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Addressing the batch effect issue 
for Lc/MS metabolomics data 
in data preprocessing
Qin Liu1, Douglas Walker2, Karan Uppal3, Zihe Liu1, Chunyu Ma3, ViLinh tran3, Shuzhao Li4, 
Dean p. Jones3 & Tianwei Yu5*

With the growth of metabolomics research, more and more studies are conducted on large numbers 
of samples. Due to technical limitations of the Liquid Chromatography–Mass Spectrometry (LC/MS) 
platform, samples often need to be processed in multiple batches. Across different batches, we often 
observe differences in data characteristics. In this work, we specifically focus on data generated in 
multiple batches on the same LC/MS machinery. Traditional preprocessing methods treat all samples 
as a single group. Such practice can result in errors in the alignment of peaks, which cannot be 
corrected by post hoc application of batch effect correction methods. In this work, we developed a 
new approach that address the batch effect issue in the preprocessing stage, resulting in better peak 
detection, alignment and quantification. It can be combined with down-stream batch effect correction 
methods to further correct for between-batch intensity differences. The method is implemented in 
the existing workflow of the apLCMS platform. Analyzing data with multiple batches, both generated 
from standardized quality control (QC) plasma samples and from real biological studies, the new 
method resulted in feature tables with better consistency, as well as better down-stream analysis 
results. The method can be a useful addition to the tools available for large studies involving multiple 
batches. The method is available as part of the apLCMS package. Download link and instructions are at 
https ://mypag e.cuhk.edu.cn/acade mics/yutia nwei/apLCM S/.

Metabolomics using liquid chromatography-mass spectrometry (LC/MS) is widely used in identifying disease 
biomarkers, finding drug targets and unravelling complex biological networks. A high-resolution LC/MS profile 
from a complex biological sample contains thousands of features, and different LC/MS platforms yield profiles 
of different characteristics. There are a number of computational pipelines that conduct the necessary steps to 
preprocess LC/MS data, including peak detection, peak quantification, retention time (RT) correction, feature 
alignment, and weak signal  recovery1–13. Some methods provide utilities to group features that are potentially 
derived from the same  metabolite14–17. Other data servers and packages are available to annotate features to 
known metabolites based on m/z and RT  information18–21.

When the sample size is large, it is often necessary for the samples to be processed in batches. Across the 
batches, even if the data are generated from the same machine, we often observe different data characteristics. 
Using traditional data preprocessing approaches, we either treat all the samples as a single batch, or preprocess 
different batch individually, and then seek to merge the feature tables. As we discuss in the following, both of 
the approaches have some issues.

If we treat all samples as a single batch, the between-batch data characteristic changes will be considered as 
random noise. More lenient thresholds have to be used in feature alignment and weak signal recovery, in order 
to tolerate the between-batch differences. This can result in distinct features being artificially merged as a single 
feature. On the other hand, if a feature has a large drift in RT across batches, it may be artificially split into two 
features. The issue of misalignment caused by batch effect has been discussed in more detail by Brunius et al.22.
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An alternative approach is to preprocess each batch individually, followed by alignment of features between 
the feature tables from separate  batches22. This approach allows optimal alignment within each batch. However, 
without between-batch RT correction and weak signal recovery across batches, low intensity features that are 
initially identified in a subset of batches cannot be accurately quantified in the remaining batches.

Applying batch effect removal methods after preprocessing can alleviate some of the issues. They include 
methods that use quality control data to adjust for signal drift and inter-batch and intra-batch  variations22–26, 
and some methods that use data characteristics without the need for quality control, mainly for between-batch 
 adjustments27–33. However, such approaches can only adjust signal intensity. They cannot address issues such 
as misalignment of features across  batches22, or the incomplete weak signal recovery from the original data.

To tackle the afore-mentioned problems, we propose a new approach that preprocess the data in a two-stage 
manner. The method directly uses the batch information to allow optimal within-batch and between-batch 
alignments. Within each batch, every sample contains a small amount of nonlinear RT drift, which is typically 
addressed by nonlinear curve  fitting5,11. Between batches, there may exist systematic RT drift. Both levels need 
to be adjusted for in the final data matrix. Another major issue is weak signal recovery across batches, as some 
peaks are too weak to pass the initial detection threshold, but can be later recovered based on the information of 
their counterparts in other samples. When such information come from other batches, accurate RT correction 
is critical for the faithful recovery of the weak signal. In our two-stage approach, the RT adjustment is based on 
cumulative nonlinear curve-fitting, which allows weak signal recovery across batches. Using a dataset from a 
quality control sample, a yeast cell line dataset, and a dataset generated from healthy human plasma samples, 
we show the method offers higher consistency in feature quantification for studies involving multiple batches, 
yielding better results in down-stream analyses.

Materials and methods
The overall workflow. Different from the traditional workflow, the proposed method includes a two-stage 
procedure (Fig. 1a). In the traditional workflow used by  XCMS5 and  apLCMS11, peaks are first identified in the 
individual profiles based on certain filters, and quantified using certain mathematical peak shape models. Then 
RT correction is conducted between the profiles, and peaks from different profiles are aligned into features. Then 
a weak signal recovery step is conducted, in order to capture feature signals that are not strong enough to pass 
the initial peak detection threshold.

The new approach is divided into two stages. In the first stage (Fig. 1a, step 1), the method processes each 
batch individually by using the common preprocessing workflow that consists of peak detection/quantification, 
RT adjustment, peak alignment and weak signal recovery. The nonlinear curves for RT adjustment is recorded 
for each sample.

In the second stage (Fig. 1a, step 2), we generate a batch-level feature matrix for each batch. It is in the same 
format as the feature matrix from a single sample. For each feature detected in the batch, we keep the m/z value, 
and take the average RT value in the batch, and the average intensity value in the batch. Then across all the batch-
level feature matrices, we conduct another round of RT adjustment and feature alignment (Fig. 1a, step 3). As 
each batch-level feature matrix is in the same structure as a single sample feature matrix, the RT adjustment and 
feature alignment can be easily achieved by calling the existing routines. At this stage, tolerance levels different 
than stage 1 can be used. Then the aligned batch-level features are mapped back to the original within-batch 
features, and weak signal recovery can be conducted across batches.

There are some challenges in this process. The major challenge is the second-round RT adjustment is con-
ducted on the average RT values from each batch. We need to trace the adjustment back to each single sample in 
order to conduct weak signal recovery, which we address in the next subsection. The second and smaller challenge 
is the feature alignments across batch might result in the merging of two features from a batch, in which case we 
trace back to the feature matrix of the corresponding batch, merge the signal intensities of the corresponding 
features, and take the mean RT of the corresponding features.

The RT correction procedure. In the regular preprocessing procedure, RT adjustment is conducted once 
by nonlinear curve  fitting5,11. However in the two-stage procedure, there are two levels of RT deviation to be 
considered. One is within batch, and the other is between batch. In our new procedure, for each LC/MS profile, 
both levels of RT deviations are computed and added together, to create an overall RT correction at the profile 
level (Fig. 1b).

First within batch (Fig. 1a, step 1), the sample with the largest number of detected features is selected as the 
reference. The peak RTs of other samples are adjusted based on this reference sample. For each of the other sam-
ples, first a unique match between peaks in the sample and peaks in the reference sample is established based on 
certain m/z and RT tolerance levels. In the current study, to simplify the comparison between the two-stage and 
traditional apLCMS, we specified the same tolerance levels for them. Then a nonlinear curve is fitted between 
the RT difference and the observed RT in the sample to be corrected.

Within the kth batch, for the jth sample to be corrected, we denote the RTs of the uniquely matched peaks as 
{

t
(k,j)
m

}

m=1,...,M
 , and the RT of the corresponding peaks in the reference sample as 

{

t
(k,0)
m

}

m=1,...,M
 . We obtain 

a nonlinear curve fit for the deviation, represented by function f(),

using kernel smoothing, and correct the RT of all the peaks in the jth sample to 
{

t
(k,j)
m − f̂k,j

(
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m
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m=1,...,N
 , 

where N is the number of all the peaks in sample j.
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After processing each batch, we obtain a batch-level feature table for each batch (Fig. 1a, step 2). In the feature 
table is the average RT value for each of the features in the batch. Between batches, we conduct a similar curve 
fit using the average feature RTs within each batch, against a reference batch (Fig. 1a, step 3). The batch with the 
largest number of aligned features is taken as the reference batch. For the kth batch, we denote the average RTs 
of the uniquely matched features as 

{

τ
(k)
n

}

n=1,...,P
 , and the average RTs of the corresponding features in the refer-

ence batch 
{

τ
(0)
n

}

n=1,...,P
 . We obtain a nonlinear curve fit for the deviation, represented by function g(),

�τ(k) = τ (k) − τ (0) = gk

(

τ (k)
)

+ ε

Figure 1.  Illustration of the two-stage preprocessing approach. (a) The overall workflow. (b) Illustration of the 
calculation of RT shift for individual samples. (c) Example between-batch RT shift calculated from a real dataset.
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using kernel smoothing. Some example between-batch RT correction curves from real data (the CHDWB data 
described later) are shown in Fig.  1c. In the batch-level feature table, the RT is then corrected to 
{

τ
(k)
n − ĝk

(

τ
(k)
n

)}

n=1,...,N
 . Feature alignment are then conducted using the corrected batch-level RT, and then 

mapped back to the within-batch feature tables. As all batches share the same RT range, the parameter setting 
for the kernel smoother is the same for within-batch and cross-batch curve fitting.

Weak signal recovery procedure. Some features pass the detection threshold in only a subset of the 
batches. For such features, cross-batch weak signal recovery is needed after alignment. However, in the final data 
table, the RT is corrected across all batches. We need to adjust the RT points in the original data in order for the 
weak signal recovery to be reliable. Hence an RT correction is conducted for every LC/MS profile in every batch 
(Fig. 1a, step 3). For the jth profile in the kth batch, the corrected RT is obtained by:

where m indexes the RT points (Fig. 1b). After changing the RT, the weak signal recovery can be conducted as 
previously  described11. Briefly, to recover the weak signal for a target m/z and RT pair in an LC/MS profile, a 
loose tolerance level in m/z and RT is first used to select a local region. Then two-dimensional kernel smoothing 
is conducted in the region to detect weak peaks. If a weak peak is close enough to the target m/z and RT pair 
(threshold determined by the peak detection tolerance levels), and the local point density passes a threshold, it 
is considered the recovered signal of the feature. More details can be found  in11.

Datasets. We use three datasets for methods comparison. The first was a standard sample (QSTD) con-
structed from pooled human plasma which was run repeatedly with different batches of samples for quality 
control purposes. In this analysis, we took the QSTD sample profiles from 10 batches, each containing 10 runs 
of the same sample. The data were generated using a C18 column combined with the Thermo Fisher Q Exactive 
Orbitrap Mass Spectrometer, in negative ion mode.

The second dataset was the ST000868  dataset34, downloaded from Metabolomics  Workbench35. The study 
compared the metabolomic profile of oak and wine yeast strains. The data were collected in three batches. Each 
yeast strain was measured 3–6 times in every batch.

The third dataset was a subset of the untargeted metabolomics data from Emory/Georgia Tech Center for 
Health Discovery and Well Being (CHDWB). The CHDWB metabolomics data was collected on healthy indi-
viduals that received preventive care, and the metabolomics data can be requested by submitting a request 
form to the CHDWB (https ://predi ctive healt h.emory .edu/resea rch/resou rces.html)36. The study is a prospec-
tive longitudinal cohort study. Biological specimen, including blood samples, are collected every year for each 
participant. Metabolomics was measured on all subjects at baseline. We focused on the baseline metabolomics 
data and its relation with baseline body mass index (BMI) in this analysis. There were a total of 25 batches in the 
entire dataset. Within each batch, roughly 20 subjects were measured. The plasma sample from each subject was 
measured 3 times consecutively. We refer to them as triplets in the following text. The data were generated using a 
HILIC column combined with the Thermo Fisher Q Exactive Orbitrap Mass Spectrometer, in positive ion mode.

Packages and parameters. We used apLCMS version 6.6.8 and xcms version 3.10.1, in the environment 
of R version 4.0.0. The apLCMS package and tutorial is available through https ://mypag e.cuhk.edu.cn/acade 
mics/yutia nwei/apLCM S/, and XCMS is downloaded from Bioconductor.

There are three main parameters for this new approach. For the initial detection of peaks in each batch 
(Fig. 1a, step 1), pwithin_detect controls the proportion of profiles a feature needs to be detected from, for it to be 
considered for the next step; pwithin_report controls the proportion of profiles a feature need to be present after weak 
signal recovery, for it to be included in the final feature table from the batch. Between the batches (Fig. 1a, step 
3), pbatches controls the proportion of batches the feature needs to be present, for it to be included in the overall 
feature table.

For apLCMS, the peak detection and quantification procedure for single LC/MS profile follows the existing 
 method11,12. In this study, the major parameters include min.run = 12, min.pres = 0.5, mz.tol = 1e-5, baseline.cor-
rect = 0, min.bw = NA, max.bw = NA, shape.model = "bi-Gaussian", sd.cut = c(0.125, 60), sigma.ratio.lim = c(0.2, 
5), moment.power = 1. Other parameters are listed in the R codes in the Supplementary Material.

For XCMS, four combinations of peak detection and RT correction methods were used. The parameters were 
optimized by the method IPO in an objective and dataset-specific  manner37. XCMS IPO_1 uses optimal param-
eters found by IPO combining matched filter and orbiwarp. XCMS IPO_2 uses optimal parameters found by IPO 
combining matched filter and loess smoothing. XCMS IPO_3 uses optimal parameters found by IPO combining 
centWave and orbiwarp. XCMS IPO_4 uses optimal parameters found by IPO combining centWave and loess 
smoothing. As the parameters are dataset-specific, their values are listed in the Results and Discussions section.

Results and discussions
We implemented the method in the existing workflow of the apLCMS  package11, which conducts both untar-
geted and hybrid (untargeted/targeted) feature  detection12. To evaluate the feature detection performance of the 
proposed two-stage approach, we conducted comparison experiments with the traditional apLCMS approach, 
as well as the popular preprocessing method  XCMS19, on three real datasets.

t
(k,j)
m,corrected = t

(k,j)
m − f̂k,j

(

t
(k,j)
m

)

− ĝk

(

t
(k,j)
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(

t
(k,j)
m

))

,

https://predictivehealth.emory.edu/research/resources.html
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Results from standard sample (QSTD) data. Using the QSTD data, we compared the performance 
of the new two-stage apLCMS with tradition apLCMS and XCMS in feature detection and quantification. For 
apLCMS, we first selected optimal parameter settings for peak detection and kept the parameters the same for 
both the two-stage and the traditional methods.

For the two-stage approach, we tested two scenarios for within-batch proportion parameters, 
pwithin_detect = pwithin_report, and 2pwithin_detect = pwithin_report . We found the results to be similar with regard to the criteria 
we used to assess the performance. Thus in the following sections, we report results from using the same values 
for pwithin_detect (before weak signal recovery) and pwithin_report (after weak signal recovery). We used values of 0.2, 
0.3, 0.4, 0.6, 0.8 and 1. The second parameter was between-batch detection proportion threshold pbatches, i.e. the 
proportion of batches a feature needed to be present in. We used values of 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9. For the 
traditional apLCMS procedure, the detection threshold (number of profiles the feature needed to be present in) 
was set as 5, 10, 15, …., and 95.

For XCMS, we used the IPO package to optimize its parameters under 4 different method combinations. 
Below are the parameter combinations in each of the 4 settings:

XCMS IPO_1: matched filter parameters: fwhm = 15, snthresh = 1, step = 0.0805, steps = 2, sigma = 6.369, 
max = 5, mzdiff = 0.639, index = FALSE; peak grouping parameters: method = "density", bw = 0.879999, 
mzwid = 0.0614; Orbiwarp parameters: method = "obiwarp", plottype = "none", distFunc = "cor_opt", profStep = 1, 
center = 6, response = 1, gapInit = 0.78, gapExtend = 2.7, factorDiag = 2, factorGap = 1, localAlignment = 0.

XCMS IPO_2: matched filter parameters: same as XCMS IPO_1; peak grouping parameters: method = "den-
sity", bw = 0.879999, mzwid = 0.0362; Loess parameters: missing = 3, extra = 3, span = 0.221, smooth = "loess", 
family = "gaussian".

XCMS IPO_3: centWave parameters: peakwidth = c(3, 129.97), ppm = 10, noise = 0, snthresh = 1, 
mzdiff = -0.0109, prefilter = c(3,100), mzCenterFun = "wMean", integrate = 1, fitgauss = FALSE, verbose.col-
umns = FALSE; peak grouping parameters: method = "density", bw = 12.4, mzwid = 0.01; Orbiwarp parameters: 
distFunc = "cor_opt", profStep = 1, center = 7, response = 1, gapInit = 0.54, gapExtend = 2.7, factorDiag = 2, fac-
torGap = 1, localAlignment = 0.

XCMS IPO_4: centWave parameters: same as XCMS IPO_3; peak grouping parameters: bw = 0.25, 
mzwid = 0.0081; Loess parameters: missing = 5, extra = 1, span = 0.326, smooth = "loess", family = "gaussian".

To achieve different number of features detected by XCMS, while keeping the above parameters fixed, we 
varied the “minsamp” parameter, which controls the minimum number of samples necessary for a peak group 
to be detected. We used values of 5, 10, 20, 30, 40, 50, 60, 70, 80, 90.

To evaluate the results, we recorded the total number of zeros in the final data matrix (Fig. 2a), num-
ber of features with m/z matched to known KEGG metabolites using  xMSAnnotator18 allowing adduct ions 
[M–H]−, [M–2H]2−, [M–2H + Na]−, [M–2H + K]−, [M–2H + NH4]−, [M–H2O–H]−, [M–H + Cl]2−, [M + Cl]−, 
[M + 2Cl]2− (Fig. 2b), coefficient of variation (CV) in the final data matrix without considering batches with and 
without considering the zero values (Fig. 2c,d), and the coefficient of variation (CV) after merging the repeated 
measurements in each batch to generate a single measurement from each batch, with and without considering 
the zero values (Fig. 2e,f). In the calculation of CV, including zero values can reflect feature detection consistency 
in the CV results, while excluding zero values can reflect feature quantification consistency.

In untargeted metabolomics data measured by LC/MS, zeros in the final data matrix represent a mixture of 
true non-presence of the metabolic feature and missing values. It is still a difficult issue to address. Given the 
measurements here were taken on the same sample, we expect a better method to yield less zeros in the data 
matrix. However, the proportions of zero also depends on how consistent the LC/MS machinery generates the 
data, and how aggressive the weak signal recovery is conducted. Thus the results need to be considered together 
with the level of variation in the CV plots. When weak signal recovery is conducted in an overly aggressive 
manner taking noise ask signal, although the proportion of zeros may be lower, the inclusion of noise as signal 
will also worsen the quantification consistency. As shown in Fig. 2a, when the number of features were large, the 
two-stage approach (orange) tended to yield smaller proportions of zeros compared to the traditional apLCMS 
approach (blue) and XCMS (green).

The proportion of features that could be matched were similar for the three methods (Fig. 2b). Traditional 
apLCMS was slightly better, and XCMS was slightly inferior. When the detection threshold was loosened, some 
noise data points were expected to be mis-identified as features. At the same time, some low-abundance metabo-
lites were detected. Thus we expected a higher false-positive rate in the metabolite mapping, which was a trade-off 
with a higher detection rate over all metabolites in the sample.

In the measurement of the coefficient of variation (CV) before and after merging within batches, as illustrated 
in Fig. 2c–f, the two-stage method (orange diamonds) yielded less variation compared to the traditional apLCMS 
(blue dots) and XCMS (green triangles) when zero was included in the calculation of CV (Fig. 2c,e). When zero 
values were excluded, XCMS with matched filter approach yielded better quantification consistency as evidenced 
by lower CV values (Fig. 2d). The advantage disappeared when the data from each batch was merged (Fig. 2f). 
However with regard to detection consistency, XCMS with matched filter resulted in much higher proportion 
of zeros (Fig. 2a). Given the data was collected on the same sample, we expect a feature’s presence should vary 
little across the files. Overall, the two-stage approach outperformed the traditional apLCMS and XCMS in terms 
of measurement stability.

Results from ST000868 dataset. For apLCMS, we used pwithin_detect = pwithin_report = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, and pbatches = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. All other parameter setting were the same as the 
previous section except min.run = 0.8 and min.pres = 0.4, given the shorter RT range of the data. We note some 
of the above parameter combinations may result in identical results given the small batch size. For traditional 
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apLCMS, while keeping all other parameters the same as the two-stage approach, we used the detection thresh-
old (number of profiles the feature needed to be present in) of 2, 4, 6, …, 28.

For XCMS, we again used the IPO package to optimize its parameters under 4 different method combinations. 
Below are the parameter combinations in each of the 4 settings:

XCMS IPO_1: Matched Filter parameters: fwhm = 25, snthresh = 3, step = 0.05, steps = 1, sigma = 10.617, 
max = 5, mzdiff = 0.75, index = FALSE; peak grouping parameters: method = "density", bw = 38, mzwid = 0.015; 
Orbiwarp parameters: method = "obiwarp", plottype = "none", distFunc = "cor_opt", profStep = 1, center = 3, 
response = 1, gapInit = 0, gapExtend = 2.7, factorDiag = 2, factorGap = 1, localAlignment = 0.

XCMS IPO_2: matched Filter parameters: same as XCMS IPO_1; peak grouping parameters: method = "den-
sity", bw = 12.4, mzwid = 0.027; Loess parameters: missing = 3, extra = 3, span = 0.22, smooth = "loess", 
family = "gaussian".

XCMS IPO_3: CentWave parameters: peakwidth = c(10, 50), ppm = 5, noise = 0, snthresh = 1, mzdiff = -0.01, 
prefilter = c(1, 100), mzCenterFun = "wMean", integrate = 1, fitgauss = FALSE, verbose.columns = FALSE; 
peak grouping parameters: method = "density", bw = 37.68, mzwid = 0.0001; Orbiwarp parameters: dist-
Func = "cor_opt", profStep = 1, center = 3, response = 1, gapInit = 0, gapExtend = 2.7, factorDiag = 2, factorGap = 1, 
localAlignment = 0.

XCMS IPO_4: CentWave parameters: same as XCMS IPO_3; peak grouping parameters: bw = 12.4, 
mzwid = 0.0001; Loess parameters: missing = 1, extra = 2, span = 0.42, smooth = "loess", family = "gaussian".

Figure 2.  Comparison of the two-stage preprocessing approach with traditional apLCMS and XCMS using 
standard sample. Each dot represents a parameter setting. (a) Total number of zeros in the final data matrix; 
(b) proportion of features with m/z matched to known metabolites using xMSAnnotator; (c) level of variation 
as measured by coefficient of variation (CV) in the final data matrix without considering batches; (d) level of 
variation as measured by coefficient of variation (CV) in the final data matrix without considering batches, 
considering only non-zero values; (e) level of variation as measured by CV after merging each batch; (f) level of 
variation as measured by CV after merging each batch, considering only non-zero values. In all CV plots, the 
point is median; vertical bars represent 10th to 90th percentile.
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To achieve different number of features detected by XCMS, while keeping the above parameters fixed, we 
varied the “minsamp” parameter, which controls the minimum number of samples necessary for a peak group 
to be detected. We used values of of 2, 4, 6, …, 28.

To compare the results from the three methods, we compared detection/quantification consistency, matching 
to known metabolites, and testing results by contrasting the two cell types, as the original study was designed to 
find the metabolic differences between the genetically different cell types.

Similar to the QSTD data, the two-stage method resulted in smaller proportion of zeros (Fig. 3a). In the 
m/z matching to KEGG metabolites using adduct ions [M–H]−, [M–2H]2−, [M–2H + Na]−, [M–2H + K]−, 
[M–2H + NH4]−, [M–H2O–H]−, [M–H + Cl]2−, [M + Cl]−, [M + 2Cl]2−, the methods performed similarly, with 
XCMS with centWave peak detection yielding slightly higher rate of matching (Fig. 3b). With regard to CV 
values after adjusting for cell type and batch, i.e. the variation for each cell type within each batch, the two-stage 
approach resulted in lower CVs (Fig. 3c), indicating better detection and quantification consistency.

We then conducted testing between the two cell types using t-test. All tests were first conducted at the single 
metabolic feature level, and then the p values from all features were subjected to False Discovery Rate (FDR) 
 correction38. The tests were limited to features with ≤ 33% zeros in at least one of the cell types. Without batch 
effect correction, all method yielded relatively few significant metabolites at FDR ≤ 0.2, while the two-stage 
method tended to detect more significant feature (Fig. 3d). We then applied two batch effect correction methods. 
The first was the popular method  ComBat28, which was originally developed for microarray data, and was later 
widely used in RNA-seq and metabolomics data. After applying ComBat to each of the data matrices, testing was 
conducted on the adjusted data. All methods detected more significant metabolic features after the adjustment 
(Fig. 3e). The two-stage approach, when combined with ComBat, resulted in more significant metabolic features 

Figure 3.  Comparison of the two-stage preprocessing approach with traditional apLCMS and XCMS using 
the ST000868 dataset. Each dot represents a parameter setting. (a) Proportion of zeros in the final data matrix 
before merging triplets for each subject; (b) Proportion of features with m/z matched to known metabolites by 
xMSAnnotator; (c) Within-triplet coefficient of variation (CV). Point is median; vertical bars represent 10th to 
90th percentile. (d) Number of significant features at FDR ≤ 0.2, without batch effect correction; (e) Number of 
significant features at FDR ≤ 0.2, after batch effect correction by ComBat; (f) Number of significant features at 
FDR ≤ 0.2, after batch effect correction by WaveICA.
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than the other two methods (Fig. 3e). Among the four combinations of XCMS, matched filter appeared to result 
in more significant metabolic features. We notice that the number of significant metabolic features from XCMS-
processed data tended to fall close to a horizontal line. This is due to the fact that in XCMS, features detected 
using a more restrictive minsamp setting are a strict subset of those detected using a looser minsamp setting, 
when other parameters stay the same. When the threshold ≤ 33% zeros in at least one cell type was applied to 
the data matrix, some matrices obtained with different minsamp settings yielded similar matrices after filtration.

We applied another recent batch effect correction method that was specifically developed for metabolomics 
data – WaveICA, which has shown excellent performance when compared to some other existing  methods29. 
After applying WaveICA to all the data matrices, the results were similar to ComBat. Again the two-stage 
approach detected more significant features (Fig. 3f). Overall, when applied to the ST000868 dataset, the new 
two-stage approach resulted in more consistent peak detection and better between-cell type testing results.

Results from the CHDWB data. In this study, we selected six batches from the CHDWB data that evenly 
spanned the entire dataset: batches 1, 5, 10, 15, 20, 25, which included 115 subjects in total. Between the tradi-
tional apLCMS and the new two-stage approach, we kept all other parameters the same, except the detection 
proportion threshold values. In the two-stage procedure, we applied within-batch detection proportion thresh-
old values 0.2, 0.3, 0.4, 0.6, 0.8, and 1, and between-batch detection proportions 0.15, 0.3, 0.45, 0.6, 0.75, and 
0.9. Given there were six batches, the between-batch detection proportions meant we required a feature to be 
initially detected in at least 1, 2, 3, 4, 5, or 6 batches, respectively. For the traditional apLCMS procedure, we set 
the detection threshold (number of samples) at 30, 60, 90, 120, 180, 240, and 300. For XCMS, we used the IPO 
package to optimize its parameters under 4 different method combinations. Below are the parameter combina-
tions in each of the 4 settings:

XCMS IPO_1: Matched Filter parameters: fwhm = 27, snthresh = 1, step = 0.015, steps = 2, sigma = 11.4659, 
max = 5, mzdiff = 0.77, index = FALSE; peak grouping parameters: method = "density", bw = 0.879999, 
mzwid = 0.0265; Orbiwarp parameters: method = "obiwarp", plottype = "none", distFunc = "cor_opt", profStep = 1, 
center = 5, response = 1, gapInit = 0.928, gapExtend = 2.7, factorDiag = 2, factorGap = 1, localAlignment = 0.

XCMS IPO_2: Matched Filter parameters: same as XCMS IPO_1; peak grouping parameters: method = "den-
sity", bw = 0.879999, mzwid = 0.0265; Loess parameters: missing = 4, extra = 1, span = 0.05575, smooth = "loess", 
family = "gaussian".

XCMS IPO_3: CentWave parameters: peakwidth = c(3,110), ppm = 10, noise = 0, snthresh = 1, mzdiff = -0.0175, 
prefilter = c(3,100), mzCenterFun = "wMean", integrate = 1, fitgauss = FALSE, verbose.columns = FALSE; peak 
grouping parameters: method = "density", bw = 12.4, mzwid = 0.003; Orbiwarp parameters: distFunc = "cor_
opt", profStep = 1, center = 2, response = 1, gapInit = 0.08, gapExtend = 2.7, factorDiag = 2, factorGap = 1, 
localAlignment = 0.

XCMS IPO_4: CentWave parameters: same as XCMS IPO_3; peak grouping parameters: bw = 22, 
mzwid = 0.018; Loess parameters: missing = 1, extra = 3, span = 0.2, smooth = "loess", family = "gaussian".

To achieve different number of features detected by XCMS, we varied the “minsamp” parameter, which 
controls the minimum number of samples necessary for a peak group to be detected. We used values 10, 20, 30, 
50, 70, 90, 120, 180, 240, 300.

Some settings resulted in data matrices with more than 10,000 features, which is out of the range a regular 
untargeted analysis would consider. Thus we limited the following discussion to data matrices with 10,000 fea-
tures or less. We assessed the results based on following criteria for consistency: Total number of zeros in the 
final data matrix (Fig. 4a), features with m/z matched to known metabolites with KEGG IDs using xMSAnnota-
tor, allowing adduct ions [M + H]+, [M + NH4]+, [M + Na]+, [M + ACN + H]+, [M + ACN + Na]+, [M + 2Na–H]+, 
and [M + K]+ (Fig. 4b), and coefficient of variation within the triplet that measured the same sample (Fig. 4c). 
As shown in Fig. 4a, when the total number of features was below 4,000, the two-stage approach and traditional 
apLCMS yielded smaller proportion of zeros. When the total number of features went larger, the XCMS with 
centWave and orbiwap combination and the two-stage approach yielded data matrices that tended to have 
smaller proportions of zeros. Although the data were generated from different subjects, we still expected the 
core metabolism to be similar across the subjects, and a better method would conduct more consistent feature 
alignment between samples/batches, resulting in less zeros in the final data matrix. This should be true especially 
when smaller number of metabolic features are detected, which are more concentrated in core metabolism.

With regard to features matched to known metabolites, the three methods performed similarly, with the 
two-stage approach having a slight edge when the number of features detected were smaller, and XCMS with 
matched filter having slightly more matched features when the number of features went larger (Fig. 4b). We 
computed the coefficient of variation (CV) over all the metabolic features within each triplet (subject). As 
shown in Fig. 4c, the median CV level tended to be similar for all the approaches when the number of features 
were smaller (< 4,000), while the two-stage approach had an edge when the number of features were larger. In 
addition, the distribution of CV tended to be wider for XCMS, indicating part of the metabolic features showed 
larger variation within triplets.

Next we merged the triplet measures for each subject. The merging was done by taking the average non-zero 
values in the triplet for each feature. When all three measurements for a feature were zero, the resulting merged 
measurement was also zero. Using each of the feature table, we first filtered the features using a threshold of 
< 25% zeros, and then conducted down-stream analysis using the body mass index (BMI) as the outcome vari-
able, while adjusting for age, gender and race. It is well known that BMI is associated with changes in metabolic 
 patterns39. We fitted a linear model for each individual metabolic feature (denoted M):

BMI = µ+ β1,iMi + β2Age + β3Age
2
+ β4Gender + β5Race + ε
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Here the subscript i indexes the metabolic feature. The p value associated with β1,i was recorded. Then the p 
values from all features were subjected to False Discovery Rate (FDR)  correction38.

Without batch effect correction, the two-stage approach yielded higher number of significant features over 
the entire range of number of features detected (Fig. 4d). We then applied  ComBat28 to adjust for batch effect in 
each data matrix before applying the above testing procedure. After the application of ComBat, the two-stage 
approach showed a trend of increasing number of significant features with the increase of total number of features 
in the matrix (Fig. 4e). It was again the method that detected the highest number of significant features across 
the range of total number of features. Applying the batch effect correction method WaveICA, the results were 
more mixed. When the number of features were low to moderate (< 5,000), the two-stage approach detected 
more significant features. When considering larger number of features, two settings of XCMS with centWave+ 
orbiwarp resulted in higher number of significant features. Overall, the new two-stage approach again resulted 
in more consistent peak detection and quantification, as well as better down-stream testing result.

Next we considered the biological interpretability of the testing results. For this purpose, we conducted path-
way analyses using  Mummichog40. As Mummichog needed to be conducted manually, we selected a subset of 
the results for this analysis. We selected four groups of data matrices with ~ 5,000, ~ 4,000, ~ 3,000, and ~ 2000 
features, respectively. Because pathway analysis requires a reasonable number of significant features, instead of 
using FDR, we used features with raw p value < 0.05.

As shown in Table 1, in the two groups with lower feature counts (~ 2000 and ~ 3,000), the two-stage approach 
yielded more significant pathways with at least 5 significant metabolic features (Table 1, last column). In the group 
of ~ 4,000 features, the two-stage approach tied with traditional apLCMS at 8 significant pathways. In the group 

Figure 4.  Comparison of the two-stage approach with traditional apLCMS and XCMS using CHDWB samples. 
Each dot represents a parameter setting. (a) Proportion of zeros in the final data matrix before merging triplets 
for each subject; (b) proportion of features with m/z matched to known metabolites by xMSAnnotator; (c) 
average within-triplet coefficient of variation (CV). Point is median; vertical bars represent 10th–90th percentile. 
(d) Number of significant features at FDR ≤ 0.2, without batch effect correction; (e) Number of significant 
features at FDR ≤ 0.2, after batch effect correction by ComBat; (f) Number of significant features at FDR ≤ 0.2, 
after batch effect correction by WaveICA.
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with ~ 5,000 features, traditional apLCMS had a slight edge over the two-stage approach. XCMS with centWave+ 
loess resulted in 5 significant pathways, which was only slightly worse.

Given the settings with ~ 4,000 features yielded the most significant pathways, we further examined the 
selected pathways by the three methods in this group (Table 2). The two-stage approach and traditional apL-
CMS each yielded 8 significant pathways with at least 5 matched significant metabolites. Their results largely 
agreed with each other. The significant pathways tended to be focused on amino acid metabolism, which was 
expected to be highly relevant to BMI status. The top pathway selected by the two-stage approach also included 

Table 1.  Comparison of feature selection and pathway analysis results. BMI was used as the outcome variable. 
Age,  age2, gender, and race were adjusted for in the model. Metabolic feature selection was conducted using 
features with < 25% zeros. Pathway analysis was conducted using Mummichog, using metabolic features with 
p < 0.05. The bold italic font represents the biggest number of significant pathways in the comparison group

Method Total # features
# Significant pathways with 5 or more matched significant 
metabolites

Two-stage,  Pwithin.detect = 0.3  pbatches = 0.3 5,024 6

Two-stage,  Pwithin.detect = 0.6  pbatches = 0.15 4,988 5

Traditional apLCMS, min.profiles = 50 5,097 7

XCMS matched filter + orbiwarp, minsamp 30 5,004 0

XCMS centWave + orbiwarp, minsamp 300 5,064 5

XCMS centWave + loess, minsamp 240 5,201 1

Two-stage,  pwithin.detect = 0.2  pbatches = 0.45 4,034 8

Traditional apLCMS, min.profiles = 90 4,129 8

XCMS centWave + loess, minsamp 300 4,165 2

XCMS matched filter + orbiwarp, minsamp 50 3,928 0

Two-stage,  pwithin.detect = 0.3  pbatches = 0.6 2,837 5

Traditional apLCMS, Min.profiles = 180 2,874 3

XCMS matched filter + orbiwarp, minsamp 90 2,789 0

Two-stage,  pwithin.detect = 0.3  pbatches = 0.9 1667 5

Traditional apLCMS, Min.profiles = 300 1725 3

XCMS matched filter + orbiwarp, minsamp 180 1704 0

Table 2.  Significant pathways with at least 5 matched significant metabolic features for parameter settings 
where ~ 4,000 features were detected.

Pathways Overlap_size Pathway_size p value

Two-stage apLCMS (within-batch proportion 0.3, initially detected in at least 4 batches), 4,034 features

 Lysine metabolism 6 19 0.00185

 Phosphatidylinositol phosphate metabolism 5 16 0.00479

 Butanoate metabolism 5 17 0.00681

 Glycine, serine, alanine and threonine metabolism 8 38 0.00798

 Aspartate and asparagine metabolism 9 52 0.01899

 Urea cycle/amino group metabolism 7 40 0.02756

 Pyrimidine metabolism 5 27 0.0463

 Glycerophospholipid metabolism 8 53 0.04966

Traditional apLCMS (minimum samples detected 90), 4,129 features

 Butanoate metabolism 5 15 0.00387

 Glycine, serine, alanine and threonine metabolism 8 37 0.00689

 Arachidonic acid metabolism 6 24 0.00748

 Lysine metabolism 5 18 0.0079

 Vitamin B3 (nicotinate and nicotinamide) metabolism 5 18 0.0079

 Glycerophospholipid metabolism 9 52 0.01681

 Urea cycle/amino group metabolism 7 43 0.041

 Aspartate and asparagine metabolism 8 53 0.04899

XCMS (centWave + loess, IPO optimized, minimum samples detected 90), 4,165 features

 C21-steroid hormone biosynthesis and metabolism 6 24 0.00395

 Urea cycle/amino group metabolism 5 30 0.04353
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“Phosphatidylinositol phosphate metabolism”, which is known to be involved in the activation of various path-
ways. Dysregulation of the metabolism of phosphatidylinositol-3,4,5-triphosphate mediates insulin  resistance41, 
which is highly relevant to BMI. The XCMS yielded much fewer significant pathways. The urea cycle pathway 
was shared with the other two approaches.

Overall, with this larger dataset generated from real biological subjects, we again demonstrated that the two-
stage approach generated data with higher consistency, as compared to the traditional apLCMS and XCMS that 
treated all the data as a single group.

Discussions. The two-stage approach is built on top of the existing apLCMS method. It first conducts the 
entire workflow of within-batch feature detection, RT correction, and feature alignment. Then it conducts 
between-batch feature alignment, RT correction, and weak signal recovery across batches. The RT correction is 
conducted in a two-stage manner, by adding together two smooth curves for each LC/MS profile. One curve is 
within-batch RT deviation, and the other curve is between-batch RT deviation.

The method has a few important parameters. The tuning of the parameters is somewhat heuristic. The situ-
ation is similar to the tuning of other parameters in the apLCMS, XCMS, or packages. Different studies may 
have different purposes. Some studies focus more on the core metabolic network, while others aim at identify-
ing low-abundance metabolites and environmental chemicals. Hence there isn’t a globally optimal choice of the 
parameters. However, the newly added parameters for two-stage processing have straight-forward interpretations. 
They are proportions of samples from which the features are detected, either in each batch, or across the batches. 
The higher the value of pwithin_detect, the more stringent the within-batch peak detection, the less features detected 
within each batch. Similarly, pwithin_report tunes the stringency after within-batch weak signal recovery. A higher 
pwithin_report value results in less features reported from each batch. The parameter pbatch controls between-batch 
stringency. A higher pbatch value requires an aligned feature to be detected in more batches. Thus increasing the 
value of pbatch results in lower number of features. Given their interpretability, the tuning would be a guided 
effort by the user.

By combining the two-stage method with batch-effect correction methods ComBat and WaveICA, we found 
that at least in some datasets, the application of batch-effect correction can further improve the data quality. After 
the application of the batch-effect correction methods, the two-stage approach still outperformed traditional 
apLCMS and XCMS. This indicates that addressing batch effect in data preprocessing is important.

Given the total number of samples, the computing time is influenced by the batch size. We examined the 
computing time using the 100 QC profiles, using an old HP workstation with dual first-generation Xeon E5-2660 
CPU. We utilized 10 CPU cores. The computing time was ~ 70 min.

Besides de novo feature detection, a hybrid feature detection method is available in apLCMS, in which a pre-
existing database of known feature is used to improve weak signal  detection12. In the current study, for fairness 
of comparison, we did not use known feature database. Nonetheless, besides conducting untargeted feature 
detection, the new two-stage procedure is also adapted to the hybrid feature detection procedure. It is capable 
of incorporating prior knowledge to boost feature detection.

There are some limitations to the method. The current implementation is limited to apLCMS, and thus limited 
to high-resolution LC/MS data. We believe the same strategy can be implemented in other packages for wider 
application, such as GC/MS data. This work was focused on data generated in multiple batches from the same 
machine. In the CHDWB dataset, we picked batches that were not consecutively collected, and the method 
worked well. Nonetheless, although there can be some batch effects, we still assume different batches cannot 
have drastically different characteristics, as reliable feature alignment is necessary for batch effect correction. 
The issue of combining data from multiple machines is a much more difficult one. We will try to address such 
issues in future studies.

Conclusion
We presented a two-stage approach for LC/MS metabolomics data generated in multiple batches. By analyzing 
data with multiple batches, both generated from a standardized plasma sample and from real biological samples, 
we showed that the new method improved the consistency of feature detection and quantification. The method 
is available as part of the apLCMS package. The package can be downloaded at https ://githu b.com/tianw ei-yu/
apLCM S. The instructions are at https ://mypag e.cuhk.edu.cn/acade mics/yutia nwei/apLCM S/.
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