relevant traits suitable for convergent validation
experiments. Mapping of human disease-related characteristics
onto model organism behaviors has been a controversial area of
research, and for many, the perceived relevance of animal models
is hindered by ever-refined definitions of face validity [95]. This
argument misses the point that a model is by definition a
simplification of a system that renders it amenable to particular
types of study, including validation. Animal models, themselves,
have successfully been used to measure the efficacy of drugs and
validate various drug targets [51]. Further, there may be sufficient
consilience between human disease traits (such as the various
aspects of alcohol use disorders) and those modeled in animals
(e.g., ethanol intake) at a genomic level (rg= 0.77 between
problem drinking and typical alcohol intake [3]) to allow for careful
cross-species data integration for these subfacets of human
disease. Research targeting behavioral mechanisms that do
converge across species does not discount or diminish the need
to study the remaining complexity in the human phenotype.
Rather, it serves as a powerful means of discovery of the nature of
vulnerability and resilience to those components of psychiatric
disorders that, in their many manifestations and potentially
relevant classifications, are amenable to biological insights, and
thus, promising targets for therapeutic discovery.
Finally, the prioritization of variants for use in polygenic risk

analysis can be refined. Savvy integrative methods can be
combined to achieve sets of variants that meaningfully contribute
to trait variation from a broad network of genes. Aggregating
across the tools and databases listed in the current review will
help researchers to match (1) variants to genes, (2) genes to
biological functions, (3) functions to plausible molecular mechan-
isms—ultimately achieving more robust effects with high signal-
to-noise ratios—and (4) traits and disease characteristics within
and across species. A few studies [96] have constructed polygenic
scores from variants in genes known for disease pathology or
targets co-expressed with putative trait genes from relevant brain
tissues (via GeneNetwork), both of which demonstrated increased
prediction than a random sets of genes and achieved trait

specificity in mice [96] and humans [97]. But not all biologically
informed polygenic scores exhibit significant prediction [98] and
these methods have not been benchmarked with classical
approaches selecting specific statistical criterion (e.g., p value
threshold; PRSice [99]) nor approaches that combine both
statistical and alternative biological information (e.g., LD; LDpred
[100], PleioPRED [101], AnnoPred [21]). A mixture of these
techniques is likely required to best inform gene and variant
prioritization in human GWAS studies.

FUTURE RESEARCH DIRECTIONS
The multiple strategies we have outlined can be used to address
the challenges and opportunities for the integration of diverse
model organism datasets to augment the interpretation of GWAS
and define genes and molecular pathways that underlie aspects of
psychiatrically relevant phenotypes. Heterogeneous functional
genomics leverages the combined information in population
genetic diversity, systems biology, gene-regulatory analysis, and
advanced phenotypic measurements to identify and characterize
mechanisms of psychiatric disorders of the greatest complexity.
Much work remains to facilitate dynamic data integration across
these data types. The continued generation of adequately
powered and broadly unbiased data resources in neurogenomics
is essential across multiple species. Data sharing policies and
practices along with platforms for data sharing and data
integration are required. Community standards and practices that
make data findable, accessible, interoperable, and reproducible
need to be adopted and resourced so that all researchers engaged
in the generation and analysis of integrative functional genomics
data have the capability of contributing to and benefiting from
data integration. Development of analytic approaches and
algorithms are also required for diverse applications in functional
genomic data integration. Scalable computational solutions that
allow for such high dimensional data integration will enable a
growing array of tools and approaches for the discovery of
unknown mechanisms underlying psychiatric disorders, providing
a more complete understanding of disease mechanisms.
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