
Feasibility of Optimizations Requiring Bounded Treewidth
in a Data Flow Centric Intermediate Representation

Sigve Sjømæling Nordgaard and Jan Christian Meyer
Department of Computer Science, NTNU

Trondheim, Norway

Abstract
Data flow analyses are instrumental to effective compiler optimizations,
and are typically implemented by extracting implicit data flow information
from traversals of a control flow graph intermediate representation. The
Regionalized Value State Dependence Graph is an alternative intermediate
representation, which represents a program in terms of its data flow
dependencies, leaving control flow implicit. Several analyses that enable
compiler optimizations reduce to NP-Complete graph problems in general,
but admit linear time solutions if the graph’s treewidth is limited. In this
paper, we investigate the treewidth of application benchmarks and synthetic
programs, in order to identify program features which cause the treewidth of
its data flow graph to increase, and assess how they may appear in practical
software. We find that increasing numbers of live variables cause unbounded
growth in data flow graph treewidth, but this can ordinarily be remedied by
modular program design, and monolithic programs that exceed a given bound
can be efficiently detected using an approximate treewidth heuristic.

1 Introduction
Effective program optimizations depend on an intermediate representation that permits a
compiler to analyze the data and control flow semantics of the source program, so as to
enable transformations without altering the result. The information from analyses such as
live variables, available expressions, and reaching definitions pertains to data flow. The
classical method to obtain it is to iteratively traverse a control flow graph, where program
execution paths are explicitly encoded and data movement is implicit. Alternatively, the
program can be represented as a data flow graph, where data movement and dependencies
are explicitly encoded, and control flow information is implicit for the compiler to infer.

Explicit data flow encoding facilitates a number of desirable properties in an
intermediate representation [16]. It also reflects modern processor architectures more
accurately, given that performance optimizations are increasingly driven by mitigating
the cost of data movement, and relaxing constraints on the order of execution to exploit
potential concurrency [2]. Data flow centric intermediate representations [18] have
seen limited practical application, primarily because most variants require control flow
information to be encoded separately for code generation purposes. The Regionalized

This paper was presented at the NIK-2020 conference; see http://www.nik.no/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BIBSYS: Open Journals Systems

https://core.ac.uk/display/352014111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Value State Dependence Graph (RVSDG) mitigates this issue, and implicitly retains
sufficient information to recreate the control flow of the source program [3]. This permits
entire programs to be treated entirely as demand dependence graphs. Several analyses
that enable compiler optimizations reduce to NP-complete graph problems in general, but
admit linear time solutions if the treewidth of the graph is bounded.

In this study, we empirically examine treewidths of RVSDG representations derived
from a set of benchmark programs. These encompass both realistic computational kernels
from applications, and synthetic benchmarks of our own design. Our objective is to
identify whether or not we can isolate programming constructs that can produce RVSDGs
of very large treewidth, and to evaluate whether or not these features are likely to occur
in computationally demanding application software. Due to the complexity of calculating
treewidth precisely, we implement two known heuristics that provide upper and lower
bounds, and use them to reveal tendencies in its growth. We find that our application
benchmarks exhibit low treewidth values, that the constructs which increase RVSDG
treewidth are unlikely to be applied in a practical programming scenario, and that the
heuristics can be used to efficiently evaluate whether or not to disable an optimization
that becomes intractable in corner cases.

The rest of the paper is structured as follows. Section 2 describes the treewidth
metric of a graph, and justifies its significance to compiler optimizations. Section 3
summarizes the RVSDG intermediate representation, and illustrates its use. Section 4
describes our experimental setup, heuristics to evaluate approximate treewidth, choice
of application benchmarks, and the design of our synthetic benchmarks. Section 5
presents the results of our experiments, and discusses tendencies in treewidth among the
application benchmarks, as well as the consequences of varying the parameters of the
synthetic benchmarks. Section 6 concludes our study.

2 The Treewidth Graph Metric
A tree decomposition of a graph G(V,E) is a tree T (I,F) where the nodes Xi ∈ I
correspond to subsets of V , and satisfy three criteria:

1. The union of all Xi equals V.

2. If a vertex in V is included in two subsets Xi,X j, it is also included in each subset
on the path between them.

3. For each edge {u,v} ∈ E, there is an Xi which contains both u and v.

The width of T is the size of its largest subset minus one, i.e.

max
i
|Xi|−1 (1)

As tree decompositions are not unique, the treewidth of G is defined as the minimal width
among all its tree decompositions.

The treewidth is a measure of the tree decomposition of the graph, and thus captures
the graphs property of being “tree-like”. Specifically, it represents the number of nodes
that must be deleted in order to separate the graph. Many NP-complete problems are
tractable on graphs of bounded treewidth [9]. One application is in the implementation of
efficient optimization algorithms. Significant compiler optimization improvements have
been found using tree decompositions for CFGs, including polynomial-time algorithms
for band selection, redundancy elimination, and register allocation.

Use of tree decompositions admits efficient and provably optimal algorithms [10]. It
is important that decompositions have small treewidths to achieve an efficient run-time
and result quality of these algorithms. Several graph problems can be solved with time
complexities that are single-exponential in terms of treewidth, and linear in number of
nodes [5]. Thorup found that goto-free programs have bounded treewidth, and Throup’s
heuristic is used to obtain tree decompositions of CFGs in the SDCC C compiler [17].

3 Regionalized Value State Dependence Graphs
The RVSDG is an acyclic demand-dependence graph where nodes represent operations
and control flow constructs, while edges represent dependencies between them. Each
node encompasses an (optional) ordered set of operand inputs, and a set of resulting
outputs. Each edge connects an output to exactly one input of another node, thus
modeling data flow in the program, and implicitly, a constraint on admissible sequences
that the operations can be executed in. Simple nodes represent primitive operations, while
structural nodes represent regions that encapsulate subgraphs of arbitrary complexity, and
assign particular semantics to them.

There are six types of structural nodes:

γ-nodes are decision points that model conditionals such as if and switch statements.

θ-nodes represent tail-controlled loops, which can be used in conjunction with γ-nodes
as a basic building block to represent any loop structure.

λ-nodes model functions. Inputs to the node are the external variables the function
depends on, and the output is a value representing the node itself. An additional
apply node invokes a function, passes arguments, and computes the function body.

δ-nodes model global variables. Inputs are external variables the node is dependent on,
and output is a single result representing the right-hand side value of the variable.

φ-nodes are required to express mutually recursive functions without introducing cycles.
These are meta regions consisting of λ-nodes, containing all their definitions and
corresponding inputs, outputting them as a single result.

ω-nodes are top-level nodes modeling translation units (TU). This is required to import
and export data and functions between the different TUs in the program.

Figure 1 demonstrates RVSDG representation using a recursive Fibonacci computa-
tion as an example. The nested structure of the graph is shown with the hierarchy of
regions drawn as a graph of structural nodes, and also with region contents expanded,
to clarify the correspondence with the source program. This example illustrates how
RVSDG explicitly represents data flow. It is beyond the scope of this paper to prove that
RVSDG suffices to model arbitrary program logic, and we refer to Bahmann et al.[3] for
a rigorous treatment of the topic.

4 Method
In this section, we describe the configuration of our experiments, and the construction of
the programs we experiment with. We begin by summarizing the software that is used
throughout the experiments, including the design of the components that were developed

λ

φ

ω

fib0

0

γ
ft 1

- -

21

apply apply

+

1

γ

t f

fib(n) {
if(n == 0)

return 0;
else if (n == 1)

return 1;
else

return fib(n-1)+fib(n-2);
}

ω

φ

λ

γ

γ
t

t f

f

Figure 1: Recursive Fibonacci computation in RVSDG representation, shown with region
contents expanded (left), and as a hierarchy of the corresponding structural nodes (right).

specifically for this work. Subsequently, we explain our approach to find approximate
graph treewidths. Next, we describe a set of realistic, performance-sensitive application
benchmark programs that are examined for comparison with the results from the synthetic
benchmarks, and finally, we cover our synthetic benchmark programs designed to
experiment with the impact that particular constructs have on RVSDG treewidth.

Experimental Setup
The principal components of our method are the jive compiler back end [11], the LLVM
compiler infrastructure [14], and the jlm framework interface [15]. LLVM provides a
complete compilation toolchain from C source code through to x86_64 machine code.
We utilize it to study RVSDG representations by injecting analyses at the intermediate
representation stage: an RVSDG representation is constructed from LLVM IR, our
bespoke programs manipulate and examine the RVSDG, before the RVSDG is destructed
to LLVM IR and passed on to its low-IR optimizations and code generation stages.

We implement the rvsdg-treedc framework which includes a parser of the
RVSDG XML output from jlm, transforming it into a corresponding graph representation
in the dotfile format [6]. The pipeline to generate a graph and determine its treewidth from
a source program is shown in Figure 2, where the rvsdg-treedc framework consists
of the last two steps.

Treewidth Approximation
Due to the intractable computational expense of determining the treewidth of an arbitrary
graph precisely [4], we estimate it by applying simpler, computationally feasible
heuristics that establish upper and lower bounds on its magnitude. Gogate and Dechter [7]

C Clang jlm
xml-

parser heuristics

source
program

LLVM-
bytecode XML dotfile

Figure 2: Compilation pipeline of the rvsdg-treedc framework.

present a branch-and-bound algorithm for evaluating treewidth, including three heuristics
to obtain upper bounds, and a novel minor-min-width heuristic for lower bounds.

A graph is triangulated if every cycle in the graph is not chordless. A chord is en edge
between two vertices in a cycle that is not part of the cycle itself. A chordless cycle is a
cycle of length k > 3 that has no chord. We know that for every graph G there exists a
triangulation H such that the treewidth of G equals the treewidth of H.

Thus, the treewidth of G is at most as large as the treewidth found for H. The min-
fill heuristic finds this triangulation using an ordering of vertexes that adds the least
number of edges when eliminated from the graph. Our experimental results align with
their observation that the min-fill approach consistently produces tighter bounds than the
alternative upper bound heuristics, and this is used as the upper bound in our experiments.

Contracting an edge is the replacement of both vertices of the edge with a single
vertex, such that the neighbors of the original vertices are neighbors of the new one. H is a
minor of G if H can be formed from G via repeated edge deletion and/or edge contraction.
Due to the edge coverage property of the tree decomposition, stating that both endpoints
of an edge have to exist in at least one bag, the minimum degree of a vertex in the graph
is a lower bound for its treewidth. This is the basis of the minor-min-width heuristic.

We show graph treewidths as an interval between minor-min-width and min-fill
bounds, as this suffices to show trends in its variation without determining an exact value.

Application Benchmarks
We generate a set of RVSDGs using a subset of the PolyBench benchmark suite [13] as
input, and measure their treewidths. The suite consists of 30 numerical computations
from various domains such as linear algebra, statistics, physics simulations etc. The small
size and simple structure of the PolyBench benchmark programs simplify their analysis,
and we use an existing fork of PolyBench [12], which contains support for compiling the
benchmarks with the jlm compiler. This is extended to create the required XML files.

Synthetic Benchmark Construction
Functions and Arguments
By examining the treewidths of unoptimized programs in the PolyBench suite, we
discover that the number of arguments passed to their main computational kernels is a
significant cause of treewidth differences. We investigate the effect of function parameters
by creating a set of synthetic benchmarks, each containing a single function that calculates
the sum of its arguments, testing three different methods of passing arguments to a C
function, as shown in Listing 1. They encompass call-by-value using individual variables,
call-by-reference to a structured type, and call-by-reference to a contiguous array.

/* 1) Passing arguments as separate values */
int variable_sum(int v0, int v1, ...)

{ return v0 + v1 + ...; }

/* 2) Passing arguments as members of a struct */
int struct_sum(args_t s)

{ return s.s0 + s.s1 + ...; }

/* 3) Passing arguments as elements in an array */
int array_sum(int a[N])

{ return a[0] + a[1] + ...; }

Listing 1: Three separate ways of passing arguments to a function in the C programming language.

This results in three semantically equivalent functions with different program
structures, and different resulting RVSDGs. The programs we experiment with consist
of a main function that initializes the variables, and calls one of these three functions.

Another influential factor is the order of function calls when calling several functions,
or one function several times. We identify two orders shown in Listings 2 and 3, and
refer to these as blockwise and sequential order, respectively. Blockwise order groups
invocations of one function with differing arguments together, while sequential order
groups invocations where the same arguments are passed to different functions.

int n1 = a;
...
int n7 = g;

f1(n1);
...
f1(n7);

f2(n1);
...
f2(n7);

Listing 2: Blockwise call order.

int n1 = a;
...
int n7 = g;

f1(n1);
f2(n1);

...

f1(n7);
f2(n7);

Listing 3: Sequential call order.

Variable liveness
We create a similar set of synthetic benchmark programs to investigate the effect of
variable liveness with respect to data and state dependencies in the RVSDG. Live variable
analysis is a data-flow analysis to determine which variables contain values that will still
be used after a given program point. Live variables are easily found in a data-flow graph,
as the edges already represent the flow of data. Thus, a variable is live at point p when
there is an edge from p to the variable node [1].

Johnson [8] shows that that for two values connected by an edge in a data flow graph,
the edge may introduce constraints on the liveness of the variable. RVSDG nodes interact
when the values or instructions they represent reference each other, either directly as a
data edge, or indirectly as a state edge. Since the RVSDG is ordered by these references,
variables that only reference and are referenced by a set of neighboring nodes in the graph
will have a short live-range, while variables that do not will have a longer live-range.

Inspired by the PolyBench benchmark programs, we write a set of custom programs
to induce these features that also affect the RVSDG treewidth. These are analyzed with

respect to liveness, specifically with regard to how many variables are allocated, their
types, and how they are referenced in the program.

5 Results and Discussion
In this section, we present the results of our experiments with application and synthetic
benchmarks. We begin by examining the application benchmarks, and find that the
upper bounds on treewidths of their RVSDG representations are low, typically single-digit
numbers. Next, we investigate effects that are induced by various sequences of function
calls and argument passing methods, and by increasing the number of live variables.

Application Benchmark Results
We present results from running our heuristic algorithms on the programs in the
PolyBench benchmark suite. Each program generates on average 54 RVSDG regions,
for a total of 1620 regions. For each graph corresponding to these regions, we calculate
the upper and lower heuristic bound on the graphs’ treewidth.

Figure 3 shows the maximum upper bound treewidth found using the min-fill heuristic
for all regions in the benchmark. We find that all benchmarks have an upper bound
treewidth between 6 and 15 with an average upper bound treewidth of 9.

 0

 2

 4

 6

 8

 10

 12

 14

 16

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rre
lat

io
n

co
va

ria
nc

e
de

ric
he

do
itg

en
du

rb
in

fd
td

-2
d

flo
yd

-w
ar

sh
all

ge
m

m
ge

m
ve

r
ge

su
m

m
v

gr
am

sc
hm

id
t

he
at

-3
d

jac
ob

i-1
d

jac
ob

i-2
d

lu
dc

m
p lu

m
vt

nu
ss

in
ov

se
id

el-
2d

sy
m

m
sy

r2
k

sy
rk

tri
so

lv
trm

m

Up
pe

r t
re

ew
id

th
 bo

un
d

Figure 3: Upper bound treewidth per benchmark.

Figure 4 shows how the average number of nodes relates to the upper treewidth bound.
We see that as the upper treewidth bound increases, the average number of nodes in the
corresponding regions increases approximately polynomially.

This is demonstrated by fitting a polynomial curve to each figure. Figure 4 shows
that the number of nodes in the graph increases polynomially as a function of the upper
treewidth of the graph. This relationship is approximated by the function n = 20+1.3tw2

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8 9 10 11+

Av
er

ag
e n

um
be

r o
f n

od
es

Upper treewidth bound

 n = 20 + 1.3tw2

Figure 4: Average number of nodes per upper treewidth bound.

for the number of nodes n, and treewidth tw. We note that of all 1620 regions generated
only 4 regions have a treewidth above 10, marked as 11+.

We conclude that the results from our benchmarking programs are promising, showing
low and bounded treewidths for a large set of RVSDG representations. We can find these
treewidths in polynomial time using implemented heuristics, which closely model the
actual treewidth of the graphs. These results indicate the tree decomposition as a viable
path for finding better optimizations for the RVSDG IR.

Synthetic Benchmark Results
Functions and Arguments
We first look at different treewidth bounds generated by running three semantically
equivalent programs, each loading values using the variable, struct and array methods
presented in Listing 1 of Section 4. These results are summarized in Table 1, run for
functions with 10 parameters. We also give an overview of how these methods affects the
structure of the corresponding RVSDG.

Testing a function accepting n number of arguments and returning their sum, we find
a gradual increase in treewidth following increases in its number of arguments. We also
note that this increase stops after a certain number of arguments is reached. From these
experiments we also observe two other factors that affect the treewidth of the function.
Firstly, allocating local variables inside the function may increase the upper treewidth
bound. Secondly, changing the addition expression inside the function itself also affects
the upper treewidth bound.

After treewidth reaches a certain limit, allocating a variable has no effect on the
treewidth of the program if the variable is not referenced later in the program. Analyzing
variables that are used or referenced in the same function that they are allocated, we find

type tw Graph structure Loading of values

variable 4–7 Sequential,
dependent on
loading of values
from memory

Sequential, each argument
must be allocated on the stack.
Each such allocation is
dependent on the allocation of
the previous argument.

struct 4–4 Parallel Parallel, each argument is
retrieved via a pointer to the
struct, which happens
independently of each other.

array 4–4 Partially parallel Similar to loading of the struct,
except that each pointer is
dependent on the previous
being loaded.

Table 1: Summary of the treewidths correlating to the separate methods of passing arguments
to the functions in Listing 1, with notes about the structure of these graphs and how values are
loaded. The tw-column shows the lower and upper bound treewidth of the resulting lambda region
generated for the program.

that uses of the variable increases the treewidth beyond the maximum value discussed
above. Figure 5 shows this continued growth in treewidth for a program allocating 7
integer or matrix variables for an increasing number of function calls referencing each
variable. This figure also shows the difference in the treewidth dependent on whether
these function calls are made to the same function, or to 7 different functions.

We see a slightly different growth in the treewidth if we instead call a different
function each time the variable is referenced. In this case, the lower treewidth bound
grows at a similar rate, but the upper treewidth bound increases in bigger increments.
Calling different functions, the treewidth also continues to grow for an increasing number
of function calls, resulting in a larger upper and lower treewidth bound.

The presented results are obtained with blockwise ordering of function calls.
Analyzing results for sequentially ordered function calls, we found that this ordering
produces no increase in treewidth as the number of function calls increases.

Variable liveness
Combining the two approaches presented in this section, simultaneously increasing both
the number of allocated variables and the number of times they are referenced does not
tend toward an upper bound. An excerpt from these results are shown in Figure 6a, where
we increase both the number of variables, and the number of times they are referenced.
We find that when increasing either parameter in isolation, the treewidth approaches a
limit, but when increasing both the treewidth grows indefinitely.

We further investigate how the number of variables allocated and how many times they
are used in expressions affect the treewidth. The evaluated expression is an addition of
all allocated variables. For several variables, this is done in a blockwise order. Figure 6b
shows the results, which are similar to the results of increasing the number function calls.
When increasing both parameters, the treewidth of the resulting graphs increases without
approaching an upper bound.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14
Function Calls

Tr
ee

w
id

th

Integers (a)

same function
different calls

 0 2 4 6 8 10 12 14
Function Calls

Matrices(b)

same function
different calls

Figure 5: Relationship between the number of references to set of 7 variables allocated in a
blockwise call order and the upper and lower treewidth bounds of their corresponding RVSDGs.

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32
Variables/References

Tr
ee

w
id

th

Functions (a)

 1 2 4 8 16 32
Variables/References

Expressions (b)

Figure 6: Lower and upper treewidth bounds for both an increasing amount of variables allocated,
and number of calls to each variable.

6 Conclusions
In this paper, we have reviewed the Regionalized Value State Dependence graph
intermediate representation, implemented efficient heuristics for bounds on its treewidth,
and empirically examined its magnitude using a set of application benchmarks, as well as
synthetic benchmarks specifically designed to influence RVSDG treewidth.

Our application benchmark results indicate that RVSDG treewidth tends to be low
and limited for the practical purposes of application software, which suggests that
optimizations that are only computationally feasible within bounded treewidth will still
be broadly applicable in an RVSDG based compiler.

Our synthetic benchmark results reveal that certain program features can produce
RVSDG representations of unbounded treewidth. Specifically, simultaneous growth in
the number of local variables and their number of uses uniformly increases the treewidth.

While scopes with very large local namespaces have limited application in practical
software, a compiler must make the conservative assumption that they may occur as valid
input, without causing an exponential inflation in compile time. The use of heuristics
to establish upper and lower treewidth bounds can, however, serve as a computationally
inexpensive detection mechanism, and identify cases when specific bounds are required.

Thefore it is feasible to find the tree decomposition of the RVSDG. This makes
possible the implementation of polynomial-time solutions for several NP-complete
optimization algorithms using the IR. We conclude this study with the recommendation
that future RVSDG-based compiler optimizations requiring bounded treewidth should be
implemented along with the minor-min-width and min-fill heuristics, dynamically using
their values to guide whether or not the optimization pass should be enabled.

References
[1] Aho, Alfred V. and Lam, Monica S. and Sethi, Ravi and Ullman, Jeffrey D.

Compilers: Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[2] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel
computing research: A view from berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, Dec 2006.

[3] Helge Bahmann, Nico Reissmann, Magnus Jahre, and Jan Meyer. Perfect
reconstructability of control flow from demand dependence graphs. ACM
Transactions on Architecture and Code Optimization, 11:1–25, 01 2015.

[4] Hans Bodlaender. Discovering treewidth. Lecture Notes in Computer Science,
3381:1–16, 01 2005.

[5] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel
Lokshtanov, and Michal Pilipczuk. A O(ckn) 5-approximation algorithm for
treewidth. CoRR, abs/1304.6321, 2013.

[6] E. R. Gansner, E. Koutsofios, S. C. North, and K. . Vo. A technique for drawing
directed graphs. IEEE Transactions on Software Engineering, 19(3):214–230,
March 1993.

[7] Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth.
Proceedings of the 20th conference on Uncertainty in Artificial Intelligence
(UAI’04), pages 201–208, 2004.

[8] Neil Johnson and Alan Mycroft. Combined code motion and register allocation
using the value state dependence graph. In Lecture Notes in Computer Science,
pages 1–16. Springer Berlin Heidelberg, 2003.

[9] J. Kleinberg and É. Tardos. Algorithm Design. Pearson/Addison-Wesley, 2006.

[10] Philipp Klaus Krause. Graph decomposition in routing and compilers. PhD thesis,
Frankfurt am Main, 2016.

[11] Helge Bahmann Nico Reismann. Jive RVSDG API. https://github.com/
phate/jive.git, 2019. GitHub; Accessed 08-10-2019.

[12] Nico Reismann, Magnus Sjalander. polybench-jlm. https://github.com/
phate/polybench-jlm, 2019. GitHub; Accessed 12-06-2019.

[13] Ohio State University. PolyBench/C. http://web.cse.ohio-state.edu/
~pouchet.2/software/polybench/, 2015. Accessed 12-06-2019.

[14] LLVM Project. LLVM. https://llvm.org, 2020. The LLVM Compiler
Infrastructure.

[15] Nico Reismann. Jlm: An experimental compiler/optimizer for llvm ir.
https://github.com/phate/jlm.git, 2019 - checked out at commit
3ae45dfe406f2d4ec6005ff093eb5b929d3de8ff.

[16] Nico Reissmann, Jan Meyer, Helge Bahmann, and Magnus Själander. RVSDG: An
Intermediate Representation for Optimizing Compilers. arXiv:1912.05036, 2019.

[17] Mikkel Thorup. All structured programs have small tree width and good register
allocation. Information and Computation, 142(2):159–181, 1998.

[18] Daniel Weise, Roger F. Crew, Michael D. Ernst, and Bjarne Steensgaard. Value
dependence graphs: Representation without taxation. In POPL ’94: Proceedings of
the 21st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 297–310, Portland, OR, January 1994.

https://github.com/phate/jive.git
https://github.com/phate/jive.git
https://github.com/phate/polybench-jlm
https://github.com/phate/polybench-jlm
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://llvm.org
https://github.com/phate/jlm.git

	Introduction
	The Treewidth Graph Metric
	Regionalized Value State Dependence Graphs
	Method
	Experimental Setup
	Treewidth Approximation
	Application Benchmarks
	Synthetic Benchmark Construction
	Functions and Arguments
	Variable liveness

	Results and Discussion
	Application Benchmark Results
	Synthetic Benchmark Results
	Functions and Arguments
	Variable liveness

	Conclusions
	Bibliography

