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SUMMARY

Interstitial cells have a crucial role in cardiac fibrosis and repair of the mammalian
heart. Single-cell profiling using droplet-based technology has revolutionized
the investigation of cell states and identities. Here, we present a protocol for
the efficient isolation of high-quality live nucleated non-cardiomyocytes from
adult murine heart, for unbiased single-cell RNA sequencing using 103 Chro-
mium technology. This protocol has been applied to homeostatic and injured
hearts from different mouse strains.
For complete details on the use and execution of this protocol, please refer to
Forte et al. (2020).

BEFORE YOU BEGIN

Timing: 0.5–2 h

Preparation the Day before the Experiment

1. Prepare all buffers and solutions (see table below).

Note: Solutions, except for the Enzymatic solution, can be re-used for up to a month.

2. Autoclave dissection tools (2 set of dissecting forceps and scissors) and 1.5 mL Eppendorf tubes

in a glass beaker.

Preparation on the Day of the Experiment

Timing: 3 h

3. Cool down the centrifuges at 4�C. Turn on the water-bath to 37�C for tissue digestion. Prepare

two ice buckets (one for samples, one for the AutoMACS running buffer).

4. Turn on the AutoMACS and select the ‘‘Clean’’ program from the main screen, in order to have

the instrument ready for cell separation.

5. Prepare the dissection stage:

a. Place a Styrofoam lid covered with bench paper in a glass tray at a 45-degree angle.

b. Prepare labelled petri dish or 15 mL tubes for each of the hearts to be collected.

c. Have 2 set of dissecting forceps and scissors clean and sterilized.

6. In a laminal flow cabinet/tissue culture hood place:
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a. the enzymatic solution at 20�C–22�C.
b. the red blood cell (RBC) lysis buffer at 20�C–22�C.
c. the containers used for tissue digestion.

d. the collection tubes, one for each sample: 50 mL collection tubes each with a 40mm cell

strainer on top, pre-wet with 1 mL of fetal bovine serum (FBS).

e. bacteriological petri dish and scalpel/blades for dissection.

f. a dish or Falcon tube containing ethanol 70% and one with sterile PBS to clean the dissection

tools.

CRITICAL: keep samples and wash buffer on ice at all time; work under sterile conditions.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Phosphate Buffered saline (PBS) 13. pH 7.4 Thermo Fisher Scientific Cat# 10010023

Hanks’ Balanced Salt Solution (HBSS) 103 Thermo Fisher Scientific Cat# 14185052

Bovine Serum Albumin (BSA) Sigma-Aldrich Cat# A2153

Premium Grade Fetal Bovine Serum (FBS) VWR- Seradigm Cat# 89510-194

DRAQ5 eBioscience Cat# 65-0880-92

Propidium Iodine Sigma-Aldrich Cat# P4864

Red Blood Cell (RBC) Lysis Buffer Sigma-Aldrich Cat# R7757

Collagenase type II Worthington Biochemical
Corporation

Cat# LS004177

Trypan Blue Stain (0.4%) Thermo Fisher Scientific Cat# T10282

Ethanol 70% -140 Proof Koptec - DeconLabs Cat# V1401

Ethanol 100% - 200 Proof Koptec - DeconLabs Cat# V1016

EDTA disodium salt Fisher Scientific Cat# BP120500

Heparin sodium salt Sigma-Aldrich Cat# H3393

Critical Commercial Assays

Dead Cell Removal MicroBeads Miltenyi Biotec Cat# 130-090-101

Chromium Single Cell 30 Library & Gel Bead Kit v2 10x Genomics Cat# PN-120237

Chromium Single Cell A Chip Kit 10x Genomics Cat# PN-120236

Chromium i7 Multiplex Kit 10x Genomics Cat# PN-120262

Single Cell 30 Reagent Kits v2 Document 10x Genomics Cat# CG00052

Experimental Models: Organisms/Strains

Mouse: B6. Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J The Jackson Laboratory JAX: 007906

Mouse: Tg(Wt1-cre)#Jbeb (del Monte et al., 2011,
Wessels et al., 2012)

MGI: 5308608

Mouse: Tg(Col1a1-EGFP)#Dab (Yata et al., 2003) MGI: 4458034

Mouse: C57BL/6J The Jackson Laboratory JAX: 000664

Mouse: 129S1/SvImJ The Jackson Laboratory JAX: 002448

Other

Refrigerated benchtop centrifuge for 5, 15, 50 mL tubes N/A N/A

Refrigerated benchtop microcentrifuge for 1.5–2 mL tubes N/A N/A

IKA magnetic stirrer IKA Cat# 0003690601

(Continued on next page)
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MATERIALS AND EQUIPMENT

Note: The FBS is heat inactivated for 30 min at 56�C. Heat inactivated serum can be aliquoted

in 50 mL tubes and stored at �20�C. Before use, thaw in a water bath at 37�C. Remaining

thawed serum can be kept at 4�C for four weeks. To avoid extensive periods of refrigeration,

refreeze once in smaller aliquots. Avoid more than two freeze-thaw cycles to limit protein

degradation.

CRITICAL: BSAprecipitates rapidly and irreversiblywhenheatedat 50�Cor above. Donot auto-

clave but use sterile PBS for the running buffer, and syringe filter for the collection buffer (https://

www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/

a4919pis.pdf)

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

3 Eisco� glass pneumatic trough (for water bath) Fisher Scientific Cat# S89305

Autoclaved Erlenmeyer flask (50 mL) N/A N/A

Disposable transfer pipette N/A N/A

200 mL wide bore, low retention pipette tips with filter Rainin Cat# 30389188

DNA LoBind 1.5 mL tubes Eppendorf Cat# 022431005

Sterile bacteriological petri dish N/A N/A

Scalpel or blades N/A N/A

2 curved serrated Graefe forceps Fine Science Tools Cat# 11051-10

2 curved Walton scissors Fine Science Tools Cat# 14077-09

AutoMACS separator Miltenyi Biotec Cat# 140-00-531.03

AutoMACS column Miltenyi Biotec Cat# 130-021-101

FACS Aria II (5 lasers, 130 mm nozzle) BD Biosciences RRID:SCR_018091

Chromium controller 10x Genomics N/A

Hemocytometer N/A N/A

Autoclave N/A N/A

0.2 mm syringe filters FisherScientific Cat# NC9103939

Cell Strainers 40 mm Celltreat Cat# 229481

50 mL syringes N/A N/A

Magnetic bars N/A N/A

Solutions

Name Reagents Volume (mL)

Cleaning solution (for AutoMACS) 70% ethanol 600 mL

Rinsing solution (for AutoMACS) Autoclaved PBS w/o Ca+2/Mg+2 pH 7.4 600 mL

Running buffer (for AutoMACS) 0.5% BSA in PBS w/o Ca+2/Mg+2 pH 7.4 600 mL

Enzymatic solution 268 IU/mL of Collagenase type II in PBS
w/o Ca+2/Mg+2

15 mL per sample

Binding buffer (for dead cell removal) diluted 1:20 from stock provided with the kit
in autoclaved ddH20

6 mL per sample

Wash buffer (for cells) 2% FBS in PBS w/o Ca+2/Mg+2 50 mL

FACS buffer 2% FBS in PBS with 2 mM EDTA 50 mL

Collection buffer 0.04% BSA in PBS w/o Ca+2/Mg+2 50 mL

ll
OPEN ACCESS

STAR Protocols 1, 100077, September 18, 2020 3

Protocol

https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/a4919pis.pdf
https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/a4919pis.pdf
https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/a4919pis.pdf


CRITICAL: Lyophilized proteins, like collagenase, tend to absorb humidity (http://www.

worthington-biochem.com/tissuedissociation/working.html). For accurate measurements,

leave the Collagenase in a desiccator or at 20�C–22�C for at least 30 min before weighing.

CRITICAL: The dead cell removal beads are coated with molecules (i.e. Annexin V) which

bind to the phospholipid phosphatidylserine, normally located in the inner leaflet of the

plasma membrane and exposed on the surface of dying cells and during platelet activation

(Nagata et al., 2016, van Genderen et al., 2008) . This binding requires Ca+2, therefore EDTA

is not added to the AutoMACS running buffer for this application (for other applications,

running buffer contains 2 mM EDTA).

Alternatives: The protocol has been applied to 8–12 week-old mice from several different

strains and genetic backgrounds.

Alternatives: For tissue digestion, this protocol utilizes an autoclaved Erlenmeyer flask (50 mL)

with a magnetic bar, placed in glass container with water, on a magnetic stirrer with controlled

temperature. Alternatively, the digestion can be performed in single-use plastic histology

containers placed in a shaking water bath, manually pipetting the suspension with a transfer

pipette every 10 min. The gentleMACS Octo Dissociator (Miltenyi Biotec) provides a more

automated alternative but requires optimization to minimize cell death.

Alternatives: For dead cell removal, this protocol uses an AutoMACS with magnetic columns

reusable for 100 times or 1month, using the DepleteS program. Alternatively, single-usemag-

netic columns are available (LS columns, Miltenyi Biotec Cat# 130-042-401) and can be used

on a MACS multistand (Miltenyi Biotec Cat# 130-042-303) with a magnetic separator like

QuadroMACS separator (Miltenyi Biotec Cat# 130-090-976). In this case, prepare 12 mL of

binding buffer per sample (4 3 3 mL washes are required for each column); the elution time

may be longer than with the AutoMACS, depending on the cell density.

STEP-BY-STEP METHOD DETAILS

Cell Isolation

Timing: 3 h

Adult murine cardiac ventricular tissue is dissociated to isolate single interstitial cells (Figures 1 and 2).

Note: This protocol is adapted from a previous protocol (Chong et al., 2011).

1. After euthanizing the mouse according to the protocol approved by your own Institution, place it

on the dissection stage in supine position and fix the paws in place with four needles/pins.

a. Spray with 70% ethanol, cut the skin below the thoracic cavity, pull it up and place it under the

two top needles/pins.

b. Use a different set of tools for the internal organs (to avoid mycoplasma contamination

deriving from the fur/skin).

c. Open the rib cage: hold the lower edge of the sternum and pull it slightly up, cut upward along

the right side of the sternum, down on diaphragm from the right side to the left side of the

mouse and finally up on the left side to expose the full cavity.

Note: the heart will be pointing to the left so avoid starting the cut from the left side. This is

particularly important when dissecting mice previously subjected to myocardial infarction

(MI), with possible adhesion to the rib cage on the left side, and having a good view of the

heart from the right side is pivotal for correct dissection without damage.
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Figure 1. Workflow

Graphic summary of the main steps to obtain live nucleated single interstitial cells from adult murine hearts.
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d. Remove the heart (it is easier to run the tools along the abdominal aorta upward and cut the

heart from the back), collect the heart still beating in a dish containing in HBSS, dissect out the

atria and outflow tract, place on ice.

CRITICAL: If the cervical dislocation is not performed properly or the dissection takes too long

and the heart is not pumpingwhenplaced inHBSS, there are high chances of getting solid blood

clots in the ventricles. To reduce this risk, inject the mice intraperitoneally with Heparin, 5 min

before culling, about 50 USP units per mouse. The recommended dose is 20–50 units per mL

Figure 2. Images of Critical Steps

(A) Images of the set up before the experiment, which include preparing the buffers and turning on the AutoMACS;

preparing the ice buckets, the collection tubes, the dissection stage; refrigerating the centrifuges at 4�C and warming

up the water bath at 37�C.
(B) Images showing the dissection of the ventricles, enzymatic digestion in Erlenmeyer flask on a magnetic stirrer and

collection of the cell suspension in a collection tube (CT) on ice.

(C) Images of the Red blood cell (RBC) lysis step and the pellet suspension in dead cell removal beads.
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of blood; an adult mouse has an average of 58.5 mL of blood/kg body weight; 1.46 mL in 25 g

mouse (https://www.nc3rs.org.uk/mouse-decision-tree-blood-sampling from the National Cen-

ter for Replacement Refinement & Reduction of Animals in Research).

Alternatives: To distinguish resident from circulating immune cells, labelled antibodies can be

injected intravenously 1–3 min before culling the mice as in (Cochain et al., 2018).

2. Move to the tissue culture cabinet, cut the myocardium in small pieces 1 mm circa using a blade

or scalpel, on a bacteriological petri dish. Add 1 mL of enzymatic solution and mince again to

obtain pieces of homogeneous size. Transfer in a container (autoclaved Erlenmeyer flask (50 mL)

with a magnetic bar) with additional 7 mL of enzymatic solution using a wide bore 1 mL transfer

pipette.

Alternatives: The tissue suspension can also be transferred using a 10 mL

serological pipette; or 1 mL pipette tip, modified by cutting the narrow-edge of about

2 mm with a blade.

Note: aspirate some enzymatic solution before collecting the tissue fragments to avoid un-

wanted adhesion to the dry plastic surface of tip/pipette.

a. Place the flask in the glass troughs filled with distilled water pre-warned at 37�C on the mag-

netic stirrer.

b. Leave in agitation 250 rpm at 37�C for the first 15 min digestion. After gently pipetting the

suspension, collect the supernatant in the pre-assembled collection tube on ice (50 mL

tube topped with a 40 mm cell strainer, pre-wet with 1 mL of FBS). Leave the remaining tissue

fragments in the flask and add 7 mL of enzymatic solution for a second 15 min digestion at

37�C.
c. Wash cell strainer with 3 mL of wash buffer (2% FCS in PBS)

d. After the second digestion, collect the cell suspension through the strainer and wash with 3mL

of wash buffer.

Note: During the digestion pre-warn 1 mL aliquots of RBC lysis buffer at 37�C, in 1.5 mL tubes

(one per each sample).

3. Spin down the cell suspension preferably in a refrigerated centrifuge, 30 s at 600 3 g, 5 min at

300 3 g.

4. Red blood cell removal: resuspend the cell pellets in 1 mL pre-warmed RBC lysis buffer and trans-

fer in 1.5 mL Eppendorf tube. After 1 min, spin down in a refrigerated microcentrifuge at 300 3 g

for 5 min. Remove the supernatant, resuspend the pellet in 1 mL of wash buffer and spin down at

300 3 g for 5 min.

Alternatives: to reduce one centrifugation step, the RBC lysis can be also done in the original

50 mL collection tube. After 1 min, dilute with 10 mL wash buffer and spin down at 3003 g for

5 min.

CRITICAL: It is important to perform RBC lysis before the dead cell removal to prevent un-

specific depletion of viable immune cells. Immune cells can interact with activated platelets,

which bind the magnetic microbeads in presence of Ca+2. Therefore, complexes of immune

cells and platelets could be retained in the magnetic columns and depleted.

5. Dead cell removal: remove the supernatant and resuspend the cell pellet in 200 mL dead cell

removal beads. Incubate 10 min at 20�C–22�C in the dark. Place empty 50 mL tubes under

each exit port of the AutoMACS; the live cells will be eluted through the negative selection

ll
OPEN ACCESS

STAR Protocols 1, 100077, September 18, 2020 7

Protocol

https://www.nc3rs.org.uk/mouse-decision-tree-blood-sampling


port (‘‘neg’’) (Figure 3A). Transfer the beads-cell suspension in a 15 mL tube with 6 mL of binding

buffer, and place it under the uptake port. Using the touchscreen, select the ‘‘Separation’’ menu

and the depletion program ‘‘DepleteS’’ (Figures 3B and 3C). After completion start the ‘‘QRinse’’

cleaning program before performing the separation on the next sample. Estimated time of De-

pleteS and QRinse is about 5 min per sample, and the live cells will be eluted in about 8 mL of

running buffer.

Figure 3. Images of Critical Steps

(A) Image of the AutoMACS. The orange arrow indicates the intake port and the white arrow indicates the output or negative selection port (‘‘neg’’).

(B) Schematic representation of the autoMACS main screen.

(C) Workflow indicating the steps to perform on the AutoMACS per each sample.

(D) The eluted cell suspension is divided in two 5 mL FACS tube and centrifuged.

(E) Each pellet is resuspended in in 500 mL of FACS buffer with DRAQ5. PI is added after 5 min, before sorting.

(F) Full gating strategy for the selection of single live (PI-) nucleated (DRAQ5+) cells.
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6. Divide the cell suspension in two flow cytometry round bottom 5 mL tubes. Spin 8 min at 400 3 g

(the pellet should not be too compact to avoid doublets and breaking cells) (Figures 3D and 3E).

7. Resuspend cell pellets in FACS buffer (500 mL/tube). Add DRAQ5 at the final concentration of

2 mM and after 5 min at 20�C–22�C, add Propidium iodine at the final concentration of 3 mM

and transfer the cells on ice. Proceed to the flow cytometer. In the 5 min incubation time, prepare

the collection tubes: 1.5 mL tubes with 50–100 mL collection buffer, and vortex and/or place on a

tube roller shaker to equilibrate the tube walls with the buffer. The complete gating strategy can

be found in Figure 3F.

Note: The combination of DRAQ5 and PI is compatible with cells expressing green fluorescent

reporter proteins as ZsGreen1 and eGFP, when using a 5-laser flow cytometer. Other combi-

nations of dyes were tested as shown in Figure 4. We tested DRAQ5 5, 10, 20 mM in combi-

nation with DAPI 180 nM (stock 1 mg/mL, diluted to 1 mg/mL used 1:20). Both dyes intercalate

DNA: DRAQ5 permeates all cells, whereas DAPI permeates only dead cells. The percentage

of DAPIneg DRAQ5pos cells was very similar in the three conditions (Figure 4A) but by

increasing the concentration of DRAQ5, the intensity of DAPI staining would decrease, mak-

ing the separation DAPIneg/DAPIpos less clear. Therefore, we used the lowest concentration of

DRAQ5 (2mM) and replaced DAPI with PI which intercalates both DNA and RNA.

Note: We also tested Calcein Violet 450 AM, a dye which labels metabolically active live cells.

Once inside the cell this membrane-permeable compound is converted by intracellular esterases

in a membrane-impermeable violet fluorescent dye, which can be retained only by live cells with

intact membrane. We tested 3 concentrations (0.1, 1, 10 mM) with incubation of 20 min or 1h at

20�C–22�C, and found that 10 mM to be the optimal concentration, labelling about 30% of total

events both a 20 min and 1h. When combining PI 3 mM, DRAQ5 2 mM and Calcein 10 mM, we

observed a good overlap between DRAQ5 and Calcein but about 10% of the PInegCalceinpos cells

were not nucleated (Figure 2B). Given also the longer incubation time (20min 20�C–22�C followed

by an extra wash) we decided not to use Calcein in the final experiments.

8. Use a flow cytometer temperature at 4�C, preferably with a 130 mmnozzle. Collect 24,000–32,000

events, keeping the flow rate between 900–1,100 events/s and the sorting efficiency over 90%. In

these conditions, about 2 min per samples should be sufficient to collect the above-mentioned

number of events. See Troubleshooting.

Note:We used a 130 mm nozzle as the pressure on cells is 12 psi, which is half of the pressure

exerted by a 100 mm nozzle.

Note: We observed that with our preparation the cell counter Countess� II Automated Cell

Counter underestimated the real number of cells, possibly due to the wide range of cell sizes.

Additionally, time is an important factor, so rather than sorting the whole sample, counting

and risking cell death post-selection, we sorted just the minimum number of events required

for loading the right number of cells in the 103Chromium chip. We aimed to load 12,000 cells

per lane, which with the capture efficiency of 50% (Zheng et al., 2017) would result in about

6,000 cells lysed and sequenced, and a low percentage of multiplets (4.6% multiplet rate).

Based on previous tests and calculations we estimated an error of 20% between the number

of events sorted (when sorting with a digital efficiency over 90% on our instrument, a custom-

ized FACSAria II- BD Biosciences), and the number of cells counted with a hemocytometer.

Figure 4. Additional Combination of Dyes Tested for the Selection of Live Nucleated Cells

(A) FACS plots showing cells labelled with DAPI (180nM) and 3 serial dilutions of DRAQ5 (0.1, 1, 10 mM).

(B) FACS plots showing the gating strategy for cells co-labeled with PI, CalceinV450, and DRAQ5. Cells in Q1: Calcein +PI- (live metabolically active

cells) and Q4: Calcein-PI- were further subclustered based on the DRAQ5 expression (right panels, top and bottom, respectively). Percentages of

populations are reported on each plot and presented as average G SEM of 3 replicates.
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With a 25% loss after centrifugation, we estimated that 32,000 events would give us 12,000

cells to load. In preparations from hearts in later phases of remodeling (d14-d28 post-MI)

we observed higher efficiency of recovery (possibly due to the prevalence of larger-sized

cells), therefore 24,000 events were used.

9. Transfer the collection tubes with sorted cells on ice. Add 800 mL of collection buffer per tube.

10. Centrifuge at 300g for 8 min in a refrigerated swing bucket microcentrifuge.

Alternatives:When using a centrifuge with fixed rotor, we found that spinning for 4 min, then

turning the tubes and spinning for additional 4 min, helps to collect the cells at the bottom of

the tube, and reduce loss due to cells sticking to the wall of the tube. We recommend using

Low Retention Tube.

11. Aspirate the supernatant leaving �40 mL of collection buffer

12. Proceed following the 103 Chromium protocol. In (Forte et al., 2020) we used the version 2 chem-

istry, according to the protocol described here (https://assets.ctfassets.net/an68im79xiti/

16hQRgC8GoEgMOagGGCucm/a773eeb791949f8f9f6d6472771a7455/CG000075_Chromium_

Single_Cell_3__V2_Ref_Cards_Rev_C.pdf)

CRITICAL: Always use fresh 80% Ethanol for all the purification steps.

Note: Agilent Bioanalyzer High Sensitivity Chips were used for the quality control of QC the

cDNA and Library samples.

EXPECTED OUTCOMES

This protocol has been optimized for the isolation of single live nucleated cells, to reduce capture of

membrane fragments, debris, and dying cells in downstream single cell analysis. From an adult 8–12-

week-old mouse this protocol yields about 30% live nucleated cells (percentage of total events) and

recovers 0.8–1.6 3 106 interstitial cells, with less than 10% Trypan blue positive cells (by manual

counting with a hemocytometer).

Sorting 24,000–32,000 events for 103 Chromium, we captured an average of 5,210 cells per lane (num-

ber of cells estimated with CellRanger 2.0 analysis; 7,384 with CellRanger 3.0). We obtained an average

of 217G 91.2 ng of cDNAper sample and 0.025 ng of cDNAper estimated cell, in samples fromhomeo-

static hearts at 14–28 days post-MI (late remodeling). These values are nearly doubled in samples from 1,

3, 5, and 7 days post MI (inflammatory proliferative phase; 0.04–0.06 ng of cDNA per estimate cells).

LIMITATIONS

The current protocol is highly selective for viable and transcriptionally active cells due to the two steps to

remove dead cells/debris (magnetic beads removal and sorting). While this reduces the chances of co-

isolating dead cells or debris, cell types that are more susceptible to dissociation-induced cell death

maybeunderrepresented.While precise information on the absolute cell numbers is not feasible, relative

changes in cell composition can be compared among samples processed in the sameway. Compared to

previousmethods (Pinto et al., 2016), we observed a prevalence ofmesenchymal/stromal cells in homeo-

static conditions and reduced relative percentage of endothelial cells, hence we did not require an arti-

ficial down-sampling of endothelial cells for downstream scRNA-seq analysis (Skelly et al., 2018). The un-

biased sampling of endothelial cells allowed the capture of lymphatic endothelial cells and different

subpopulations in the main endothelial cell cluster.

In the future, new transcriptomic approaches that do not require tissue dissociation will provide

more precise information on the localization and contribution of different interstitial cell populations

to the cardiac tissue (Asp et al., 2020).
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TROUBLESHOOTING

Problem

Prolonged sorting time may be due to excessive cell death during preparation resulting in a signif-

icantly lower percentage of nucleated live cells.

Potential Solution

Chopping the heart too finely in step 2 can significantly increase the number of dead cells.

Check also the water bath temperature and the concentration of the enzymatic solution.

Removing the supernatant carefully by aspiration, instead of tilting the tubes, can help reducing loss

of cells in all the washing steps.

A fast spin (6003 g) for 30 s before centrifugation can concentrate the cells pelleted at the bottom of

the tube rather than on the side walls.

Be sure to pipette the cell gently at every step, and pre-coat the collection tubes with collection

buffer.

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the Lead Contact, Elvira Forte (elvira.forte@jax.org).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

This study did not generate any unique datasets or code.

ACKNOWLEDGMENTS

This work was supported by the JAX Director’s Innovation Fund, the British Heart Foundation, and

the Leducq Foundation Transatlantic Network of Excellence in Cardiac Research.

We thank Dr. Dhanushi Abeygunawardena and Dr. Vaibhao Janbandhu for helping with the optimi-

zation of the original cell isolation protocol. We acknowledge the use of JAX Flow Cytometry, Micro-

scopy, and Single Cell Sequencing Cores. JAX Cores are supported by The Jackson Laboratory Can-

cer Center grant (P30 CA034196).

AUTHOR CONTRIBUTIONS

Methodology, E.F.; Investigation, E.F., S.D.; Writing E.F., N.R.; Visualization, E.F.; Funding Acquisi-

tion, N.R.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Asp, M., Bergenstrahle, J., and Lundeberg, J.
(2020). Spatially resolved transcriptomes-next
generation tools for tissue exploration. Bioessays,
e1900221.

Chong, J.J., Chandrakanthan, V., Xaymardan, M.,
Asli, N.S., Li, J., Ahmed, I., Heffernan, C., Menon,

M.K., Scarlett, C.J., Rashidianfar, A., Biben, C.,
Zoellner, H., Colvin, E.K., and Pimanda, J.E. (2011).
Adult cardiac-resident MSC-like stem cells with a
proepicardial origin. Cell Stem Cell 9, 527–540.

Cochain, C., Vafadarnejad, E., Arampatzi, P.,
Pelisek, J., Winkels, H., Ley, K., Wolf, D., Saliba,

A.E., and Zernecke, A. (2018). Single-cell RNA-seq
reveals the transcriptional landscape and
heterogeneity of aortic macrophages in murine
atherosclerosis. Circ. Res. 122, 1661–1674.

del Monte, G., Casanova, J.C., Guadix, J.A.,
Macgrogan, D., Burch, J.B., Perez-Pomares, J.M.,

ll
OPEN ACCESS

12 STAR Protocols 1, 100077, September 18, 2020

Protocol

mailto:elvira.forte@jax.org
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref1
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref1
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref1
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref1
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref2
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref2
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref2
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref2
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref2
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref2
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref3
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref3
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref3
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref3
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref3
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref3
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref4
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref4


and De La Pompa, J.L. (2011). Differential Notch
signaling in the epicardium is required for cardiac
inflow development and coronary vessel
morphogenesis. Circ. Res. 108, 824–836.

Forte, E., Skelly, D.A., Chen, M., Daigle, S., Morelli,
K.A., Hon, O., Philip, V.M., Costa, M.W., Rosenthal,
N.A., and Furtado, M.B. (2020). Dynamic interstitial
cell response during myocardial infarction predicts
resilience to rupture in genetically diverse mice.
Cell Rep. 30, 3149–3163 e6.

Nagata, S., Suzuki, J., Segawa, K., and Fujii, T.
(2016). Exposure of phosphatidylserine on the cell
surface. Cell Death Differ. 23, 952–961.

Pinto, A.R., Ilinykh, A., Ivey, M.J., Kuwabara, J.T.,
D’antoni, M.L., Debuque, R., Chandran, A., Wang,
L., Arora, K., Rosenthal, N.A., and Tallquist, M.D.

(2016). Revisiting cardiac cellular composition. Circ.
Res. 118, 400–409.

Skelly, D.A., Squiers, G.T., Mclellan, M.A.,
Bolisetty, M.T., Robson, P., Rosenthal, N.A., and
Pinto, A.R. (2018). Single-cell transcriptional
profiling reveals cellular diversity and
intercommunication in the mouse heart. Cell
Rep. 22, 600–610.

van Genderen, H.O., Kenis, H., Hofstra, L.,
Narula, J., and Reutelingsperger, C.P. (2008).
Extracellular annexin A5: functions of
phosphatidylserine-binding and two-
dimensional crystallization. Biochim. Biophys.
Acta 1783, 953–963.

Wessels, A., Van Den Hoff, M.J., Adamo, R.F.,
Phelps, A.L., Lockhart, M.M., Sauls, K., Briggs, L.E.,

Norris, R.A., Van Wijk, B., Perez-Pomares, J.M.,
Dettman, R.W., and Burch, J.B. (2012). Epicardially
derived fibroblasts preferentially contribute to the
parietal leaflets of the atrioventricular valves in the
murine heart. Dev. Biol. 366, 111–124.

Yata, Y., Scanga, A., Gillan, A., Yang, L., Reif, S.,
Breindl, M., Brenner, D.A., and Rippe, R.A. (2003).
DNase I-hypersensitive sites enhance alpha1(I)
collagen gene expression in hepatic stellate cells.
Hepatology 37, 267–276.

Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P.,
Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D.,
Mcdermott, G.P., Zhu, J., Gregory, M.T., and
Shuga, J. (2017). Massively parallel digital
transcriptional profiling of single cells. Nat.
Commun. 8, 14049.

ll
OPEN ACCESS

STAR Protocols 1, 100077, September 18, 2020 13

Protocol

http://refhub.elsevier.com/S2666-1667(20)30064-2/sref4
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref4
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref4
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref4
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref5
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref5
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref5
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref5
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref5
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref5
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref6
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref6
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref6
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref7
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref7
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref7
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref7
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref7
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref8
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref8
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref8
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref8
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref8
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref8
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref9
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref9
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref9
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref9
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref9
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref9
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref10
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref10
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref10
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref10
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref10
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref10
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref10
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref11
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref11
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref11
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref11
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref11
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref12
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref12
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref12
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref12
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref12
http://refhub.elsevier.com/S2666-1667(20)30064-2/sref12

	Protocol for Isolation of Cardiac Interstitial Cells from Adult Murine Hearts for Unbiased Single Cell Profiling.
	Protocol for Isolation of Cardiac Interstitial Cells from Adult Murine Hearts for Unbiased Single Cell Profiling
	Before You Begin
	Preparation the Day before the Experiment
	Preparation on the Day of the Experiment

	Key Resources Table
	Materials and Equipment
	Step-By-Step Method Details
	Cell Isolation

	Expected Outcomes
	Limitations
	Troubleshooting
	Problem
	Potential Solution

	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Acknowledgments
	Author Contributions
	Declaration of Interests
	References


