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Abstract
We discuss several approaches for defining software languages, together
with Integrated Development Environments for them. Theoretical
foundation is grammar-based models: they can be used where proven
correctness of specifications is required. From a practical point of view,
we discuss how language specification can be made more accessible by
focusing on language workbenches and projectional editing, and discuss
how it can be formalized. We also give a brief overview of unconventional
ideas to language definition, and outline three open problems connected
to the approaches we discuss.

1 Introduction
Modern society depends on software as never before, and errors in software
implementation can lead to drastic consequences. While business experts convey
to software developers specifications of data, processes, and systems, developers’
lack of domain knowledge and a frequent ambiguity of specifications pose a risk of
defects in software. A solution to this are domain-specific languages (DSL) that
offer concise programming notations inspired by business needs and thus improve
communication between developers and domain experts. Implementing a software
language—including a DSL—requires specifying its syntax, as well as static and
dynamic semantics. While conceptually none of these present a particular challenge,
developers often struggle to bring their languages to life. Reasons for obstacles range
from the lack of knowledge on parser implementation to absence of an Integrated
Development Environment (IDE) that is vital to adoption and success of a language.
We discuss in this paper several approaches for defining software languages, together
with IDEs for them.

Theoretical foundation is grammar-based models, which are discussed in
Section 2. We discuss limitations of context-free grammars in defining syntax
of programming languages, and give an overview of several their extensions—
Boolean grammars [43], parsing expression grammars [28], and grammars with
contexts [8, 9, 7]—that allow overcoming those limitations, while still having a
manageable time complexity of parsing algorithms [44, 28, 49, 6, 10]. Section 3

This paper was presented at the NIK-2020 conference; see http://www.nik.no/.



takes a more practical look at how cross-references—that are vital for expressing
static semantics in grammars—differ “in theory” (grammars with contexts) and “in
practice”, where a discussion on industrial tools for language definition follows. Such
tools take form of language workbenches [29, 22, 25, 15], and they allow specifying
both syntax, static semantics, and dynamic semantics of a language together with
an IDE tailored for that very language. We then discuss IDE-first language
specification, where the desired properties of an IDE drive the language definition
process. In particular, we discuss projectional editors that allow overcoming the
burden of implementing a parser for a language, and consequently allow for a much
greater syntactic freedom than traditional text-based approaches [66, 65, 12, 68].
In Section 4, we discuss how language specification can be made more available for
non-experts in software language engineering.

2 Grammars to Specify Syntax
Context-free grammars [16] are a standard model for defining syntax of programming
languages [75, 76]: rule

VarDecl→ “var” ident

states that whenever there is a keyword var followed by an identifier, this sequence
of strings is a variable declaration. Context-free grammars are capable of defining
structure of programs, but fail to specify context conditions—or, static semantics—
that every identifier should be declared before use, or that the number of formal
parameters and actual arguments in a function call should agree. For example, the
following Java block is structurally correct, though it contains undeclared identifiers:

{ int x; xx:=xxx; }

Floyd [27] considered a similar Algol program to show that Algol is not context-free
and cannot be defined by a context-free grammar; the same applies to Java among
all other languages that require identifiers to be declared before their use.

Subsequent new grammatical models appeared that enabled specifying desired
context conditions [1]. Two-level grammars by van Wijngaarden were used to
formally specify syntax and static semantics of Algol 68 [73, 63], though they, as
well as many other models, turned out to be Turing-complete [74] and hence no
practical parsing algorithms can exist for them.

Boolean operations in grammars
Drawing upon set-theoretic properties of formal languages, a systematic study of
Boolean operations in grammars led to conjunctive and Boolean grammars [43, 59,
40]. Rule

S → A&B

defines all strings produced both by A and B, and rule

S → A&¬B

defines all strings produced by A but not produced by B at the same time. Now
rule

ValidIdent→ ident & ¬ Keyword



specifies in a most natural way that an identifier cannot coincide with a keyword.
Conjunctive grammars can define non-trivial non-context-free languages, including
copy language with central marker {wcw | w ∈ Σ∗}, c /∈ Σ which abstracts the
condition of having each identifier declared before use.

Main parsing algorithms for context-free grammars, including cubic-time general
parsing algorithm, Earley’s algorithm, recursive descent and Generalized LR, have
been extended to the case of conjunctive and Boolean grammars [45, 44, 43], have the
same time complexity, and are implemented in a prototype parser generator [42].
Okhotin constructed a Boolean grammar to specify syntax and static semantics
(including scoping rules) of a programming language [46]. This was apparently
the first such specification by an efficiently parsable grammatical model. The
programming language only had one data type and no approach of how to implement
type checking was suggested.

Using contexts in grammars
Similarly to Boolean grammars, Ford’s parsing expression grammars [28] provide
predicates for conjunction (&) and negation (!). Those are positive and negative
lookahead predicates, respectively. Predicate

& BulletSymb

succeeds if the next symbol of the input is a bullet, and predicate

! BulletSymb

succeeds if the next symbol is not a bullet. Neither of the predicates consume any
input: they are only used to check the lookahead symbols in the input, and those
lookahead symbols can be regarded as the right context of a string [33]. Drawing
upon both parsing expression grammars and Boolean grammars, grammars with
contexts [8] provide a built-in mechanism to specify what left and right contexts
should be. The following informal rule states that whenever an identifier is used in
a program, its declaration should appear to its left:

ValidIdent→ ident &C it was declared before

A symmetrical rule uses right context operator (B).

Expressive power and applicability of grammars with contexts
Syntax and static semantics of a typed C-like programming language has been
defined by a grammar with contexts [9]. It checks whether expression of while
loop has type bool, types of formal parameters and actual arguments in function
calls agree, type of expression in a return statement is the same as the returning
type of a function, as well as other context conditions. The grammar also specifies
scopes of visibility: identifiers are visible in the block where they are defined, and
in all its inner blocks.

Several parsing algorithms, including cubic-time general parsing algorithm [8,
49], linear time recursive descent [10], and linear-to-cubic time Generalized LR [6],
have been successfully extended to grammars with contexts. Importantly, these
algorithms have the same time complexity as their context-free analogues, and have
been implemented in a parser generator [11, 6].



Grammars with contexts are a purely syntactic formalism, and after a language
is defined by a grammar, no additional code is required to further define its static
semantics. Use of formal grammatical models—including grammars with contexts—
for small sublanguages of larger programming languages (for example, a sublanguage
of arithmetical expressions) is generally motivated by a desire to formally prove
correctness of the definitions [37].

Definition of a typed programming language by a grammar with contexts
mentioned above is heavily based on the copy language wcw that is used to check
cross-references. This language is defined in a non-trivial manner, and would require
a substantial modification to accommodate possible changes to how identifiers are
defined in a language. This brings the following open problem [5].

Open Problem: How can the formalism of grammars with contexts be
made more approachable? A solution of this problem is two-folded. One
direction is to implement a “grammar development and debugging tool”1 for
grammars with contexts. This is feasible because all necessary parsing algorithms
exist [6, 10], they were proven to have decent time complexity, and are implemented
in a prototype parser generator [11].

A more general direction is to introduce an adequate and convenient formalism
on top of grammars with contexts. Specifications in such simplified “front-end”
formalism [63, 31] will be then translated to a grammar with contexts. For example,
constructs of a language can be annotated with tags (“suffix numbers” [63, p. 37] [2])
to define cross-references, as shown in the rules below.

NewIdent : ident & ! DeclaredIdent
DeclaredIdent : < ’var’ ident.1 | & ident.1

In the rule for DeclaredIdent, both the ordinary (ident.1) and contextual (<
. . . ident.1 |) occurrences of ident have the same tag to express that these
identifiers should be identical. That is, this rule expresses that “a declared identifier
is any identifier that was declared before” in a natural way.

3 From Parsing to Projectional Editing
Grammars with contexts can define arbitrary cross-references within a string [7].
They have been used to specify an abstract programming language where identifiers
can be declared before or after their use (example motivated by function prototypes
in C) [7]. Ability to define cross-references is what makes grammars with contexts
applicable to software languages. This ability is also distinctive in parser-based
language workbenches [22], which are software development tools to define, reuse
and compose programming languages together with their integrated development
environments [20, 29].

Expressing cross-references
In language workbench Eclipse Xtext [25, 13], definition of a language starts with
writing a grammar in a meta-language that is similar to that of ANTLR [48] and

1Such tool can take a form of a language workbench, as discussed in the next section.



supports cross-references.

Variable : ’var’ name=ID ;
Assignment : left=[Variable] ’=’ right=Expression ;

The first rule defines construct variable declaration: it is keyword var followed
by an identifier, which is “stored” in feature name associated with this rule.
From a grammar, Xtext creates an object model in Eclipse Modeling Framework
(EMF) [58]. In a simplified setting, rules become classes (instances of EMF Ecore
EClass) and features of rules become fields of those classes. The model is then
populated during the parsing, resulting in an AST that can be further analyzed or
transformed by the user, for example, to define and validate static semantics of a
language [13, 66], or to define a code generator via a model-to-text or a model-to-
model transformation [58, 18].

Term [Variable] in the second rule above specifies a reference to an existing
Variable, in particular, to its feature name. The reference is made to an instance
of EClass Variable; if such an instance does not exist, an error is reported. If
the instance exists, the reference is associated with the value of its field name. This
is conceptually very similar to grammars with contexts [9], where ValidVariable
would be used to specify the idea of what [Variable] expresses in Xtext. An
important difference between the two approaches is that to perform static checking,
Xtext mainly relies on imperative code that walks the AST, while grammars with
contexts are a purely syntactic formalism and their correctness can be established
in a formal way.

IDE-first language specification
Language definition task cannot be considered finished even when mechanisms to
read, validate and execute programs written in a language are implemented. More
and more software developers nowadays are accustomed to powerful integrated
development environments (IDE) [66], such as Eclipse, Visual Studio, Apache
NetBeans, IntelliJ IDEA, GitHub Atom, and others. Hence, adoption of a
custom language in practice can be facilitated by a powerful IDE tailored to
that particular language [66], which is expected to have language-specific services
such as syntax-aware editing with syntax highlighting, code formatting and
folding, code completion, code navigation and hyperlinking, code outlining, name
refactoring, code version control, automatic code corrections and incremental syntax
checking [26].

Apart from specifying the grammar, language specification in Xtext comprises
of imperative code in a JVM language for describing the behaviour of the mentioned
IDE services [13]. A full language specification in Xtext results in an Eclipse-
based integrated development environment for that language, with the IDE services
enabled. Alternatively, a language server for the language compliant to the Language
Server Protocol [36] can be output by Xtext.

Another language workbench—Metaprogramming System MPS—while being
conceptually similar to Eclipse Xtext, provides mechanisms to specify IDE services
using the approach of language-oriented programming [72, 20, 67]. This approach
comprises of dividing a complex task into subtasks, for each of which a dedicated
domain-specific language (DSL) is created. The solution to a particular subtask is
then expressed in that DSL. Thusly, language definition in MPS is viewed through



a prism of aspects—particular viewpoints on a language corresponding to different
IDE services, such as editor, type system rules validator, or code generator. For each
aspect, MPS provides a DSL which is then used by language engineer to specify the
details of a language with respect to that aspect [15]. Similarly to Xtext, a language
definition in MPS results in a powerful integrated development environment which is
based upon industry-leading IntelliJ-platform with its extensive source-code-related
capabilities [26].

Projectional editing in MPS: no parsing, free IDE
A distinctive feature of MPS is its projectional (structured) editor [15]. Unlike text-
based editors where program is both stored and represented as text, in a projectional
editor, key representation of a program is its abstract syntax tree. This AST can
be projected into different representations: textual, tabular, and graphical [65]. As
the user edits the abstract syntax tree directly, projectional editing does not require
parsing—this enables composition of languages with conflicting syntaxes [23, 70].
Projectional editing also makes possible automatic language migration, as all
existing code in a language is stored as an object model that can be automatically
transformed to reflect the changes to the language itself. For the same reason, code
generation in MPS is possible via graph-to-graph transformations [15, 18].

Traditional limitations of projectional editors [68, 12, 57, 30], such as linear
input of arithmetical expressions instead of subtree-based input, has been addressed
in MPS via substitution actions, which a language engineer defines on classes of
subtrees of an AST [15, 69]. This approach results in an editing setting near in
user experience to traditional text-based editors [69]. Many existing systems that
support projectional editors [61, 47, 56, 39, 55, 21, 62] address the mentioned issues
each anew; our hypothesis is that a formalism of projectional editing paradigm
could unify development process of such systems. This suggests the following open
problem.

Open Problem: How projectional editing be formalized? In a projectional
editor, lines of code can be represented as a table with each token being located in its
own cell. To combine several cells to form a line of code, a compound cell—horizontal
collection—can be defined. Several lines of code will form a vertical collection; other
types of cells can be defined, for example, indentation cells and so on [15].

Consider an arithmetic expression 2 + 3, to be entered in an assumed
projectional editor. As soon as the user types in integer constant 2, the persisted
AST is of the form IntegerConst(2). In a projectional editor without substitution
actions, the only way for the user to type in the entire desired expression would
be to erase the already input expression 2 and to restart the process by typing in
the trigger “+” of an addition expression. This would result in two placeholders
for the left and right subexpressions: � + �, which the user will then fill in
with values 2 and 3, respectively. Using substitution actions, after entering the
original subexpression 2, the user would type in right transformation trigger “+”
which will automatically transform subtree IntegerConst(2) into a binary subtree
Addition(·, ·), where one placeholder is assigned to already entered subexpression
2: Addition(IntegerConst(2), �). To fill in the second placeholder, the user will
continue typing in the right part of the expression. This process can be implemented
by a language engineer in Metaprogramming System using a special imperative



DSL [15]; the process, however, has not been defined in formal way.
A possible formalization can be based upon tree-adjoining grammars (TAG) [32],

which can be thought of a version of context-free grammars adopted for tree
manipulation. Tree-adjoining grammars can be parsed in polynomial time using a
generalization of Cocke-Younger-Kasami [32, 53], Earley [54] and LR [41] algorithms.
Other formalisms, such as tree grammars [17], graph grammars [35, 52] or grammar
systems based on first-order logic [34] can be considered as potential foundations to
formally reason about the behaviour of projectional editors with the goal of proving
their correctness. While an existing formalization of projectional editing [71] targets
specifying the behaviour of implementations of projectional editors, our approach
would be concerned with specifying the structure of the editors.

4 Low-Code Language Engineering
Engineering a programming language requires very versatile knowledge and software
skills from a language developer, as it includes syntax specification, type system
definition, code generation implementation, in addition to establishing behavior of
IDE services. Some of the existing language workbenches have a very steep learning
curve even for experienced software professionals [50].

Low-code development approach applied in software industry [14, 60] allows
creating applications using a visual user interface in combination with model-driven
logic, without or with a minimum of coding. This approach enables a wider range
of persons to contribute to application development and can lower the cost of setup,
training, deployment and maintenance of software [14]. A question arises of whether
a similar approach can be used in language engineering, thusly making the latter
more accessible. Our hypothesis [4] is that one of the key factors that inherently
makes language engineering non-trivial is the prevalence of meta-definitions, with
language definition tools (such as grammars and language workbenches) themselves
being on the meta-meta-level.

We suggest an approach [4] to use a word processor to define languages in
example-driven way : a language is defined by giving examples of code written in it,
which are then annotated to specify abstract syntax, formatting rules, dynamic
semantics, and so on. Such a definition can then be used to validate similar
documents and to generate an API for processing models. Alternatively, it can
serve as a front-end and later be transformed to an (equivalent) definition in a
language workbench. We imagine a similar approach for language definition using of
a dedicated language definition tool [3]. In such a tool, a language is defined by giving
examples of code written in it using illustrative syntax definition [3]. These examples
are then annotated to specify different concerns of language definition—abstract
syntax, typing rules, validation rules, formatting rules, and dynamic semantics.

With the goal of further significantly simplifying language specification and
implementation, one can draw ideas from other fields, for example, natural language
processing or human-computer interaction. We can thus formulate the following
generic open problem.

Open problem: How can unconventional approaches to language
definition make it more accessible? We give a brief overview of possible
research directions.



Utilizing chat bots for language definition can be based on preliminary results
in [51] that discuss creation of UML diagrams via command-like imperative messages
given by a user. Building on these ideas, using a controlled natural language [24] for
software language definition presents an interesting question. This approach can be
applied to different aspects of language specification, including annotating examples
of code (as discussed in above). Work by Cabot et al. [19], who give an example
of a DSL to extract variable data from textual fragments, seems a possible starting
point.

Recognizing hand-drawn UML diagrams [38] can be extended to recognizing
specifications of projectional editors. Visual representation of such specifications
can be further enhanced using augmented reality [64].

Yet another possible approach to specify (syntax of) software languages is by
using tabular notation in a spreadsheet calculator. This could significantly lower the
entry barrier for language engineering, due to popularity of spreadsheet software.

5 Conclusion
Specifying syntax of software languages presents both theoretical and practical
interest, and the ultimate goals are to understand better the fundamental principles
behind programming language definition in a broad sense, and to make language
definition process approachable for non-experts in language engineering. Giving a
more practical flavour to grammatical models, and trying to find a formalization of
practice-driven approaches to language definition might be an enabler of a sought
common ground between the two worlds.
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