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Research Article

Machine learning-based automated
phenotyping of inflammatory nocifensive
behavior in mice

Janine M Wotton1 , Emma Peterson1, Laura Anderson1,
Stephen A Murray1, Robert E Braun1, Elissa J Chesler1,
Jacqueline K White1, and Vivek Kumar1

Abstract

The discovery and development of new and potentially nonaddictive pain therapeutics requires rapid, yet clinically relevant

assays of nociception in preclinical models. A reliable and scalable automated scoring system for nocifensive behavior of mice

in the formalin assay would dramatically lower the time and labor costs associated with experiments and reduce experi-

mental variability. Here, we present a method that exploits machine learning techniques for video recordings that consists of

three components: key point detection, per frame feature extraction using these key points, and classification of behavior

using the GentleBoost algorithm. This approach to automation is flexible as different model classifiers or key points can be

used with only small losses in accuracy. The adopted system identified the behavior of licking/biting of the hind paw with an

accuracy that was comparable to a human observer (98% agreement) over 111 different short videos (total 284min) at a

resolution of 1 s. To test the system over longer experimental conditions, the responses of two inbred strains, C57BL/6NJ

and C57BL/6J, were recorded over 90min post formalin challenge. The automated system easily scored over 80 h of video

and revealed strain differences in both response timing and amplitude. This machine learning scoring system provides the

required accuracy, consistency, and ease of use that could make the formalin assay a feasible choice for large-scale genetic

studies.
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Introduction

The phenomenon of pain is a complex combination of

physical information, emotional context, and personal

subjective experience.1 It is not possible to directly mea-

sure pain in animals, as we do not have access to their

subjective experiences, consequently many methods have

been developed that quantify “nocifensive” behaviors,

which are defined as behavioral responses to painful

stimuli. Most nociception assays depend on a quick

motor withdrawal reflex in response to a brief mechan-

ical or thermal stimulation, and this simple movement is

relatively easy to define and recognize,2–5 but such assays

lack similarity to clinical pain. In mice, these assays are

genetically poorly correlated with more clinically

relevant chronic pain assays6,7 and are more closely
associated with startle and reactivity traits.8 In contrast,
the formalin test, originally developed for use with rats
by Dubuisson and Dennis,9 was designed to monitor
complex actions over an extended period, in response
to chemically induced, localized inflammation. The irri-
tant formalin is usually injected in one hind paw and
then the animal is observed for nocifensive behaviors
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such as licking, biting, lifting, flicking, or clutching
the paw.10–12 Formalin typically produces a biphasic
response, with a short intense acute reaction (Phase I;
from 0–10min postinjection), a brief interphase of low
response and then a sustained (Phase II) response, start-
ing at about 10–15min postinjection, increasing to a
peak and then gradually subsiding, with an elevated
response often still maintained at 60min or more post-
injection.13–15 This assay is a commonly used form of
nonstimulus evoked spontaneous nocifensive behavior
and the sustained nature of the behaviors are
particularly pertinent to biological understanding of
chronic pain.

The formalin assay, although well-accepted, relies on
individual observers which makes it labor intensive, time
consuming, and subjective as the different nocifensive
behaviors observed are not always uniformly defined
and recorded.4,15 Rating scales are subject to interob-
server variability and some behaviors, such as favoring
or lifting, are reportedly hard to score reliably in
mice.16,17 Consequently, mouse behaviors scored are
often restricted to licking/biting behaviors because they
are easy to recognize and record.12,14–16 To reduce scor-
ing bias, the formalin assay is usually videoed and then
scoring is subsequently completed by one or more
observers, typically an hour of video of a single mouse
will take between 1.5 and 2 h to fully score. Time sam-
pling methods that score prescribed portions of data
have been developed10,15 to reduce the required manual
effort. Sampling produces similar results to the full
scoring methods10 but still requires considerable time
investment and observer training.

Automated scoring can overcome some of these
obstacles, and several studies have shown that nocifen-
sive behaviors can be effectively scored. Methods to
score the formalin assay for rats have included the use
of force detectors,18 electromagnetic field detectors,19

and video20–22 with some success. Typically, these early
studies of automation validated performance by demon-
strating that their model could distinguish behaviors
induced at different levels through the use of analgesics
or formalin doses. Manual scoring comparisons were
used to give general patterns of responses, but details
of accuracy were not provided in terms of precision/
recall or sensitivity/specificity measures which are the
accepted standards for modeling papers today.
Although we cannot fully assess the accuracy of these
early methods, they did establish that in principle, these
behaviors can be detected and scored automatically.

A video-based automated system is readily adoptable
because the experiments are already typically recorded
on video, the equipment is inexpensive and accessible,
and it causes no additional stress by restricting animal

movement. Jourdan et al.21 used video recordings of rats
to measure change in pixel color to assess gross and fine
motor actions. They were able to use these movements to
distinguish between periods of locomotion and periods
of smaller movements, which included grooming, lick-
ing, and biting. Mice present additional challenges to
automated video scoring systems as they are consider-
ably smaller than rats and move very quickly. However,
recent advances in machine learning have led to the
development of systems that can assess tiny differences
in mouse facial expressions,23 grooming specific behav-
iors in mice,24 and with very high-speed video, accurately
assess the rapid withdrawal reflex action used in many
nociception assays.25 The behaviors of licking and biting
induced by formalin are well-defined, easy to label, and
are therefore well-suited for machine learning classifica-
tion of mouse nociception.

In the first study to automate mouse nocifensive lick-
ing behavior, Hayashi et al.26 used two marked color
points, on the abdomen and snout, to measure the
changing distances between the points during an
intracolonic-induced pain assay. They showed that a
simple distance measure, estimated by tracking two
points, could provide sufficient information to infer
abdomen licking. All behaviors are essentially instanti-
ated as a series of movements, and these can be repre-
sented as body parts changing in position over time. The
licking behavior of the mouse in the formalin assay can
take several distinct postural configurations, as the
mouse may bend down toward the paw, hold the paw
up, or rapidly move the paw, and it is likely that more
than two points would be needed to accurately capture
all behaviors. Machine learning techniques, using con-
volutional neural networks, can identify and track mul-
tiple specific body parts on animals thereby eliminating
the need to add physical markers, fur bleaching, or
dyes.27–30 The ability of these networks to accurately
label numerous body parts allows for the calculation
of many relative positions and the more complex repre-
sentation of body needed for the formalin assay.

The genetic tractability of the mouse makes it an
essential component in studies of pain and analgesia,
and therefore, the development of automated nocicep-
tion scoring in mice is critical for large-scale studies.
Recent innovations in machine learning allow for accu-
rate classification of specific mouse behaviors over the
full length of any recorded video.31 Advantages of such a
system providing scalability, clearly include the savings
of time, labor, and information with no restricting sam-
pling methods required. Equally important however,
refining the method of scoring the formalin assay
would result in greater reliability and reproducibility
by improving the consistency of the measurements.
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The use of machine learning gives new opportunities
to address the ethical requirements of replacement,
reduction, and refinement. Here, we present an
automated scoring system, based on supervised machine
learning methods using recorded formalin assays per-
formed on laboratory mice. The system was validated
with extensive comparison to manual scoring. To
assess the applicability to the widely used C57BL/6J-
derived strains and to the International Mouse
Phenotyping Consortium’s extensive collection of
C57BL/6N-derived deletion mutants, a comparison of
both strains was performed.

Methods

Animals

Mice were single sex, group-housed (3–5) with ad lib
water and food under a 12-h light–dark schedule, and
experiments were conducted in the light phase. Video
data from 166 mice were used in training, testing, and
validation of the model (The Jackson Laboratory:
C57BL/6NJ¼JR005304: male n¼ 53, female¼ 37,
C57BL/6J¼JR000664: male¼ 46, female¼ 30). Mice
(age 11–17weeks) were tested in 25 sessions between
August 2018 and March 2019 and at the conclusion of
each experimental session all mice were euthanized. All
procedures and protocols were approved by The Jackson
Laboratory Animal Care and Use Committee and were
conducted in compliance with the National Institutes of
Health Guideline for Care and Use of Laboratory
Animals.

Video data collection

Video data of mouse behavior in response to a hind paw
formalin injection were collected and used in training,
testing, and validation of the automatic scoring system.
A clear acrylic enclosure (22 cm L� 21.6 cm W� 12.7 cm
H; IITC Life Science, catalog number 433) containing
four testing arenas separated by opaque black walls (see
Figures 1 and 2) was placed on a clear glass surface.
A video camera (black and white, Bosch, Dinion) was
placed directly below (16 cm) the glass floor of the enclo-
sure to provide the best view of the paws and recording,
under the control of Noldus software (Noldus media
recorder v4), began with the empty enclosure. Four
enclosures, each with one dedicated camera, were set
up such that a total of 16 mice could be run simulta-
neously. The lighting varied between the four enclosures
but was optimized to reduce glare and reflections with
the addition of a white polycarbonate cover for the top
of each enclosure (23.5 cm L� 12.1 cm W� 1 cm H;
manufactured in-house). Video was recorded (30

frames per second: 704� 480 pixels) for 90min after
the last mouse entered the arena. The choice to extend
the video beyond 60min was to ensure that any strain
differences in the timing of peak behavior would be
captured.

Formalin was administered while the mice were under
anesthesia to maximize the consistency of both the injec-
tion site and the volume delivered and to reduce stress
for the mice. The right hind paw of the mouse was
injected (intra-plantar) with 30 ml of 2.5% Formalin
solution in saline (Formaldehyde solution (Sigma-
Aldrich; Product number: 15512); Sterile saline solution
(Henry Schein; Product number: 002477)) under gas
anesthesia (4% isoflurane; Henry Schein Isothesia;
Product number: 1169567762). The mouse was then
transferred into the first testing arena, and the procedure
was repeated with the next three mice for this enclosure.
Typically, mice regained consciousness from the anesthe-
sia within 1 min of being placed in the testing arena and
were fully ambulatory within 3 min.

Building the automated scoring system

The model has distinct tasks to solve and was accord-
ingly divided into three separate modules. First, the
model was trained to use key point detection to track
the body parts of mice in the arena for every video frame
using “DeepLabCut”29 (https://github.com/AlexEMG/
DeepLabCut) (Figure 1(a) to (c)). Next, features were
extracted on a per frame basis, utilizing the concepts
established for the JAABA model of analyzing statistical
metrics over different time windows to detect behav-
iors32 (Figure 1(d)). Finally, the model took these
frame-based features for a single mouse as input and
classified each video frame as showing the behavior of
licking/biting or not.

Module 1 key point detection

Training data. To create a training set for key point
detection, frames were pseudo-randomly selected from
eight videos of mice covering the four different enclo-
sures and ensuring representation of early (up to 30min),
middle (30–60) and late (60–90) portions of the record-
ings. Labels were manually applied to the desired points
on 370 frames using imageJ (https://imagej.nih.gov/ij/).
Each mouse was labeled with 12 points shown in
Figure 1(a) (mouth, nose, right front paw, left front
paw, 3 points on each hind paw—outer, inner, and
base; mid-abdomen; and tail base) and the inner walls
of each arena were labeled with 5 points (Figure 1(a)).
Thus, each frame was labeled with 53 points. The point
tracker was trained to find all 53 points per frame, and
therefore, it was not necessary to crop or manipulate the
video frame to locate a single arena. The location of the
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grid walls was included for training purposes to verify
that all 12 mouse points were located within a single
arena. Any point missing or obscured was labeled as
location x¼ 0, y¼ 0, and all labeled frames were visually
rechecked for accuracy. Examples of empty arenas were
included in training. To increase the number of frames
for training, the 370 frames were reflected and rotated so
that every mouse appeared in each of the four locations
for a total of 1480 labeled frames. To increase the var-
iability in lighting conditions used for training,

approximately 11% of the 1480 frames were augmented
with the addition of Gaussian noise (40 frames) or alter-
ations of contrast (39 frames), brightness (39 frames),
or gamma filtering (40 frames) using imageJ (see
Appendix 1). The augmented frames were pseudo-
randomly chosen and distributed evenly across the
original 370 and each of the reflection and rotation
conditions. After these adjustments, the set of labeled
frames was divided randomly into a training set (85%)
and a test set for validation (15%).

Figure 1. Model components. Labels (a) and associated images (b) were used as input to train the DeepLabCut tracker. (a) The video
frames were manually annotated for training. Each mouse was labeled (x,y pixel coordinates) with 12 points (mouth, nose, right front paw,
left front paw, three points on each hind paw—outer, inner, and base; abdomen; and tailbase) and the inner enclosure walls were marked
(at the ends and cross point). (b) Input to the model was consecutive video frames. Each enclosure had four arenas; in this image, the
mouse in arena 4 is still in recovery from the anesthetic, and the other arenas show active mice. (c) The output of the keypoint tracker is
12 points per mouse, shown here with “skeleton” connections and “body/head” circles to orient the reader. (d) Relative location measures
(66 paired distances and 15 angles; only one of each shown in the figure) were calculated for the body parts for every video frame. The
putative frame of interest is highlighted and the measures for the preceding and following frames are shown (24 consecutive frames). The
statistical inputs were calculated over windows of three different sizes (6, 11, and 21 frames), and these per frame features were used as
the input to the classifier model.
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Pose estimation using DeepLabCut. DeepLabCut is

based on the pose detection architecture of

“Deepercut”33 and takes advantage of a pretrained

Residual Network (ResNet50) for body-part detection.

Residual network architecture uses convolution layers to

learn specific visual features and the skipping function

minimizes information loss, thereby enhancing extrac-

tion of global rules.34 DeepLabCut was chosen as

the key point detector primarily for the ease of imple-

mentation, using Python and Tensorflow, but it could be

replaced with another tracker if desired.
Tensorflow (https://www.tensorflow.org/versions;

1.2.1 Cuda 8; CudNN 6) was used to train the

ResNet50 architecture on a GPU (Tesla P100). The

model was trained for 750,000 iterations attaining train-

ing accuracy of 1.9 pixels and test error of approximately

4.4 pixels error averaged over all test frames and points.

An error rate of less than five pixels is very similar to

the results obtained by Mathis for mouse tracking.29

Figure 2 shows an example of a single test frame (aver-

age error of 2.4 pixels). In arena 4, the right front paw is

missed by 4.3 pixels, which is the approximate size of the

average error over all test frames. The stability of per-

formance was verified by repeating the training with a

different training and testing set (train error 1.9 and test

error 4.3).
The trained model was locked and subsequently used

to track the experimental videos. The videos were

approximately 100–120min long (ranging from 1.6 to

2.2 GB), each frame was 337,920 pixels (704� 480),

and the speed to label 53 points varied between 36 and

37 frames per second (on Tesla GPU). Tracking of the

four mice in a video was effectively slightly faster than

the video recording speed of 30 frames a second.

Module 2: Per frame feature extraction. The (x, y) pixel coor-

dinates for each specified location, as well as a likelihood

estimate that is based on agreement of score maps indi-

cating the probability that this body part is at this pixel,

were used for behavior classification. The likelihood fea-

ture was particularly useful for determining the presence

of a mouse. When the arena was empty, all 12 points

were located with very low probabilities (e.g., >0.0001),

and as soon as the mouse was place in the arena, all

points dramatically jumped up in likelihood estimations.

The threshold of an average probability of 0.8 across the

12 points was used to indicate that a mouse was present.
Since the number of mice per enclosure varied (1–4),

each mouse was classified independently. The 12 key

points of interest (Figure 1(c)) were used to generate

pairwise Euclidean distances between body parts (66

pairs) and the angles between selected trios of body

parts (15 angles; see Appendix 2). These parameters rep-

resent relative body-part location information for a

single frame. Change in the relative positions of body

parts over time constitutes action and behaviors can be

regarded as a series of actions. It is therefore essential to

examine the consecutive video frames to see the changes

across each time-based vector parameter. Figure 1(d)

shows an example of one paired distance (from key

points LeftFront to RightHindout) and one angle

(between points RightHindout, abdomen, LeftHindOut)

Figure 2. Tracking error. The tracking errors for a single test frame of the body-part tracking (average error of these four mice for body
parts listed above are: 2.65, 1.84, 2.89, 1.01, 2.77, 1.67, 2.89, 3.19, 2.50, 2.36, 2.03, 3.88; the average grid error was 1.26 pixels).
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over 24 consecutive frames with the frame of interest

marked in the center.
Kabra et al.32 instantiated a GentleBoost classifier

(Matlab: Mathworks) that used moving windows to cal-

culate statistical metrics of parameters on a per frame

rate, based on an ellipse fit to the animal, over multiple

frames to classify a range behaviors. Their JAABA clas-

sifier tested different window sizes depending on the

behavior and organism. We used this as a guide and

examined our videos and chose windows sizes of 6, 11,

and 21 frames (200,367,700ms) for licking behavior.

Each window was moved along the parameter vector,

and the statistics of the parameter were calculated

within that time frame. For window sizes 11 and 21,

the frame of interest was in the middle, and for

window size 6, it was preceded by two frames (see

Figure 1(d)). A total of 1047 different metrics were cal-

culated for each frame of video and served as the input

data to the classifier. Statistical metrics were mean, stan-

dard deviation, median, and median absolute deviation

for each distance pair. A second measure of distance was

included that reported no value (NaN) if the mouth or

nose fell below 0.1 likelihood, and the mean was calcu-

lated for this and for the angles. The 12 likelihood

estimations for the frame of interest were also included

as input without windowing.

Module 3: Behavior classification

Training data. To create a training set for behavior

classification, utilizing the extracted frame-based fea-

tures, an experienced human observer annotated videos

labeling the onset and offset of licking behavior.

Training data were taken from 40 different videos, to

cover all enclosures, arenas and sizes, or sex of mice.

A total of 9300 frames were used for training with no

more than 10 s (300 frames) per video. The video was

initially manually annotated (Noldus) to determine the

behavior of licking with a resolution of a second. This

was subsequently reanalyzed frame by frame to obtain

exact onset and offset video frames of licking behavior

(Matlab). No distinction was made between licking and

biting behaviors, any contact between the mouth and the

right hind paw was scored as licking. To obtain a well-

balanced training set, frames were selected using strati-

fied random sampling from clear licking (22%) and

nonlicking video segments (78%). The bias toward no

licking behavior was intentional because this behavior

does not occur equally in an experimentally recorded

video. The selected training frames were not consecutive.

The classifier evaluates each frame based only on the

metrics provided for that frame, and it is the window-

based statistics that give the context of what happened

before and after the frame. Several different classifiers

were trained and tested (Matlab: Mathworks) to deter-

mine the most effective model (see Table 1).
For validation purposes, 111 short videos, with a wide

range of timing relative to injection, were annotated for

behaviors. The most common nocifensive behavior

observed was licking/biting, with paw flicking/shaking

observed at a relatively low level. The total annotated

time was 17,029 s, of which 1673 s were labeled as licking

(in 318 bouts of varying lengths), and flicking was noted

for approximately 8 s (in 21 events). Although flicking

represented about 6% of events recorded, each instance

was of short duration and thus total flicking time com-

prised less than 0.5% of nocifensive behavior (8/1681)

Table 1. Results of classifier models on the validation data set.

Classifier Precision (%) Recall (%) False positive (%) Total accuracy (%)

12 point GentleBoost 96 95 1 97.9

12 point GentleBoost PCA 99% 94 90 2 96.7

12 point GentleBoost PCA 95% 93 89 2 96.2

8 point GentleBoost 95 94 1 97.6

8 point GentleBoost PCA 99% 92 89 2 96.4

8 point GentleBoost PCA 95% 94 87 2 95.6

5 point GentleBoost 93 93 2 96.9

5 point GentleBoost PCA 99% 92 88 2 95.7

5 point GentleBoost PCA 95% 87 85 3 94.1

12 point Fine KNN 95 94 1 97.6

12 point Ensemble KNN 95 94 1 97.6

12 point Cubic SVM 93 92 2 96.8

[Precision¼ true positive/(true positiveþ false positive): (or what proportion of frames identified as licking are truly licking)] [Recall¼ true positive/(true

positiveþ false negative): (or what proportion of true licking frames were found)] [False positive¼what proportion of “no licking” frames incorrectly

identified as licking). PCA: principal component analysis; SVM: support vector machine; KNN: k nearest neighbor.
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and less than 0.05% (8/17,029) of annotated video. The
classifier was therefore trained and tested only on lick-
ing/biting behavior, as this was the most common and
reliable behavior to score.

GentleBoost classifier models. GentleBoost (gentle
adaptive boost35) is an ensemble supervised learner
based on minimizing exponential loss using decision
trees and was utilized by Kabra et al. to classify a wide
range of behaviors.32 The GentleBoost algorithm is well-
suited for a dichotomous categorical response and is
easy to implement. The classifier used 30 weighted learn-
ers, each of which fitted a regression model to the pre-
dictors and labels using a maximum of 20 splits and a
learning rate of 0.1. Five-fold cross-validation was used
to limit overlearning and to provide estimates of train-
ing. The large number of inputs obviously have signifi-
cant redundancy, and therefore, the GentleBoost model
was also trained with the implementation of principal
component analysis (PCA), accounting for either 99%
(65 inputs) or 95% (11 inputs) of variation. Table 1
shows the final results of all the tested classifiers for pre-
cision (proportion of frames correctly classified as lick-
ing), recall (proportion of licking frames correctly
identified), false positives (proportion of incorrectly
labeled frames as licking), and total overall accuracy.
These metrics are helpful to distinguish the performance
of models in accurately labeling the behavior when the
licking is present and also when it is absent. High values
in precision–recall dimensions indicate that the model is
able to correctly find licking without missing occurrences
of behavior, regardless of how rare; this view is partic-
ularly useful when the two behaviors are unequally dis-
tributed. Low false-positive rates indicate that when the
licking is not present, then the model does not report the
behavior; this shows that the model does not label every-
thing as licking in order to prevent missing the behavior.
The GentleBoost model performs very well on all met-
rics. PCA reduction of parameters resulted in diminished
performance for precision and recall, with a slight
increase in false-positive rates (Table 1).

To determine if 12 points were necessary for optimal
performance, the GentleBoost model was retrained with
inputs calculated from 8 points (removed both front
paws and the inner point on both hind paws) or 5
points (removed the mouth, both front paws and the
inner and outer points from both hind paws).
Reducing the number of points resulted in a slight of
loss of performance, but the 8-point model was very
similar to the full 12-point model. PCA for the eight-
point and five-point models resulted in clear loss of
precision and recall as well as a small increase in false-
positive rates.

The full GentleBoost classifier using all 12 mouse
body parts and all statistical parameters (1047 inputs)
had the best performance (Table 1). However, labeling
all 12 points for training the tracking module is a
time-consuming endeavor and could be reduced to
fewer points if the slight loss of performance was an
acceptable trade-off. The loss of performance with
PCA is not worth the efficiency benefits as the cost of
evaluating the full 12-point classifier is very low (predic-
tion speed approximately 10,000 observations per
second). Using Matlab on a CPU (laptop) to open
excel file data, calculate inputs, classify behavior, calcu-
late bins, and save results to three different formats
(HDF5 file, excel spreadsheet, and backup Matlab
output structure file) took approximately 20–25 s per
mouse. A smaller parameter list is more efficient, but
even a small loss in accuracy in detecting licking does
not seem warranted given the low cost of keeping all
parameters.

Other classifier models. Two other classifiers using all
the 1047 input parameters performed almost as well as
the full GentleBoost model (Table 1); a k-nearest neigh-
bor (KNN) classifier (neighbors¼ 1, Euclidian distance,
equal distance weight, ties broken to smallest; prediction
speed 110 observations/s) and an ensemble subspace
KNN classifier (30 learners, subspace dimension¼ 624,
prediction speed 8.7 observations/s) but were less
efficient in implementation of prediction. A support
vector machine with a cubic kernel was more efficient
than the KNN models (1600 observations/s) but slightly
less accurate.

Model parameters. The 12-point GentleBoost model
has 1047 inputs, but only 385 actually contributed infor-
mation to the classifier and as is typical for this ensemble
classifier, each useful input contributed a small amount
of information, and there were no dominant cues. Each
of the 12 body parts and three time windows are includ-
ed multiple times in the 1047 inputs, and the heatmap of
Figure 3 shows the percentage of useful representation as
a proportion of all possible opportunities for that vari-
able. The time window with greatest information was the
21 frames (700ms) with approximately 46% of all used
cues in this window. Licking duration generally extends
well beyond a second, and the 700ms window appears to
be sufficient for capturing the ongoing behavior, and the
shorter windows may be more useful for transitions
between behaviors.

Examination of the relative information content of
body-part points can be used to determine the most
valuable points to keep for a model of this type (see
Figure 3). Not surprisingly, all points on the right hind
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paw, mouth, and nose appear to provide useful informa-
tion about contact between right hind paw and mouth.
Points on the tail and abdomen seem to provide perti-
nent information about body shape and position.
Although the base point on the left hind paw is useful

as a relative comparison (average 36% use), it may not
be necessary to include all three points for the left hind
paw, as the outer (average 30%) and inner (average
16%) points were the least used. Inclusion of the front
paws, however, appears to be warranted, as the mouse
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often uses the front paws to hold the hind paw while
licking.

Results

Classifier validation: 111 short videos

The GentleBoost classifier performance was tested on
111 new short video clips (from 111 different mice:
with 71 completely novel videos and new clips from 40
training videos) for a combined total of about 284min of

testing. Each video was manually annotated for licking
behavior, for a single mouse in an arena, with temporal
resolution of a second (Noldus). Mice were from all
enclosures, and an approximately equal number of
arenas were annotated (see Figure 4). The temporal res-
olution of human classification was poorer than the
model, and therefore, a match of licking behavior was
recorded if the model was within �15 frames of the
human (i.e., 1 sec). Classifications were compared for

each second of annotated videos for a total of 17,029
tests (283min and 49 sec) and resulted in approximately
98% accuracy. Figure 4(a) shows the direct comparisons
of the human and model licking classification for two
videos (mouse 54 and mouse 56: all the 111 mice are
shown in Supplemental Figures 1 to 4). Kabra et al.32

also found that a similar number of comparisons for the
classification of two mouse behaviors, “following”

(20,015 frames) and “walking” (12,223 frames) was suf-
ficient to validate performance, while using only four
mice for testing and training.

To summarize the performance for each video, the

percentage of video seconds in agreement between the
model and human observer was calculated and displayed
(Figure 4(b)) as histograms of the number of videos at a
given performance level. Forty-three video clips had no
licking behavior, and the average agreement over these
videos was 98.8% which indicates a low false-positive
level. Figure 4(b) shows that matching on two videos
was less accurate with performance in the range of
84% agreement. Close examination of these videos

revealed ambiguous behavior, and it was difficult for a
human observer to ascertain if the mouse was licking or
not. For example, on one video, the mouth was appar-
ently in contact with the right hind paw, but it was
obscured by the tail, so licking could be marked only
by inference and not by observation, and the model
does not score missing information. The other video
showed a lot of grooming of the leg and paw area, and
it was difficult to score purely paw licking. These behav-

iors were not typical but are hard to classify and differ-
ent human observers do not agree well under these
circumstances.

Previous models of automated scoring have demon-
strated their utility by showing that their models can
reliably detect differences in the amount of licking in
response to formalin dose changes19 or analgesia20 for
groups of animals. Without additional pharmacological
manipulation, our validation videos already show a wide
range of response levels (confirmed by human annota-
tion) and can therefore be clustered to determine how
well the model can distinguish between groups of ani-
mals with known differences. Typically, behavior in a
formalin test is not reported at the precise resolution
of a second and is instead more broadly reported as
the sum of behaviors over a time bin of one to several
minutes.12,15 To demonstrate the ability of the model to
detect different levels of response, each of the videos was
truncated at 2min, and the sum of licking in seconds was
calculated for the human observer and the model. The
level of summed licking across the 111 mice ranged from
no licking, as might be seen in an experiment using saline
control or analgesics, to a moderate-high level of
approximately 70% licking. The 111 videos are shown
ranked from lowest to highest level of summed licking,
as determined by the human observer (Figure 5(a)).
Similar levels of behavior, based on the human observa-
tions, were then clustered together to create groups of
videos in categories of low to high behavior. Bootstrap
sampling using an experimentally realistic sample size
(n¼ 6) was used to determine if these categories could
be reliably differentiated by the observer and model
(10,000 bootstrapped samples for t-test comparisons).
The example shown in Figure 5(a) used categories,
based on summed licking performance, grouped with
approximately 20 s mean difference (human observer
determined mean and standard deviation of seconds of
summed licking for each category I–IV: 1.6 (2.6), 20.7
(4.0), 35.6 (5.7), 63.3 (12.9); model means and standard
deviations: 2.5 (3.4), 22.9 (10.3), 38.2 (13.7), 62.2 (11.8)).
This 20 s category spacing was easily distinguished by
both observer and model scorings (>9800/10,000 signif-
icant tests) for every neighboring group comparison. The
windows were then shifted to produce smaller group
differences to determine the smallest difference that
could be reliably detected for this data set. The human
scored data could reliably distinguish between groups
with an average of 11 s of separation (80% significant
tests) and the model required about 16 s of separation
(80% significant tests). The videos were ranked by
human observer, and therefore, the created categories
for the human observer were less variable and should
be more readily differentiated statistically than the
model categories. The lowest response level category
had the lowest variability for both the model and
human observer scores, and the highest response level
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had the greatest variability. However, the most interest-

ing comparisons are between adjacent clusters of mod-

erate response levels with similar levels of variability and

these consistently show that effect sizes of about 15–16 s

for the model categories are necessary for differentia-

tion. This bootstrapping test shows that the model is

able to distinguish biologically realistic differences6,14

of approximately 13% in the level of licking/biting

between groups of videos which would be sufficient to

detect known strain differences14 or analgesic effects.15

Interobserver validation

Fourteen of the 111 validation videos were annotated by

an additional observer (see Figure 5(a); Observer 2).

These 14 videos were intentionally selected to include

examples of good agreement between Observer 1 and

model (no difference) and poor agreement (e.g., 21 s dis-

crepancy) and ranged from low (3 s of licking) to high

(76 s) response level. To show the full range, it is neces-

sary to include videos with poor agreement even though

they are not typical of the validation data. The average
difference between the model and Observer 1, for the 111
video validation set, is 1 s, but the average absolute dis-
crepancy is 4.5 s. The discrepancy between the two scores
(Observer 1 vs. model) as described here emphasizes the
size of the difference by using absolute discrepancy (abs
(Observer 1�model)) because the size of the difference
is retained, and the direction of the difference is
removed. The total absolute discrepancy over all 14
videos (1680 s) was 41 s between the two human observ-
ers (2.3%), 63 s between model and Observer 1 (3.75%),
and 53 s between model and Observer 2 (3.1%). Ten of
the 14 videos had very good agreement between both
human observers and the model with no more than 4 s
absolute difference in 2min for any video and an average
of 1% disagreement or less across all 10 videos. Several
points in Figure 5(a) show identical scoring for model
and observers; of the remaining videos with greater dis-
crepancy in scoring, two videos showed improved agree-
ment using scoring between the model and Observer 2,
and two showed improvement using both human
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observers (see Figure 5(a)). The correlations between the

recorded scores of licking in seconds for the 14 videos

were consistently high (Observer 1: Observer 2 Pearson

r¼ 0.98; Observer 1: Model Pearson r¼ 0.95; Observer

2: Model Pearson r¼ 0.97).
To further test experimenter interobserver reliability,

videos (60 min) of three mice were annotated by two

observers, visualized using Noldus Media Recorder 4

software. The observations were summed in 5min inter-

vals, and the correlation between observers was general-

ly good (Pearson r¼ 1.0, 0.82, and 0.97). Both human

observers agree about what constitutes licking but can

disagree on exactly when to start and stop recording the

behavior, sometimes licking bouts were scored as con-

tinuous by one observer and a series of short bouts by

the other. For observations of mouse 9, this resulted in

several substantially different measures, for example,

two 5-min bins were recorded as 67 and 60 s by

Observer 1 and 197 and 151 s by Observer 2 (see

Figure 5(c)). Both human observers were compared to

the model, and again agreement was quite high

(Observer 1 Pearson r¼ 0.98, 0.75, 0.95 and Observer 2

Pearson r¼ 0.98, 0.96, 0.99). For mouse 9, the model

appeared to be in better agreement with Observer 2,

with the aforementioned 5-min bins recorded as 213

and 141 s of licking (see Figure 5(c)). Observer 2 was

the more experienced of the two people and was training

Observer 1 in behavioral annotation; these three mice

were human scored months before the model was devel-

oped. After completing training, Observer 1 ultimately

conducted all the manual annotation of the videos used

for model training, testing, and validation.

Strain comparison validation

Bryant et al. used manual scoring methods for the for-

malin test to compare the licking response of C57BL/

6NCrl compared to C57BL/6J mice in Phase I and

Phase II.36 They found that male C57BL/6NCrl

showed a reduced licking response in the Phase II of

nociception response (measured as 20–45min), but

there was no significant difference for females. To vali-

date the utility of the automatic video classification

under experimental conditions, the formalin test was

conducted comparing similar mouse strains (The

Jackson Laboratory: C57BL/6NJ male n¼ 45, female¼
30: C57BL/6J male¼ 46, female ¼30). As the mice in our

study were anesthetized for the injection, the first 5 min

of the nociception response, known as Phase I, was atyp-

ical and not included in the analysis. All of the data were

run through the system, but the model determined the

start frame for each mouse and then skipped 9000

frames (5min) before binning the data into seventeen

5-min bins (5–10: 85–90) of cumulative licking in
seconds.

Figure 6(a) shows the summed licking behavior in the
time bin equivalent to that used in the Bryant study
(20–45min postinjection) and as predicted male
C57BL/6NJ showed reduced licking compared to
C57BL/6J male mice. The female mice, however,
showed the reverse pattern with C57BL/6NJ licking
more (Sex by Strain interaction F(1,147)¼ 9.99
p¼ 0.0019; Holms–Sidak multiple comparisons for
male and female, p¼ 0.042). The time course of the
responses over the full 90min reveals differences more
clearly between the sexes and strains (Figure 6(b) and
(c)). The curves differ in both timing and amplitude of
licking and the choice of how the data are binned for
analysis will determine if differences between sexes or
strains are detected. Figure 6(d) and (e) compare boot-
strapped statistical analysis (alpha level 0.05) for two
different bin choices with increasing sample size. The
20- to 45-min bin, selected by Bryant and replicated
here, shows that as sample size increases, the probability
of finding a significant difference between the strains also
increases, for both males and females (Figure 6(d)). For
females, this bin sizing appears to maximize the onset
timing difference of the response between strains. The
larger bin size of 10–60 minimizes the timing difference
for females, and bootstrapped comparisons show that an
increase of sample size does not alter showing statistical
significance (Figure 6(e)). The female probability
remains near 5% which would be the level due to
chance (alpha of 0.05); the females have the same
amount of licking. However, the male probability of
detecting a difference increases with sample size, the
males appear to differ in the amount of licking, in
both the amplitude and duration of peak behavior.

Sample sizes of 12 or greater yield reasonable proba-
bilities of showing differences but for lower, more typical
experimental sample sizes (6–8), the odds are above
chance but not high. The licking behavior in response
to formalin appears quite variable; the automated clas-
sification accuracy of six extremely high or low licking
mice were manually verified, and it was determined that
the recorded variability is behavioral, some mice lick
more than others. This nociception assay will reveal
strong effects with small numbers of animals, but
minor differences are likely to be obscured with
variability.

Discussion

The results of automated classification of licking behav-
ior in the formalin assay using machine learning are
comparable to that of human observers. The automated
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system accuracy, over many small videos, had approxi-
mately 98% agreement with a human observer on a
second by second basis, and it was also highly correlated
with bin scoring over both long and short videos with
two human observers. The efficiency in using automated
scoring is considerable, the human observer takes about
9 h to score four mice in an enclosure compared to less
than 2 h for the automated system. Additionally, the
automated system can be run in parallel, assessing mul-
tiple videos at the same time with the same consistency
for 24 h a day, seven days a week. Automation allows the
formalin assay to be scaled for high-throughput nocicep-
tion phenotyping to assess different genetic strains.
Accurate and reliable automatic classification of scoring

for licking/biting behavior becomes easy to implement
with this system.

We used a generalizable framework for analysis of
nocifensive behavior, consisting of three steps: key
point detection, per frame feature extraction using
these key points, and classification of behavior using
the GentleBoost algorithm. Different components
could be substituted in the model, another key point
tracker could be used, such as LEAP30 or
DeepPoseKit,28 the window sizes could be changed to
remove the smaller window sizes that did not provide
much information and the choice of classifier is quite
open. The GentleBoost classifier performed best and
was highly efficient but other classifiers could be
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Figure 6. Comparison of male and female mice of the two strains: C57BL/6J and C57BL/6NJ. (a) Licking summed in a single bin over the
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substituted with very little loss of accuracy. This auto-
mated system is a generalized solution with considerable
flexibility in application.

The localization of individual body parts results in a
remarkable reduction of data from 337,920 pixels per
video frame to 159 numbers of interest (x, y point coor-
dinates and likelihoods of 53 points), making the task of
tracking body parts over long videos manageable. The
position of body parts relative to each other, measured
in distances and angles, is a simple and low cost way to
generate pose features for each frame. The average
errors of localization of points of interest in test
frames were below five pixels which appear to be suffi-
ciently accurate for the task. The scoring is conducted
over many thousands of frames (153,000 frames for
85min), and even if a few frames contain larger errors,
it will have negligible impact on the total scores. The use
of temporal windows to assess change across time also
reduces the impact of a single frame and helps to smooth
disparities between consecutive frames.

The automated scoring system is limited to detecting
a single class of behavior, but it does so as well as the
trained human observers. Many studies have reported
that licking/biting is the most important nocifensive
behavior for the formalin test, and therefore, this was
the focus of the study.14,16 Neither the classifier nor
human observers distinguished between licking and
biting of the paw which would require better spatial
and temporal resolution in the video recording. These
behaviors may represent different biological contexts,
biting can be a response to both itch and painful stimu-
lation,37,38 and the ability to differentiate biting from
licking could be informative. However, our current
system was designed for high-throughput scoring of for-
malin testing and in order to test four mice per enclo-
sure, the video resolution was necessarily limited.
Behaviors such as elevation and flinching were not reli-
ably scored by the two human observers who showed
substantial disagreement and could not reconcile their
differences. Previous studies suggest that the inclusion
of these additional measures could improve reliability
in formalin scoring, but we found that these behaviors
were not reliably scored. The supervised machine learn-
ing model requires consistent information for training,
and this was not available for these other behaviors. In
our data set, flicking the paw represented a small pro-
portion of nocifensive behavior, but it could still provide
interesting contextual information, and we anticipate
exploring this rapid movement behavior in a different
model system in the future.

It is clear that there can be considerable intermouse
response variability, the variation is very small for the
early portion of Phase II, but once the animals respond

more vigorously, then the individual variability

increases. There are many factors that have been impli-

cated in the variability of this test including strain, sex,

environment, dose, injection quantity, anesthesia, site of

injection, time of day, experimenter effects, and observer

bias.15,39–41 The automated scoring system removed

inconsistent observer biases and fatigue, but substantial

variability remains in the data. The formalin test is a

widely accepted assay, but if sample sizes of mice are

small, then it may be difficult to reliably detect small

differences.
Many studies use a single summed bin to examine the

Phase II period, and although this strategy is likely to be

the best choice for revealing a general difference in

summed lick duration, it risks losing information

about phase differences in the timing of behavior. The

choice of bin duration and starting time to analyze Phase

II vary widely across studies, for example, 10–30,42 10–

60,14 10–90,43 10–45,44 15–45,45 20–45,36 or 20–60.46

Bootstrapping with different bins indicates that bin

choice could contribute to inconsistent results of studies

if there is a temporal difference between the strains,

sexes, or drug treatments of interest. The mice in this

study were anesthetized which may also influence the

timing of the behavior as the early part of the response

is clearly reduced.47 Both the automated system and

Bryant36 showed that C57BL/6N males lick less regard-

less of the bin choice, but bin size for females heavily

influenced the outcome. Experiments using either

C57BL/6N or C57BL/6NJ as control mice need to con-

sider the sexes separately, as they show clear differences

in timing over Phase II. Machine learning-enabled scor-

ing allows experimenters to easily extend the length of

the formalin experiment without incurring lengthy video

annotation costs. Differences in timing should be evident

over the longer duration (60 or 90min) allowing for the

possibility of anesthesia effects and for informed choices

about bin size.
Clearly defined behaviors are well-suited for machine

learning classification and the consistency that automat-

ed scoring can bring to formalin studies is highly desir-

able. The assay is well-established but is conducted,

scored, and analyzed with many differences in protocol

making comparisons between studies difficult.

Automated scoring is an important refinement in exam-

ining nocifensive behaviors that improves reliability and

speed with which the assay can be performed. The scor-

ing system utilizes video along with established machine

learning techniques and can be made readily accessible

to nociception researchers for large-scale experimenta-

tion including mouse genetic studies, preclinical com-

pound evaluation, and other applications.

Wotton et al. 13



Appendix 1. Adjustments made to approximately

11% of images using ImageJ.

Appendix 2. Angles calculated between three

body-part points with the angle subtended

around the midpoint.
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