

Some Faster Algorithms for Finding Large Prime Gaps

Arne Maus (em), Thomas Gulli and Eric B. Jul
 (arnem,thomgull,ericbj@ifi.uio.no)

Programming Technology Group

Dept. of Informatics, University of Oslo, Norway

Abstract
This paper investigates the problem of finding large prime gaps (the difference between two

consecutive prime numbers, pi+1 – pi) and on the development of a small, efficient program for

generating such large prime gaps for a single computer, a laptop or a workstation. In Wikipedia [1], one

can find a table of all known record prime gaps less than 264, the record is a 20 decimal digit number.

We wanted to go beyond 64 bit numbers and demonstrate algorithms that do not needed a huge number

of computers in a grid to produce useful results.

After some preliminary tests, we found that the Sieve of Eratosthenes, SE, from the year 250 BC was

the fastest for finding prime numbers and it could also be made space efficient. Each odd number is

represented by one bit and when storing 8 odd numbers in a single byte (representing 16 consecutive

numbers ignoring the even numbers), we found that we should not make one long SE table, but instead

divide the SE table into segments (called SE segments), each of length 108 or 109 and dynamically

generate the necessary SE segments as to find prime numbers. First, we made a basic segment of all

prime numbers < 108 (in less than a second). We also relied heavily on the old observation [2] that when

using SE to find all prime numbers ≤ 𝑁, we cross out all numbers using the prime numbers 𝑝 ≤ √𝑁
2

,

and that the first number crossed off when crossing out for prime number p is 𝑝2. When we want to find

prime gaps, we first create one or more consecutive SE in that range, say starting on 274 and ending

with the value M – initially these big segments are crossed out by our first basic set of primes < 108 ,

To find all prime number in these big segments, we next need the rest of prime numbers 𝑝 ≤ √𝑀
2

 .

These can be all be constructed by using our first set of prime numbers to generate segments of

consecutive SE from 108. The primes in these segments are used to cross out in the big SE segment and

can then be discarded (each prime used only once). Our most significant algorithm was to find a simple

formula for using primes from a range 3 – 236 to cross out the non-primes in any SE segment without

crossing out in all the numbers between 236 and 272. This leads to an exponential saving in both space

and execution time. In addition to this, we created a small package Int3 to represent numbers > 264 by

storing 8 decimal values in each of 3 integer variables together with the necessary mathematical

operations. The Int3 package can handle numbers up to 24 decimal digits and is significantly faster than

the BigInteger package in the Java library. We also created a faster algorithm for finding all record

prime gaps.

The results presented in this paper are some tables of prime gaps for primes significantly larger than

264 and data supporting an observation that big prime gaps in these segments are much more frequent

than the ones we find in the Wikipedia table where the search starts at prime number 3. Our combined

set of algorithms is also sufficiently fast to test every entry in the Wikipedia table in less than 5 minutes.

We conclude by reflecting on the use of brute force (more computers) versus smarter algorithms.

Keywords: Prime numbers, prime gaps, algorithms.

1. Introduction
 Prime numbers have been studied since antiquity. We take as our starting point a well-

known algorithm from Eratosthenes (276 – 194 BC), a true genius of that time. He invented

Geography as a science, was head of the library of Alexandria, measured the diameter of the

Earth and the distance from Earth to the Sun with great precision and, of special interest for

us, invented the Sieve of Eratosthenes, a tabular method for finding all prime numbers < N.

 There are numerous research themes connected to primes, such as finding an even

greater prime number (there are an infinite number of them as shown in Euclid’s elegant

proof), finding the largest Mersenne prime, trying to solve the Goldbach conjecture (any

even number is a sum of two primes).

This paper was presented at the NIK 2020 conference. For more information see http://www.nik.no/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BIBSYS: Open Journals Systems

https://core.ac.uk/display/352014115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For an introduction, see the Wikipedia articles on ‘Prime number’ ‘Prime Gap’ and ‘Sieve

of Eratosthenes’ [1] and their references.

 To be clear, neither the Sieve of Eratosthenes (SE), nor any other method or formula,

can find the prime numbers directly – SE first makes a table of all odd numbers (one bit for

each number) < M, some maximum number, assuming they are all prime numbers. Then SE

efficiently cross out in this table all numbers that are non-prime. We do not need to cross off

any even number as we ignore them from the beginning because, except for 2, we know they

are all non-primes. The odd numbers not crossed out in SE, are then the prime numbers

greater than 2 and less than M.

2. The Problem
 This paper is about the problem of finding large prime number gaps. A prime number

gap, or prime gap for short, is an integer interval [pi, pi+1] where pi and pi+1 are two

consecutive prime numbers. The size of the gap is pi+1 – pi. An interesting problem is finding

a prime gap larger than all prime gaps that precede the gap. We report on the development

of a small, efficient program for generating such large prime gaps using a single computer,

a laptop or a workstation. In Wikipedia, one can find a table all known record prime gaps

less than 264 - a 20 decimal digit number. We wanted to go beyond 64 bit and demonstrate

algorithms that do not need a huge number of computers in a grid to be useful.

 We first observe that Horsley in his paper from 1772 [2] in the section: “The Operation

of the Sieve” summarises the way to remove all non-primes for his table of the odd

 numbers < M:

1. Set p = 3.

2. Start at number p2 and cross out all multiple of 2p after p2 until we reach a

 number > M, the end of the table (3 will cross out 9, 15, 21, 27, 33, …)

3. Find new p as the next uncrossed number after last used prime (now 5 after 3) and

 repeat point 2 until the next prime p has a p2 > M (5 will cross out 25, 35, 45, …).

4. When the next picked p has a p2 >M, the table of all primes ≤ M is finished.

 While point 4 above is used and acknowledged today, the observation 2 seemed to be

partly forgotten. It is only a few years since the demo graphical app at Wikipedia [1], to find

all primes less 100, let p=5 started by crossing out 15, and p=7 start by crossing out 21 and

35. The reason that we, for all primes p, can start at p2 is that all smaller non-prime numbers

have already been crossed out by smaller primes, e.g., in the example above 15 was already

crossed out by 3, and 21 and 35 were already crossed out by 3 and 5 respectively.

 Others, such as Jacobsen, Andersen and Oliveira e Silva [3, 4] has also produced prime

numbers beyond 64 bits. These prime gaps come either as a continuation from 0 as in the

Wikipedia table with best record gap so far is 1550 starting at 18 361 375 334 787 046 697

– a 20-digit number, or they come from free standing segments far beyond 64 bit where the

record so far seems to be a gap of length 5 103 138. They also use a metric, the merit of a

gap, starting at prime p, defined as: 𝑠𝑖𝑧𝑒 𝑜𝑓𝑔𝑎𝑝/ ln 𝑝 , to measure how ‘fine’ or unexpected

such a large prime gap is. A merit above 10 is considered good and the best merit so far is

38. This is obviously inspired by ‘the prime number theorem’ that states that there are

approximately: 𝑛/ ln 𝑛 prime numbers < n; such that the average prime gap length < n is:

ln 𝑛 . We here comment on two factors. Their methods or algorithms are not clearly

disclosed in their published results, and they distinguish between prime numbers and

probable prime numbers (PPN), ‘prime gaps’ (a gap that does not contain a prime number)

and ‘proven prime gaps’ (a prime gap that has a prime at both ends). Further below, we

sketch out how one might find larger gaps by finding PPNs.

3. Problems with the Traditional Data Structure
 The traditional data model for finding prime numbers < M with the Sieve of

 Eratosthenes is one long bit-table representing the odd numbers 1, 3, 5, …,

 M = 2 64 (1019 ≈ 264))

Figure 1. A traditional’ Sieve of Eratosthenes’ for finding record prime gaps up to 2 64. All odd numbers

from 1 to the maximum value M are represented as one continuous table.

 We first tried this data model and discovered that when trying to reproduce the results

in the Wikipedia table, the execution time of course went up exponentially. All prime gaps,

up to and including gap 31, a 10-digit number, took a little more than 1 minute, while all

gaps up to gap 58, a 14-digit number, took more than 2 days. Because the last gap in the

table, gap 80, is a 20 decimal digit number, our space (the table) and time approximately

needs 1020/1014 = 106 times more time and space than our gap 58 – or a million times more

time than 2 days – that is some 5 500 years. And in addition, one such long table needs 0,625

Exabytes for representing all numbers < 1019 even when we pack 16 numbers into each byte.

Our two computers had 8 GB and 16 GB, so when we wanted to go beyond 264, we certainly

had to find better algorithms.

3. Our Data Structure
 We discovered that there are four types of prime numbers in the traditional sieve when

we want to find prime gaps between some big numbers, say between: 1022 and 1022 + 109

 (M = 10 22 + 109):

a. The basic set of small primes < 108, used many times for generating all the primes

 on b and most of the non-primes on d.

b. The set of primes used once, medium-sized, primes < 1011 used to further cross out

non-primes on d.

c. The primes between 1011 and 1022 – not used for anything except for finding where

a prime p will start to cross out non-primes on d.

d. The set of big primes, in this example between 1022 and 1022 +109 where we might

 find new large prime gaps.

Figure 2. Four different types of prime numbers on the SE when we want to find big prime gaps in the

top part of the table (not to scale).

When we inspected the size requirements for these sets, we found out that:

a. The set a of small primes. If made 108 long, it would be only 6.25 Mb but

 will contain all the prime numbers needed for making all possible

 lengths of section b (which is at most 1012) – which again contains all

 primes needed to create the primes on set d. The time needed for creating

 all 5.7 million primes on a < 108 was 0.7 sec.

b. Set b is potentially large, on the order of 1012 – or 62.5 Gb, too much for

 main memory, but possible (but much slower) if stored on disk.

c. Impossibly large and time-consuming.

d. A small set of 108 to 1010 numbers. We can afford the space and probably

 also time-wise.

 We then had two problems, the size of set b and how to get rid of set c. They both happened

to have a common solution, which we call the Sliding Sieve of Eratosthenes (SSE).

We found out that we can divide the set b into segments of fixed length (say 108). Each

segment is called an SSE. They will all be created from the primes from set a. When one

such SSE is created, all its primes will be used to cross out on the set d, and then deleted

because each of its primes are used only once.

4. Using a Prime on a Segment with Start S and End T
When we want to cross out non-primes with a prime p on a segment that starts with number

S and ends with T, we are posed with the following problem: Where do we start crossing

out for p on this SSE? Answer: we want to calculate an integer k where we place our first

cross using p, a relative address within this segment, (k = 0 means that we start at S).

The primes that we use for crossing out, we use in increasing order, and simulate that we

would have done on the old, one long, continuous SE where we start at p2 and after that at

all multiples 2*p until we reach a number larger than T.

The total formula is then (depending on whether p2 comes before S, between

 S and E, or after E):

Calculate p2:

 if p2 > E, we are finished with this SSE (because no larger primes can be used)

else { if p2 ≥ S, k= p2-S

 else k = 2*p- (S- p2) %(2*p)

 if now k ≤ T-S, cross out for k }

The explanation for the last formula is given in fig. 3 (% is the modulo operator, the

remainder after having crossed out the stretch S - p2 with 2*p).

Figure 3. The case when crossing out with p on a segment SSE stretching from S to T, and when one of

the crosses hits that segment (is between S and T).

Assume that we use the same segment size on all SSE (both a, b and d), then after having

crossed out for the smaller primes p in section a, all primes p will be larger than the segment

size, and crossing out with a step size of p*2, one can often miss placing a single cross on

the SSE in question. This is a valid question for both the larger primes from a to b and d

segments, also from all primes from b segments to d segments.

5. Our Data structure and Method
We decided on the following data-structure (fig, 4). All SSE segments are of the same size

(here 108). The segments a and the 1..100 continuous d segments are fixed in memory, with

M as the maximum number represented on d. The b segments are created, one at a time as a

continuation of the a-segment, used and then deleted until we have created all prime numbers

𝑝 ≤ √𝑀
2

.

Figure 4. The data structure used to find large prime gaps on d.

Our method can then be summarized as:

1. Create the a-segment, the first b-segment and all the d-segments and determine M,

 the maximum value.

2. Create all the prime numbers < 108 on the a-segment and use them to cross out on

 the first b-segment and all the d-segments.

3. Cross out with the primes then found on the current b-segment on the d-segments.

 If the last prime on this b-segment < √𝑀
2

, delete this b-segment and create a new

 as its continuation.

4. Repeat 3 until we have crossed out all the non-primes on d.

5. Scan the primes on the d-segments for ‘big’ prime gaps.

By leaving a continuous sieve of Eratosthenes when dropping the c-segment, we miss the

numbering (but of course not the value) of the prime numbers where the prime gap starts.

But more importantly, we miss the ability to claim that any ‘larger’ prime gap that we find

is a record because we do not know if there is an even larger gap on the c-segment that we

have skipped. However, those like Andersen and Jacobsen that are looking for the largest

gap, all have these two problems. The running time of our algorithm is roughly proportional

to the number of d segments and √𝑀
2

.

6. The Int3 and Eratosthenes Classes.
To represent numbers > 264, a class Int3 was implemented. It contained a representation for

numbers < 1024 and the mathematical operations needed in our case: The values of big

numbers are kept in a small int[] array, with 8 decimal digits in each of its tree array elements.

With this representation, it is then possible explore a set of numbers 105 times larger than

can be explored by using Java’s 64 bit long numbers (1019 ≈ 264). It was tested against the

Java library package BigInteger and was for most operations significantly faster. The

implemented operations are: add, sub, mult, less, square, sqrt and two methods for getting

the values for an Int3 object: getLongValue (if the value is small enough) and getStringValue

(nice output with one space between groups of each 3 digits).

 The following demonstrates how the formula explained in figure 3:

 k = 2*p- (S- p2)%(2*p), looks in Int3-land, where bigStart is the start value for a d-segment.

bigStart is an Int3 variable.

 long p2 = p+p;

 Int3 pp = Int3.square(p);

 k = (int)(p2-(bigStart.sub(pp)).modulo(p2));

The type-cast from an Int3-expression to a 32-bit value can only be applied after we have

tested with the ‘less()‘ method that the prime p will make a cross inside the limits of this

d-segment.

 The class Eratosthenes is a class representing the a, b, and the d-segments (with a separate

constructor for each case). One object of this class contains start and end variables and the

byte array for the odd numbers between these two variables – the SE table. Most importantly,

this class contains operation on the byte-array such as: boolean isPrime(int num), void

setNotPrime(int i), int firstIntPrime(), int lastIntPrime(), long firstLongPrime(), int

numberOfPrimes() , int nextIntPrime(int i). In addition, this class contains two methods for

applying the primes from the a-segment on the b-segment and on the d-segment, and one

method for applying the medium-sized primes on the b-segments on the d-segments.

7. Notes on the implementation
 This program is an exercise in using different levels of representing integer numbers:

byte-array with one bit for the odd numbers on the SE within a segment, 32-bit int values

for start and end on the a-segment, 64 bit long for start and end values on the b-segments,

and finally Int3-values for start and end on the d-segments. Byte-arrays are used on all

segment types: a, b or d for representing the SE.

 The program is written in Java and consists of three classes and is about 700 lines of code

in total. The advantages of using Java are that it provides many helpful error messages during

compile- and run-time, that parallel threads are included in the language, and that it has the

ability to do typecast (e.g., from long to int when needed and possible). Java is also fast and

optimized – probably between almost as fast, or not less than half the speed of optimized C.

One not so nice limitation is on the length of an array – a byte array cannot have more than

109 elements.

8. Faster Finding of Larger Prime Gaps without Reading

all the Prime Numbers.

When looking for a larger prime gap than previously found, one can speed up the process

with the following algorithm (fig 5):

a) Say our current record gap is Len, and we stand at prime number N.

 Then test if PN=Len+N is a prime.

b) If yes, we have at best found a prime gap just as large as our present record,

 Set N to PN and repeat a.

c) If PN is not prime, move backwards towards N and find first prime P’

 in that direction. If N == P’, we have found a new record. Anyway, move

 rightwards from PN to the next prime NP in that forward direction.

 Test if the gap NP – P’ > Len, i.e. a new record gap. If so, update Len.

d) Set N = NP. If N is the last prime on this segment, then exit.

 Otherwise go to a) and continue a search for an even bigger gap.

Figure 5. Speeding up finding of record gaps, explaining two of the four different cases that can occur

with this algorithm for finding record prime gaps.

The average prime gap is ln N, but one soon finds a record gap of 100 or more. We then

see that this algorithm will avoid reading most of the prime number while finding all the

record gaps. Tests comparing this method when using the division method for deciding every

prime (finding at least one factor by division with the primes to find non-primes) showed

that this method had a speedup of approximately 4 when the record gap exceeded 200, and

also showed that SSE was much faster than the division method.

9. Results

As a motif for this project, we wanted to find big prime gaps above 264. The following

tables 1 and 2 are typical results, we get. We note that execution time of course are longer

for larger numbers but that bigger gaps appear earlier, and that the numerical differences

when larger gaps appear are shorter in the 270 case than in the 264 case. Comparing table 3

(starting at 3) and table 1, a continuation of the Wikipedia table, we find that the longest gap

716 in table 3 occurs after inspecting 1014 numbers, but in table 1 we reach > 712 after

inspecting ‘only’ 1010 numbers.

Table 1. for numbers > 264

Table 2. for numbers > 270

 The last result in table 1, 1 062, has a Merit of 23.9, which is very good, because it also

is a continuation of all known prime gaps > 0 (albeit it is not a new record). The last result

in table 2 has a merit of 23.4, also good, but it is not in the continuation from 0.

Table 3. Gaps and Wall clock execution time for numbers > 3

(‘,’ used as decimal point)

 We earlier remarked that we would discuss how the size of numbers affects the result, or

more specifically, if lager gaps occur more often for large numbers. From the Wikipedia

table and our tables 1 and 2, we see that if one starts the search from 3, we have to investigate

up to a 16-digit number to find a gap > 1 000, a 13-digit additional numbers in table 1 to find

gap > 1 000, and an 11 digit numbers in table 2. In total, a factor 100 000 lower when starting

at 270 than at 3! As described above, almost the same factor of numbers necessary to test we

find between table 3 (a subset of the Wikipedia table), tables 1 and 2 when we look how fast

we reach at least 716.

 Also, the running time for finding really big gaps > 1 000, we see that the running times

are much smaller, and that the table 3 starting at number 3, it is not possible to reach a gap

of 1 000 in any reasonable time with a traditional algorithm.

 We earlier claimed that we can make really large speculative prime gaps in the sense

that if we made a SSE far out, say starting at 1045, and of length = 109, and then crossed out

on this SSE with all the primes on that SSE that we were able to produce in a reasonable

amount time, we might produce really big prime gaps. We would have to make, trivially, a

new class Int5 or Int6 for holding such large numbers.

 Because we know that all non-prime (composite) numbers on this SSE are genuine,

crossing out with more prime numbers will only make more non-primes, not invalidating

those already found. It is then the remaining uncrossed numbers that are PPNs (= true primes,

or composite numbers with a large first factor). Anyway, the distance between two such

PPNs is either a true prime gap or part of an even larger prime gap – voila!

10. Conclusions
We have set out to make space- and time-efficient algorithms for finding large prime gap

on a single computer, and we believe that we to a large extent, have succeeded. We have

introduced a new algorithm: the sliding Sieve of Eratosthenes (SSE) saving both time and

space, the formula for crossing out with prime numbers on such a free-standing segment

(SSE), and a faster method to find record gaps on a SSE. The first two of these in

combination are obviously the most space and time saving of our algorithms.

 This is our answer to the question on better algorithms versus more computers. However,

we have found no new record large gap so far, but it might be possible to find a new record

by starting from the last known result in table 1.

References

[1] Wikipedia articles on ‘Prime number’, ‘prime gap’ and ‘Sieve of Eratosthenes.

 www.en.wikipedia.org/wiki/English_Wikipedia , (visited 28.08.2020)

[2] Horsley, Samuel. “KOΣ KINON EPATOΣ Θ ENOΥ Σ . Or, The Sieve of Eratosthenes.

 Being an Account of His Method of Finding All the Prime Numbers, by the Rev. Samuel

 Horsley, F. R. S.” Philosophical Transactions (1683-1775) 62 (1772): 327-47. (visited

 28.08.2020) www.jstor.org/stable/106053.

 [3] Andersen, Jens Kruse: The Top-20 Prime Gaps,

 http://primerecords.dk/primegaps/gap[s20.htm#top20meritset, (visited 28.08.2020)

[4] Tomás Oliveira e Silva: Gaps between consecutive primes,

 http://sweet.ua.pt/tos/gaps.html (visited 28.08.2020)

http://www.en.wikipedia.org/wiki/English_Wikipedia
http://www.jstor.org/stable/106053
http://primerecords.dk/primegaps/gap%5bs20.htm#top20meritset
http://sweet.ua.pt/tos/gaps.html

