
Evaluating multi-core graph algorithm frameworks

Zawadi Svela
Department of Computer Science

Norwegian University of Science and Technology
z.b.svela@gmail.com

Abstract
Multi-core and GPU-based systems offer unprecedented computational power. They are,
however, challenging to utilize effectively, especially when processing irregular data such
as graphs. Graphs are of great interest, as they are now used to model geographic-, social-
and neural networks. Several interesting programming frameworks for graph processing
have therefore been developed these past few years.

In this work, we highlight the strengths and weaknesses of the Galois, GraphBLAST,
Gunrock and Ligra graph frameworks through benchmarking their single source shortest
path (SSSP) implementations using the SuiteSparse Matrix Collection. Tests were
done on an Nvidia DGX2 system, except for Ligra, which only provides a multi-core
framework. D-IrGL, built on Galois, also provided a multi-GPU option for SSSP. We
also look at program size, documentation and overall ease of use.

High performance generally comes at the price of high complexity. D-IrGL shows its
strength on the very largest graphs, where it achieved the best run-time, while Gunrock
processed most other large sets the fastest. However, GraphBLAST, with a relatively low-
complexity interface, achieves the greatest median throughput across all our test cases.
This despite that its SSSP implementation size is only 1/10th of Gunrock, which for our
tests has the highest peak throughput and the fastest run-time in most cases. Ligra had less
computational resources available, and consequently performed worse in most cases, but
it is also a very compact and easy to use framework. Futher analyses and some suggestions
for future work are also included.

1 Introduction
Graphs are an ever useful modelling tool for modelling data in countless of situations,
including geographic-, social-, and neural networks. The demand for processing is
increasing, but Moore’s Law is not keeping up. Thus, highly parallel programs are needed
for large-scale graph processing. GPUs (Graphical Processing Units) are also growing in
popularity, as they have a much higher throughput potential than CPU-only systems.

Exposing parallelism in irregular algorithms, such as graph algorithms, can be
difficult, and this challenge is increased when working with GPUs, which favors highly
regular computations. Specialized libraries and frameworks can help in this regard.

In this work, we study four different graph algorithm frameworks, using their SSSP
implementations as a reference point. Galois [1], Gunrock [2] and Ligra [3] were

This paper was presented at the NIK-2020 conference; see http://www.nik.no/.



chosen because they are well-known frameworks in the area of graph algorithms, and
the GraphBLAS [4] implementation GraphBLAST [5] was added because of its novel
programming model. In addition, they also represent a variety of complexity levels. From
the larger Galois project, we looked at the D-IrGL [6] system specifically, which targets
heterogeneous and distributed systems. Here, "Galois" will refer to the framework and
the programming model, while "D-IrGL" will refer to the code that was run and tested.

SSSP was chosen for our benchmarks since it is both an important graph primitive
which is simple to outline and because it has room for many implementation differences.
The specific algorithm can thus play to the strengths of frameworks, regardless of the
programming model they use.

The goal of this work is to give a comparison of four different frameworks, in order
to help evaluate the trade-offs between both system complexity (CPU/GPU/multi-GPU)
and the frameworks that facilitate programming for these devices.

Related works include a taxonomy and categorization of different parallel graph
algorithm frameworks by Heidari et al. [7]. Petterson’s [8] survey is similar to our own,
but with a a different primitive and selection of frameworks. Both of these works included
Gunrock and Galois in their comparisons, but not D-IrGL, Ligra or GraphBLAST.

2 Background
The following sections introduce the four main frameworks benchmarked in this study:
Galois [1], Gunrock [2], Ligra [3] and GraphBLAS [4]. We also include some of the
abstractions used by the frameworks we evaluated, including the operator formulation
used by Galois, the breath-first-based Frontier-based view associated with Gunrock and
Ligra, which is also implicitly used in GraphBLAS, as well as some of the basic linear
algebra terminology associated with graph representations.

Galois
Galois is a framework built around Tao-analysis, [1], and uses the operator formulation of
algorithms to reveal amorphous data-parallelism, see Section 3. As such, the key features
Galois provides are concurrent data structures and parallel loops that allow generation of
new work items/loop iterations as the loop is running. They also provide support for
priority and ordering between work items.

D-IrGL is one of the more recent additions to the continually growing family of
systems associated with Galois. It is the combination of the communication substrate
Gluon [6] with the GPU-targeted intermediate representation IrGL [9], and it facilitates
distributed heterogeneous graph applications. These ideas were developed further into
the Abelian compiler [10], which produces Gluon+IrGL code from ordinary Galois code
written for CPU. The complete system effectively turns Galois into a portable framework
for multi-core, distributed and potentially heterogeneous graph algorithms.

SSSP implementation. D-IrGL uses the Chaotic Relaxation algorithm for SSSP [11].
The source vertex begins as active, relaxes the labels of its neighbours and activates them.
Now, in any order, the same procedure is performed on active vertices, relaxing labels
and activating new vertices as necessary, until the algorithm converges. Because D-
IrGL computes in a bulk-synchronous parallel manner, the pattern of computations would
resemble a parallel Bellman-Ford implementation like in Ligra or GraphBLAST.



Gunrock
Gunrock is a frontier-based framework (see Section 3) for single-node GPU accelerated
systems. In its original implementation, it provided three functions for processing
frontiers: Advance for traversal, compute for label updates and filter. A few more
specialized operators where added later.

SSSP Implementation. Gunrock uses two operators for its SSSP implementation,
advance and filter. When advancing, they use an atomic minimum function to update
the target vertex distance, and filter removes any redundant vertices from the frontier.
They also utilize a two-level priority queue to process more relevant vertices will be
processed first when the frontier size grows large. An older version of Gunrock has
multipe-GPUs support for SSSP, but we decided to focus on its recent version which
has a new programming model, but only has single-GPU support for SSSP.

Ligra
Ligra is a light-weight frontier-based framework for CPUs. It provides only two functions,
edgeMap and vertexMap and a vertexSubset type for the frontier. EdgeMap is the
advancing operator, and applies a given function to all edges out of the frontier given
a condition is met. VertexMap is similar to Gunrock’s filter function. Both functions have
precise mathematical definitions provided in the paper, and as a consequence Ligra is a
very compact framework, which is explored further in Section 6.

SSSP implementation. Ligra implements a straight-forward Bellman-Ford algo-
rithm. As with any frontier-based framework, it will only relax edges incident to the
vertex frontier, in contrast all edges as in the original Bellman-Ford algorithm.

GraphBLAS
GraphBLAS [4] is an open standard for sparse linear algebra operations targeting graph
algorithms. Inspired by the BLAS standard, it seeks to be portable and specifies
the semiring structure, see Section 3, as well as different linear algebra operations
such as matrix-vector multiplication and element-wise addition. There is a reference
implementation in SuiteSparse, as well as mutliple other implementations.

GraphBLAST
GraphBLAST [5] is a implementation of GraphBLAS targeting Nvidia-GPUs. It uses
an extension of a technique employed in a BFS-implementation by Beamer et al. [12],
who observed that when the frontier of a breadth-first search (BFS) is large enough, it
is beneficial to pull information from the vertices outside the frontier rather than the
frontier vertices pushing the search forward. The dichotomy between pull and push-
style computation matches dense and sparse vector-matrix multiplication, and not just for
BFS. This is exploited in GraphBLAST, and the authors call this technique generalized
direction-optimization.

SSSP Implementaion. GraphBLAST’s SSSP algorithm is similar to that of Ligra, as
linear algebra exhibits a very similar compuitational pattern. In addition to direction-
optimization, they employ sparsification of the frontier. An element-wise minimum-
operation is performed between the the frontier and the distance label vector to rid the
frontier of any vertices that did not see any improvement in their distance.



3 Abstractions
This section will present the different abstractions utilized by the frameworks. There are
many different abstractions for exposing parallelism in graph programs. They are given
high importance here as they are how the user conceptualizes and models their algorithm.
They are also interesting to look at separately because they might be implemented
differently by different frameworks.

Operator formulation
Used by Galois and key in Tao-analysis [1], the operator formulation views an algorithm
as actions on a data structure. The formulation is general enough to apply to any structure,
but the primary goal is to reveal parallelism in irregular computations such as graph
algorithms, so that will be the focus here.

An element in a graph ready for computation is called active. The elements read or
written to by an activity is called the neighbourhood, and is key to performing activities
in parallel, as they are the potential source of race conditions. Algorithms were activities
can activate new elements are called data-driven.

A benefit to this model is how it decouples the generation of activities from any
ordering or dependencies they might have. It exposes what Pingali et al. refers to as
amorphous data-parallelism, and if one ensures that no computation is committed until a
safe state is reached, possibly by issuing roll-backs, activities can be performed in parallel
and in any order. This leaves room for many optimizations "behind the scenes" that the
user of this kind of system does not need to interact with directly.

Frontier-based
One of the most popular abstraction is the frontier, which is based on the pattern of a
breadth-first search. The frontier represents the active elements in the graph, usually
vertices, and algorithms are constructed by iteratively applying operators on the frontier
until it empties/converges. The most important operator is one that advances the frontier,
producing a new frontier with neighbours from the previous one. In addition, one needs
the possibility of updating internal values of vertices and filter out frontier elements. For
many algorithms, this would yield a procedure like in Figure 1, the pattern of a breadth-
first-like search. Among those frameworks studied in this work, this abstraction is used
by Gunrock, Ligra and implicitly in GraphBLAST.

Initialize frontier
while frontier not empty do

Advance frontier to neighbours
Update label on newly discovered vertices
Filter out previously discovered vertices

end while

Figure 1: Outline of frontier-based algorithms.

Parallelism in this abstraction is available in all operators. As noted by Wang et al. [2],
the advance operator presents the most challenges, as it is irregular, some vertices can have
vastly different degrees than others.



Linear Algebra
If a graph is represented as a matrix, many graph traversal operations similar to the ones
mentioned in Section 3 can be described in the language of linear algebra. Given an
adjacency matrix A and a vector representing a frontier x, the matrix-vector product AT x
produces the same pattern of operations as advancing through the graph in a frontier-based
graph framework. One does, however, need to adjust the actual operators used, which is
expressed through semirings.

A semiring is an algebraic structure consisting of an additive operator, a multiplicative
operator and a domain, as well as "zero" and identity ("one") values. Examples of
different semi-rings can be found in Table 1, along with what kind of primitive a matrix-
vector multiplication would imply. This is perhaps the most important feature of this
abstraction. By using semirings, it allows for re-use of patterns and optimizations from
linear algebra when constructing graph algorithms.

Table 1: A few example semirings.

Result operators domain 0 1⊕ ⊗
Standard arithmetic + × R 0 1
Breadth-first search or and {0,1} 0 1
Single source shortest path min + {−∞,R} −∞ 0

4 Benchmarking the Frameworks
In order to evaluate and compare the performance of the different frameworks, we
ran their SSSP implementations with a suite of different data sets ranging from 64 to
4,294,966,740 edges. These sets span a variety of different domains with different
graph characteristics. This section describes our test set-up, the methodology behind
the experiments as well as the results we obtained. Arbitrarily, the results are ordered
Gunrock, D-IrGL, GraphBLAST, then Ligra, an artifact of how the tests were run.

Testbed Systems
All GPU based frameworks were tested on a Nvidia DGX-2 node. This node contains
two boards of 8 V100 GPUs each. Each board also contains 6 NVSwitch interconnects.

Ligra, the only CPU-based framework tested, was tested on a Supermicro SuperServer
6049GP-TRT with 2 CPUs, Intel Xeon Gold 6230 SP - 20-Core. All cores were capable
of hyperthreading, and all of the 80 available threads were utilized for the experiments.

Price comparison. As a point of reference, the CPU resources used by Ligra has
a standalone price of ~4.000USD at the time of writing and a single V100 GPU, which
most configurations of the other programs used, has a price of ~8.000USD.

Bechmarking Methodology
One SSSP implementation was compiled from each framework and used to process 128
different graphs. Run-time reported from each program excluded data-movement. Each
program was run at least 3 times for each graph to overcome variance and the best time
was considered for comparisons and evaluation.

A single configuration was used for each program, except for D-IrGL which was tested
on multiple GPUs. We indicated to the programs whether the graph was undirected, but



m
awi...020330

m
awi...020130

kron...logn21
kron...logn20
GAP-road
kron...logn18
Hardesty1
kron...logn17
kron...logn16
tx2010
ca2010
fl2010
il2010
pa2010
Linux...graph
soc-sign...090221
soc-sign...090216
soc-sign...081106
Reuters911
foldoc
big

100

101

102

103

104

105

106
m

illi
se

co
nd

s
Gunrock
D-IrGL
Graphblast
Ligra

Figure 2: Runtime in milliseconds for the largest graphs with > 10,000 visited vertices.
Only the 5 largest "xx2010" are shown.

Table 2: Number of best times per framework.

Gunrock 56 D-IrGL (Galois) 4
Graphblast 47 Ligra 5

not any other graph characteristics. Gunrock reports the number of visited vertices for
each graph, and this was used to filter results and estimate throughput.

Data sets
All data sets were pulled from the SuiteSparse Matrix collection [13]. Only square
integer matrices with the keyword "weighted" were considered. Ligra does not support
floating point values, and matrices representing unweighted graphs would not be suited
for comparing SSSP implementations. This left 128 graphs.

5 Benchmarking results
This section presents and evaluates the results of the experiments. Two metrics were
deemed the most relevant, run-time on large graphs, and average throughput.



Gunrock D-IrGL Graphblast Ligra

10 2

10 1

100

101

102

103

104

M
TE

PS

(a) Visited vertices >= 30. 110 out of 128
graphs.

Gunrock D-IrGL Graphblast Ligra

10 2

10 1

100

101

102

M
TE

PS

(b) Complete traversal only. 83 out of 128
graphs.

Figure 3: Millions of traversed edges per second estimates for different subsets of the
results. Graphs where Gunrock crashed are excluded.

Table 3: Peak throughput for each program.

Program Peak Throughput
Gunrock 8969

Galois 7885
GraphBLAST 5754

Ligra 1980

Relative run-time
Figure 2 shows a selection of the running time for the different frameworks on largest
graphs with more than 10,000 visited vertices. The general trend ranking the relative
performance is Gunrock, D-IrGL, GraphBLAST and then Ligra. This is not wholly
unexpected. Gunrock is specifically developed specifically for high performance and for
single-node systems. D-IrGL is also developed for high-performance, but for potentially
distributed systems. GraphBLAST and Ligra are light-weight frameworks with a stronger
focus on accessibility, and additionally Ligra only runs on CPU and therefore had less
computational resources available than the GPU-based programs.

However, as can be seen in Table 2, the aforementioned trend is not universal. D-
IrGL outperforms Gunrock in four of the five largest graphs. Among these there are
both scale-free graphs and a road network, so results does not seem to be tied to specific
properties of the graphs. Ligra also outperformed Gunrock on some smaller graphs (less
than 10,000 edges), as well as the "geom" data set with approximately 20,000 edges,
which for context is roughly 1/4th the size of the smallest graph present in Figure 2.
Lastly, GraphBLAST outperformed the other programs in a significant number of cases,
which is further discussed in Section 5.

Throughput
In addition to runtime on specific graphs, we wanted to measure the throughput efficiency
of each framework to get a somewhat normalized metric to compare the programs by. We
used an estimate of millions of edges traversed per second (MTEPS) as our throughput
metric, visualized in the boxplots of Figure 3. The number of edges processed by each
program is estimated based on the number of visited vertices reported by Gunrock, which



would be the same for any SSSP algorithm, and the average degree of the graph. This
is not a perfect estimate, as different programs process different amounts of edges, and
the average degree might not reflect the connected component explored, but it still gives
a sense of how efficient the programs are in relation to the graph size.

Using this metric, one can see that GraphBLAST actually outperforms the rest in
terms of its median MTEPS across all graphs, Figure 3a. This is even clearer when
looking at only complete traversals 3b. If we only look at peak throughput, however,
see Table 3, Gunrock and Galois again take the lead, with peaks that are respectively 56
and 37 percent better than that of GraphBLAST. Ligra has a very high variance in its
throughput. It is unclear what causes this variance, and it might either be hardware/CPU
specific or caused by Ligra’a execution model.

Graph characteristics
In general, the graphs represented in the data sets seem to span a few staple categories of
graph analysis, which allows us to test the generality of the programs. There are many
scale-free graphs, both synthetic and real, and there are road-networks and mesh-like
graphs. Scale-free graphs or power-law graph are frequently used as test cases and cited as
challenges, [2,3,5,8], which makes sense as they have highly skewed degree distribution.

Of the 110 graphs with valid results, 50 are "xx2010" graphs from the DIMACS10
collection. These are based on US census data, and vertices and edges model respectively
census blocks and their borders. These graphs have a high diameter and an even
distribution of degrees, in contrast to scale-free networks that generally have a highly
skewed distribution and low diameter. Interestingly, removing the "xx2010" graphs
increased the median throughput of both Gunrock and D-IrGL, but the opposite was the
case for GraphBLAST and Ligra. The reason for this is unknown. GraphBLAST achieved
the best run-time on 47 of these graphs, but not on any other sets, which might indicate
these graphs have attributes especially suited for this particular framework.

D-IrGL and multi-GPU
D-IrGL is developed for potentially distributed systems with multiple GPUs, and was
tested on both 1, 2, 4 and 8 GPUs. The performance worsened with multiple GPUs
compared to one, but it did manage to load the GAP-kron graph with 4 and 8 GPUs, a
graph that caused all other programs and configurations to run out of memory. Because of
this, large graphs is a use-case for these configurations, even if the throughput is lowered.

6 Evaluation
A framework is a toolkit for constructing new programs. As such, its quality is not just
dependent on its efficiency, but also its usability. This section contains a comparison
of code sizes as well as a subjective assessment of the ease of use of the different
frameworks. The focus is on the available documentation, including papers published
in relation to the frameworks. A summary of this section can be found in Table, 4.

Framework code sizes
The total lines of code for the different SSSP implementations are provided in Table 5.
This is an important metric, as large code bases are both harder to understand, and also
harder to maintain. In all cases the programs have additional features such as support for
multiple runs and timing, but they still give an indication of how easy it is to understand



Table 4: Accessibility summary

Code size Documenation System
D-IrGL Very large N/A Multi-GPU
Gunrock Very large Fair Single node, multi-GPU
GraphBLAST Small Good Single GPU
Ligra Very small Good Multicore CPU

Table 5: Lines of code per SSSP implementation, including per file, by code size.

Ligra 87 BellmanFord.C
GraphBLAST 138 gsssp.cu
Gunrock 293 sssp_app.cu

361 sssp_enactor.cuh
408 sssp_problem.cuh

Total 1062
D-IrGL 944 sssp_push_cuda.cu

216 sssp_push_cuda.cuh
147 sssp_push_cuda.h

Total 1307

Galois 494 SSSP.cpp

the given program. From these counts, it is clear that Ligra and GraphBLAST are by
far the most compact frameworks, which should make them easier to understand than the
others. Gunrock lies as the other extreme with large file sizes and also multiple files. D-
IrGL code is constructed by the Abelian compiler and as such isn’t necessarily meant to
be read or interacted with directly, but the Galois CPU-implementation which D-IrGL is
based on, still has a fair number of lines in its code.

Documentation
Documentation is important especially frameworks. The perspective of this assessment
is after a thorough reading of relevant papers describing the frameworks, any tutorials
available, and a scan of available manuals. The developers of all 4 frameworks were
a great help clearing up any confusion throughout the process of this evaluation, which
goes a long way for compensating for ways in which documentation might be lacking.

Galois
The online documentation of Galois contains both a comprehensive manual and a step-by-
step tutorial on how to create a simple program. As Galois is a pretty complex framework,
this helps in easing into the necessary concepts.

It does not incorporate all features of Tao-analysis, most notably all operators are
assumed cautious. This means that ethey can not write to a data structure before executing
all necessary reads. This allows Galois to use locks to detect conflicts before an operation
is committed, which again means it does not need to execute any rollbacks.

D-IrGL The documentation of how to run the D-IrGL programs is good, and there
were no major issues encountered. However, there is no documentation available on how
to write D-IrGL programs.



GraphBLAST
GraphBLAST has minimal documentation in comparison to Gunrock and Galois. There is
a single text-file in their Git repository, which contains an example SSSP implementation
with comments, and a short explanation of their linear algebra operations, as well as
semirings and how they relate to graph algorithms.

The GraphBLAST documentation assumes the user is comfortable with linear algebra
operations and how it relates to graph algorithms. Reading the GraphBLAST paper is thus
recommended to understand all the sample algorithms and make one’s own programs.

Gunrock
In general, the presentation of Gunrock is quite excellent. They have an easily navigable
website that provides an overview of the programming model, performance analysis, and
links to publications and their GitHub code repository with notes on the state of the
current build. They also provide a quick start guide for building and running the algorithm
implementation they provide. Also beneficial is a thorough description of exactly what is
measured and reported for the different programs, which aids benchmarking.

At the time of writing, Gunrock has recently transitioned from release 0.5 to release
1.0, which saw a great simplifications of the interface. It does however, also mean that the
online documentation isn’t up to date yet. Notably, there is no tutorial available on how to
write new primitives with Gunrock. As Gunrock is a quite complex system, it can be quite
difficult to make wholly new programs from scratch at this point. A guide for porting 0.5
application is provided, which can help, and they also provide steps to generate the newest
documentation locally. The developers are fully aware of these features currently lacking.
They are all described in their online roadmap under "Documentation" 1.

Ligra
Similarly to GraphBLAST, Ligra’s light interface allows it to have minimal documenta-
tion. It simply presents the input format, how to get the programs up and running, and
provides a short description of the functions and data structures. It is very beneficial to
have read the paper presenting Ligra first, [3], because the mathematical function defini-
tions in the paper match up quite well with the actual code. There is no tutorial-specific
code provided, but the code for BFS and SSSP (Bellman-Ford) are both quite short.

7 Conclusions & Future Work
Graphs are used to model a wide variety of different data. With the increasing
computational demand and system complexity, recent graph frameworks provide
attractive tools for implementing graph-based methods that can be very beneficial for
productivity. In this paper we presented four of the most well-known frameworks for
graph algorithms, with SSSP used as the reference point to evaluate both the ease of
use and their performance. All frameworks showed strengths in different use-cases. A
summary of our results is followed by suggestions for future work.

If high-performance is of top priority, Gunrock had the most reliable performance,
and achieved the best run-time on 56 out of 128 graphs, which included multiple different
graph types. D-IrGL was generally slightly slower than Gunrock and had the best run-time
on only 4 graph. However, these graphs were among the largest we tested, and D-IrGL

1https://github.com/gunrock/gunrock/projects/3



does in theory support arbitrarily large graphs when run on multi-device systems. D-
IrGL code is not as easily re-usable, a definite weakness compared to the other programs.
Gunrock also achieved the best peak throughput across all frameworks, but it is also
the most complex framework out of the four. It is also currently lacking in terms of
documentation of version 1.0. In addition, it’s SSSP implementation indicates both high
complexity and low maintainability compared to the lighter frameworks.

GraphBLAST performed surprisingly well for a relatively light-weight framework,
even ignoring a large set of similar graphs where it actually outperformed all other
frameworks. It achieved the best run-time on 47 graphs and had the overall best median
throughput. Compared to Gunrock, it is also significantly less complex, with easier to
understand documentation and an SSSP implementation of approximately 1/8th the size.
It and Gunrock did however crash on a few data sets, which is a definite negative.

Ligra used ~100,000 the time of Gunrock on certain graphs, which makes it
less appealing as a general case high-performance framework. Its ease of use and
compactness, with SSSP code size 1/12th the size of Gunrock’s, does however make
appealing for pipelines with high maintainability demands or for smaller graphs.

Future work
For a more thorough comparison, one could write the same primitive in different
frameworks, preferably solving a new problem rather than those already provided.
Writing the exact same algorithm would not necessarily be the correct approach, as
different frameworks excel at expressing different behaviours, like there were four
different algorithms implemented for SSSP. Future comparisons should also include
floating data sets, as this could dramatically increase the variety of the data sets.

It would have been beneficial to have a standardized suite with detailed descriptions
of relevant attributes of all graphs. Two such attributes would be degree distribution and
diameter, as they can greatly affect the run-time of a program.

It would also be interesting to explore exactly why GraphBLAST performed so well
specifically on the "xx2010" graphs. As discussed in Section 5, this is probably related to
some common attributes across these graphs, and finding the exact ones might reveal new
optimization strategies for both GraphBLAST and other graph algorithms.

Acknowledgements: The author wishes to thank their advisor Prof. Anne C. Elster
for helping with this write-up, and NTNU and the IDI HPC-Lab for computer resources.

References
[1] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H.

Lee, A. Lenharth, R. Manevich, M. Mendez-Lojo, D. Prountzos, and X. Sui, “The
Tao of Parallelism in Algorithms,” PLDI’11, 2011.

[2] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens, “Gunrock: a
high-performance graph processing library on the GPU,” in Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming -
PPoPP ’16. Barcelona, Spain: ACM Press, 2016, pp. 1–12. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2851141.2851145

[3] J. Shun and G. E. Blelloch, “Ligra: A Lightweight Graph Processing Framework
for Shared Memory,” Proceedings of the ACM SIGPLAN Symposium on Principles



and Practice of Parallel Programming (PPoPP), pp. 135–146, 2013. [Online].
Available: https://people.csail.mit.edu/jshun/ligra.pdf

[4] A. Buluc, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the GraphBLAS API for C,” in 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). Orlando /
Buena Vista, FL, USA: IEEE, May 2017, pp. 643–652. [Online]. Available:
http://ieeexplore.ieee.org/document/7965104/

[5] C. Yang, A. Buluc, and J. D. Owens, “GraphBLAST: A High-Performance Linear
Algebra-based Graph Framework on the GPU,” arXiv:1908.01407 [cs], Sep. 2019,
arXiv: 1908.01407. [Online]. Available: http://arxiv.org/abs/1908.01407

[6] R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, A. Brooks, N. Dryden, M. Snir,
and K. Pingali, “Gluon: a communication-optimizing substrate for distributed
heterogeneous graph analytics,” in Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation - PLDI 2018.
Philadelphia, PA, USA: ACM Press, 2018, pp. 752–768. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3192366.3192404

[7] S. Heidari, Y. Simmhan, R. N. Calheiros, and R. Buyya, “Scalable
Graph Processing Frameworks: A Taxonomy and Open Challenges,” ACM
Computing Surveys, vol. 51, no. 3, pp. 1–53, Jul. 2018. [Online]. Available:
https://dl.acm.org/doi/10.1145/3199523

[8] H. Pettersson, “A Survey of Parallel Breadth-First Search Frameworks for CPUs and
GPUs,” Master Thesis at NTNU, p. 41, 2018.

[9] S. Pai and K. Pingali, “A compiler for throughput optimization of graph algorithms
on GPUs,” in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications - OOPSLA
2016. Amsterdam, Netherlands: ACM Press, 2016, pp. 1–19. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2983990.2984015

[10] G. Gill, R. Dathathri, L. Hoang, A. Lenharth, and K. Pingali, “Abelian: A Compiler
for Graph Analytics on Distributed, Heterogeneous Platforms,” in Euro-Par 2018:
Parallel Processing, M. Aldinucci, L. Padovani, and M. Torquati, Eds. Cham:
Springer International Publishing, 2018, vol. 11014, pp. 249–264. [Online].
Available: http://link.springer.com/10.1007/978-3-319-96983-1_18

[11] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra and its
Applications, vol. 2, no. 2, pp. 199–222, Apr. 1969. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/0024379569900287

[12] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing Breadth-First
Search,” in SC ’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, Nov. 2012, pp. 1–10,
iSSN: 2167-4337.

[13] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection,”
ACM Trans. Math. Softw., vol. 38, no. 1, 2011, place: New York, NY,
USA Publisher: Association for Computing Machinery. [Online]. Available:
https://doi.org/10.1145/2049662.2049663


