
1

A content analysis of SOLO-levels in different computer

programming courses in higher education

Fojcik, M. K.1, Fojcik, M.2, Sande, O.2, Refvik, K.A.S.1, Frantsen, T.3

and Bye, H.S.3

1Volda University College - Department of Science and Mathematics
2Western Norway University of Applied Sciences - Department of Computer science, Electrical

engineering and Mathematical sciences
3Volda University College – Digital competences in learning and teaching

Abstract
The dynamic development of technology and the labour market changes the requirements of

today`s education and the dissemination of knowledge. Information technologies (IT) and

digital competencies (DC) are no longer knowledge just for the few that study Computer

Science (CS), but it has become a part of common knowledge for every citizen. By using

content analysis, this article will examine the developed content of two different

“introduction to programming” courses from two different higher education institutions. Both

institutions introduce programming to students outside of CS. This study aims to describe

how the developed content of these courses aims to reach the different levels of learning

outcomes, by using the framework Structure of the Observed Learning Outcome taxonomy

(SOLO-taxonomy) developed by Biggs and Collis (1982). The results of the study show that

introduction to programming courses in different professions have a different understanding

of what programming is, or what it consists of. The courses about “introduction to

programming” are planned and executed within its fields, which gives the students a different

perspective on what programming is, compared to the average IT or CS course. This means

that the term “good programming skills” is different for a teacher, engineer, or computer

scientist because of their unique goals and motivations for why they learned to program in

the first place.
Keywords: Programming skills, digital competencies, 21st century skills, didactics in IT

education, introduction to programming

Introduction

The changing situations in our society (digitalization, modernity, 21st century,

pandemic, etc.) demand rethinking teaching- and learning designs in all levels of

education. According to the reports 2/3 of the students-nowadays are going to work in

jobs that do not exist yet (World Economic Forum, 2016). From an educational

perspective, the rapid changes in technology and the development of new services in

modern life creates a need for new competencies related to information technology (IT)

and computer science (CS). It is necessary to develop skills and gather knowledge about

practical applications of digital tools, both in private and in professional situations. The

career-choices may change with time; therefore, it is important to teach the students to be

less dependent on specific tools and solutions, and more focused on problem-solving and

the structure of digital technology.

That brings a new perspective into education, creating topics and structures that have

not existed before. The term 21st-century skills have been developed to describe

creativity, innovation, critical thinking, metacognition, collaborative skills, problem-

solving skills, and information- and digital literacy (Griffin and Care, 2015). The idea is

not just to teach new skills, but to teach the students to acquire knowledge in more self-

direct learning so that the students are less dependent on memorization and reiterating

someone else’s thoughts and more inventive and constructive in creating own ideas.

Many governments decided that the way to supply pupils and students in all levels

of education with IT-knowledge and the necessary development of DC is to teach them

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BIBSYS: Open Journals Systems

https://core.ac.uk/display/352014106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

computer programming (Bocconi, Chioccariello & Earp, 2018; Mannila & Nordén,

2017). The solution is to spread programming skills to a variation of professions to

develop DC in modern citizens. Therefore, many universities have different courses that

introduce programming for students in different fields. There is programming for kids,

engineers, mathematicians, physicists, bio technicians, teachers, and many more. Not to

mention that most courses teach only one programming language, instead of focusing on

the concepts of programming.

Looking at how the school system is implementing programming can be beneficial

to how other professional studies or pure programming studies could implement

programming. More specifically by using time both in the beginning and during the

studies on how one should think when learning to program (not focused on language, but

concepts, processes, etc.) so that the students get time to adapt to that way of thinking

(Computational Thinking).

This article will analyse two courses in introductory programming adapted for

different studies. One course from Western Norway University of Applied Sciences

(HVL) is about introducing programming to a full-time undergraduate Bachelor

engineering-program in automation and robotics, while the other from Volda University

College (HVO) is about introducing programming to a part-time one-year postgraduate

program in programming for teachers that are going to teach programming in primary or

secondary school (K1-K12). On the outside, it may look that these study-programs have

nothing in common than programming. Therefore, the authors will try to analyse the

content of the courses and compare them to each other and the level of understanding the

students can develop in the SOLO-taxonomy by Biggs and Collis (1982).

The research question for this study is: Can an introduction to programming-course

for non-computer scientists teach higher levels of observed learning outcomes in

programming?

This paper is divided into six sections. First is a theoretical background then a

description of the methodology used in this article. Followed by two sections of results,

one section is a comparison of the courses with criteria of IT-programming, the second

section presents a comparison of the courses to own professions. Then the paper discusses

central topics and challenges and concludes the findings of the study.

Theoretical background and situation today
Programming, more specifically coding that has till now been a central part of IT and

CS has been divided and separated to be introduced in different fields and professions,

while other methods and structures from IT and CS have not been shared or implemented

in other studies. This creates a gap between what IT and CS field consider programming

to be and what everyone else thinks it

programming is. In 2006 the computer scientist

Jeanette Wing introduces the term “Computational

Thinking” (norsk: Algoritmisk tenkning), as a

description of fundamental skills like reading and

writing, and it is defined as “an approach to solving

problems, designing systems and understanding

human behaviour that draws on concepts

fundamental to computing” (Wing, 2006, 2008,

p.3717). In other words, Computational Thinking

is a collection of significant skills “necessary for

applying the tools of computer science to

understand the world around us” (Selby, 2014,

Figure 1: Conceptual framework

(Selby, 2014, p.19).

3

p.1). This concept is based on thought process, application methods, and logical patterns

that IT and CS, therefore, it does not need technology to be implemented (Bocconi,

Chioccariello, Dettori, Ferrari & Engelhardt, 2016). The term Computational Thinking is

not explicitly used in government documents, but it can be divided into concepts like

abstraction, algorithmic thinking, automation, decomposition, and generalisation

(Bocconi, Chioccariello & Earp, 2018).

For educational purposes, there were constructed different frameworks for how can

programming skills help students and pupils to learn better. Selby (2014) proposes a

conceptual framework where programming skills is a term within Computational

Thinking, which also is within Problem Solving Skills (Figure 1.). This gives a structure

on how to place programming to national curricula in school subjects. Another propose

of structuring Computational Thinking is divided into three dimensions and connecting it

to programming terms, which are: Computational concepts, Computational practices, and

Computational perspectives (Figure 2.) (Lye & Koh, 2014).

In Norway, the government developed a new curriculum in 2019 in every subject in

primary and secondary school, to update and modernize what the pupils and students are

going to learn (LK20). One of the biggest changes was to introduce programming for

everyone. From 2020 the subject’s mathematics, science, music, and art and handwork,

have the responsibility to teach the pupils how to program, and how to relate

programming knowledge both to the subject and to their digital competencies. Research

like Mathew, Malik, and Tawafak (2019) showed that learning computer programming

can help students to achieve knowledge, skills, and experience significant for developing

digital skills. This creates a new interest in programming in different fields and

professions.

In many courses in higher education today, it is up to the teacher to introduce

programming for the students and develop the students’ IT-knowledge. How this is done

from one course to the next depends on the teachers’ competencies in CS. It is the teacher

that chooses the structure, the curriculum, and the dissemination for his or her course. If

the content has some structures of programming or coding, it may be presented as an

introduction to a programming course. This creates a variation of what the introduction

to programming could contain. There are a few general ideas, but no official standard that

specifies how much a non-computer scientist should know about programming. Or how

many of DC can be developed through programming.

Figure 2: Description of Computational Thinking dimensions (Lye & Koh, 2014, p.53).

4

Methodology
This paper aims to analyse the content of two “instruction to programming” courses

and will make use of content analysis as a method to answer the research question. By

quantitating the content for these programming courses, we would see what level of

learning outcome that is intended for each course (Bryman, 2016). The different levels of

learning outcomes that are intended are well defined in the coding manual for the analysis.

The coding manual is developed before starting the analysis and builds on the Structure

of the Observed Learning Outcome taxonomy (SOLO-taxonomy) (Biggs and Collis,

1982; Biggs, 2012). This taxonomy is intended to use for evaluating student’s outcomes

in a course and should be a crucial tool for lecturers to develop their courses. Therefore,

the coding was developed manually based on this taxonomy, and the article aims to

analyse which levels of learning outcomes are intended in the course.

The analysis and comparison of how non-scientist tech higher levels of observed

learning outcomes in an introduction to programming course, is divided into two sections.

Firstly, the article will present criteria combining SOLO-taxonomy levels with an

introduction to programming, which is a way that a “pure” programming course for IT

and CS would be. This analysis will show how much IT-programming is developed in

the chosen non-computer scientists’ courses. Then a second analysis is conducted, where

there are given new criteria. The new criteria are developed by combining SOLO-

taxonomy levels with the professions or study programs on which the courses are

integrated into. In this way, there will be a comparison of the two courses both to an IT-

criteria and to the profession (automation and teacher education) from which it stands.

Content analysis

According to Bryman (2016, p. 285) content analysis is «an approach to the analysis

of documents and texts that seeks to quantify content into determined categories and in a

systematic and replicable matter». This paper will present a content analysis of plans of

the semester, teachers’ presentations and notes, the curriculum in the course, and the

assignments and activities that are given to the students during the semester. This analyse

uses previously determined levels of Biggs and Collis taxonomy (1982) as categories in

systematically analyse of the content. The theme of the lectures is shortly described and

then compared to the description of each level of observed learning outcome.

SOLO-taxonomy

SOLO stands for: Structure of the Observed Learning Outcome, and it is a taxonomy

introduced to evaluate students learning first presented by Biggs and Collis (1982). The

taxonomy divides different stages of natural growth, learning, and skill development, and

describes them in simple, yet general terms. The visual model comes from an extended

model of SOLO taxonomy presented by Biggs (2012) (Figure 3.). This model presents 5

phases or levels of observed learning outcome:

1 – Pre-structural phase – No learning is observed

2 – Uni-structural phase – Few simple procedures are observed

3 – Multi-structural phase – Some procedures are observed, but not in relation to one another

4 – Relational phase – Many procedures with connections between them are observed

5 – Extended abstract – Procedures are observed and applied in different topics and situations

5

Description and analyse

Through content analysis, a description of both courses was made. The analysis

covered the semester plan, curriculum, dissemination, and form for presentation of the

lecture, activities, assessments, and exercises given to students during the course.

Description of the courses – HVO

The first course presented in this study is from postgraduate teacher education at

Volda University College (HVO). The students are simultaneously working in primary

or secondary schools and part-time studying programming. Therefore, the whole program

is conveyed through the Internet-based Learning Management System /Digital Learning

Platform (Canvas). One of the demands of this program is that the students have pupils

they can teach during the semester. This program has a total of 15 ECTS divided into part

1 (fall semester) and part 2 (spring semester). In this paper, only the content of the first

part is analysed. The curriculum is a collection of articles, book-chapters, and films

explaining the fundamental aspects of programming with children.

The students have many described learning outcomes, but the main purpose of the

course is to introduce experienced teachers to new technology and a different way of

thinking. Many assessments and activities during the course are developed to let the

student try out and reflect on different aspects of programming that can be beneficial for

their own pupils. Therefore, the students have some flexibility to adapt the curriculum to

their own pupils. For example, a K2 teacher needs to focus more on precise instructions

and algorithmic thinking, and how to separate right from left, while a K10 teacher needs

to find software that can support pupil’s inquiry of science and mathematics. The content

of the course is created in such a way to introduce the concepts and methods of

programming rather than introduce syntax and structures of a program.

Description of the courses – HVL

The second course presented in this study is an undergraduate course in programming

for beginners developed for a three-year automation engineering program at Western

Norway University of Applied Sciences (HVL). This course is introduced to students in

the fall semester in their first year. The course has a total of 10 ECTS, but the students

have two more subjects simultaneously, and then more programming in their second and

third year. The course covers the basics of programming structures, which are going to

be further developed in future subjects. The curriculum is based upon one book, which is

not specialized for the automation line.

Figure 3. A hierarchy of verbs used in forms of curriculum objectives (Biggs, 2012, p.48).

6

Automation engineers have some description of learning outcomes, but many of

those are about skill development and is integrated into more than one course. The

students need to learn the highlights of controllers, databases, and other different

machines and equipment. Using different equipment, the students are learning to connect

hardware and software in an industrial setting. In automation, the main goal is to create

real-time secure, robust programs. In this field, a faulty program is not an option. Faulty

programs controlling dangerous equipment is potentially life-threatening.

SOLO-taxonomy based on general IT knowledge – criteria

To compare how much programming is presented in the two courses, and what level

of learning outcome is observed in students, the criteria for comparing IT and CS

knowledge with SOLO-taxonomy have been developed in Table 1.

Analysis using general IT criteria for HVO

Observed Learning Outcome of IT and CS programming are compared to the content

of a programming course in teacher education in HVO. Table 2 presents the linear view

of lessons with themes presented in the course. The first and third column shows what

kind of themes and activities were given to the students. In the second and fourth columns,

the analyse of SOLO-phases or SOLO-levels is presented with the criteria from Table 1.

Theme

IT

SOLO-

level

Activity

IT

SOLO-

level

Introduction,

Programming in schools,

Computational thinking

1, 2

Trying “Hour of Code”

Reflection about programming in school

with a historic overview

1, 2

Scratch – visual language,

Sequence and easy loops,

Unplugged programming,

Scratch with pupils

1, 2

Trying Scratch,

Create projects with pupils Reflection on

how to work with Scratch in class

1, 2

Micro:bit – visual language,

Electricity, circuits, voltage,
1, 2

Trying Micro:bit, Share your experience,

Paper “Planning, doing and evaluating
1, 2

Level Name Description

5
Extended

Abstract

Develop the skill of creating, testing, and operating programs,

making and distributing class, libraries for multiple uses, cooperation

and collaboration with other programs and users.

4 Relational

Create a working program, divided into different elements (class,

structure, etc.) full debugging, collaboration and cooperation with the

user, saving state, file handling, network, database, etc.

3
Multi-

structural

Sophisticated elements in coding, combining several different

actions, user interface etc.

2
Uni-

structural

Simple skills, using variables, comparing elements, simple loops.

Everything in one file, with no dividing in sections or class or

structures, etc.

1
Pre-

structural

Barely anything or just a very general or divided knowledge – wrong

assumptions and unconnected information, etc.

Table 1: Description of observed learning outcomes in an introduction to programming for IT-students.

7

Integrating programming in subjects

in school

programming-lesson with own pupils” -

1000 words

Text programming language –

Python,

Debugging,

Differences between visual and text

language

1, 2

Trying Python,

Solve debugging exercises,

Discuss different programming language

(Scratch-Micro:bit-Python)

1, 2

Evaluating pupils work Common

mistakes in text-programming,

Learning design,

Backward by design

1, 2

Own program in virtual- and text

programming language and paper

explaining it - 1000 words,

Reflect on different approaches in

programming

1, 2

Analysis using general IT criteria for HVL

Table 3 presents the linear view of lessons, laboratories, and activities that were

presented during the course. In the second and fourth columns, the analyse of SOLO-

phases or SOLO-levels is presented with the criteria from Table 1. Also, the comparison

to what kind of Observed Learning Outcome of IT programming can be found in

automation engineering students taking this course from HVL.

Theme

IT

SOLO

– level

Activity

IT

SOLO

- level
Lectures

Programming environment 1, 2 Programming Environment 1, 2, 3

Variables and operations 1, 2 Presentation of variables and operations 1, 2

If-sentences 1, 2 Conditions 1, 2

Text or Graphis User Interface 1, 2, 3
Cooperation with user, correct and

understandable information or dialog
1, 2, 3

Loops 1, 2 Repetition of actions 1, 2

Tables 1, 2, 3 Grouping of variables 1, 2, 3

Methods
1, 2, 3,

4

Structure of program, dividing into smaller

(independent) units

1, 2, 3,

4

Serial port (RS232/USB) 1, 2
Connection with real world, reading and

sanding real measurements
1, 2

File operations 1, 2 Saving and reading of information 1, 2

Laboratories

Operations 1, 2 Experiences with variables and operations 1, 2

Operations 1, 2, 3 Experiences with variables and operations 1, 2, 3

Easy loops 1, 2 Repetition of operations 1, 2

Loops and if-sentence 1, 2, 3 Conditions, multi conditions 1, 2, 3

Easy operations with serial port 1, 2, 3
Creating and modification of easy

programs using real measurements

1, 2, 3,

(4)

Easy operations with serial port 1, 2, 3
Creating and modification of easy

programs using real measurements

1, 2, 3,

(4)

SOLO-taxonomy based on criteria from professions and fields
There are different aspects of the professions that introduce programming that is

limiting or challenging the structures and methods used in IT and CS. To get a better

Table 2: Description of the HVO course content in relation to SOLO-taxonomy for IT-students.

Table 3: Description of the HVL course content in relation to SOLO-taxonomy for IT-students.

8

understanding of how much a profession influences a programming course, a new

analysis was conducted. This time the criteria for analysis connects SOLO-taxonomy to

a description of the profession or field where the course is a part of. There are different

aspects and elements that are considered by creating different levels and expectations

from programmers in these professions.

Analysis using teacher-profession specific criteria for HVO

The main purpose of a teacher is to guide the social process of learning. Therefore,

the teachers’ goal is not the dissemination of technical knowledge, but to motivate,

interest, explain, and support pupils learning. A teacher teaching programming in primary

school does not need to know all the structures of objected programming, because this

knowledge is not directly usable for the grade the teacher is teaching. Rather than focusing

on technical aspects, a teacher in primary school should know how and when to teach

programming so that this knowledge can support children’s learning and development.

Table 4 shows the criteria for SOLO-taxonomy for introducing programming developed

in this study for teacher-profession.

Table 5 presents the again the structure of the course from HVO, but this time the

analysis compares the course content to the criteria from Table 4, describing the teacher

profession.

Theme

teacher

SOLO-

level

Activity

teacher

SOLO-

level
Introduction

Programming in schools

Computational thinking

1, 2, 3, 4

Trying “Hour of Code” Reflection about

programming in school with a historic

overview

1, 2, 3,

Scratch – visual language

Sequence and easy loops

Unplugged programming

Scratch with pupils

1, 2, 3, 4,

5

Trying Scratch

Create projects with pupils Reflection on

how to work with Scratch in class

1, 2, 3, 4,

Micro:bit – a visual language

Electricity, circuits, voltage

Integrating programming in

subjects in school

1, 2, 3, 4,

5

Trying Micro:bit

Share your experience

Paper “Planning, doing and evaluating

programming-lesson with own pupils” -

1000 words

1, 2, 3, 4,

5

Level Name Description

5
Extended

Abstract

Show pedagogical, didactical, and content knowledge of programming, the skill

to use simple programs, understanding and explaining computational structures,

supporting computational thinking in students/pupils in all levels of education,

etc.

4 Relational
Explaining why the program works, reading and understanding others code in

order to debug programs, etc.

3
Multi-

structural

Independent writing of the algorithms and create simple working programs,

explaining efficiency and accuracy of student’s own work, etc.

2
Uni-

structural

Independent writing of simple commands/sequences, using simple loops and/or

if-sentences, etc.

1
Pre-

structural

Barely anything or just a very general or divided knowledge – wrong assumptions

and unconnected information, etc.

Table 4: Description of observed learning outcomes in the introduction to programming for students in

teachers-profession.

9

Text programming language -

Python

Debugging

Differences between visual and text

language

Pupils working with Python

1, 2, 3, 4,

5

Trying Python

Solve debugging exercises

Discuss different programming-language

(Scratch-Micro:bit-Python)

1, 2, 3, 4,

Evaluating pupils work Common

mistakes in text- programming

Learning design

Backward by design

1, 2, 3, 4,

5

Own program in virtual- and text

programming language and paper

explaining it - 1000 words

Reflect on different approaches in

programming

1, 2, 3, 4,

5

Analysis using automatic-engineer-profession specific criteria for HVL

Automatic engineers need to have both the technical knowledge of programming,

and practical experience with different equipment. In this profession, there is no place for

error, and the internal and external security of a program is central for the development

of such an engineer. Table 6 shows the criteria developed for automation engineers based

on SOLO-taxonomy and the engineering profession.

Table 7 presents the structure of the course from HVL with the analysis and

comparison of the course content to the criteria from Table 6, describing the automation-

engineer profession.

Theme
automation

SOLO-level
Activity

automation

SOLO-level

Lectures

Programming environment 1, 2 Programming Environment 1, 2

Variables and operations 1, 2
Presentation of variables and

operations
1, 2

If-sentences 1, 2 Conditions 1, 2

Text or Graphis User Interface 1, 2, 3
Cooperation with user, correct and

understandable information or dialog
1, 2, 3

Loops 1, 2, Repetition of actions 1, 2

Table 1, 2, 3 Grouping of variables 1, 2, 3

Methods 1, 2, 3, 4
Structure of program, dividing into

smaller (independent) units
1, 2, 3, 4

Serial port (RS232/USB) 1, 2, 3, 4
Connection with real world, reading

and sanding real measurements
1, 2, 3, 4

Level Name Description

5
Extended

Abstract

Model of software as a model of real action/automation, libraries,

interfaces, analogies between real-world and software

4
Relational

Dividing action into smaller, repeatable elements, reusability, safety,

friendliness of the software

3

Multi-

structural

Repetitions of actions, more complicated elements, user interface,

error-handling

2

Uni-

structural

Understanding the idea of planning and operations order, the

definition of variables (connected with real measurements), and

simple operations on them

1
Pre-

structural

Barely anything or just a very general or divided knowledge – wrong

assumptions and unconnected information, etc.

Table 6: Description of observed learning outcomes in the introduction to programming for automation-

engineering-students.

Table 5: Description of the HVO course content in relation to SOLO-taxonomy for students in

teacher-profession.

10

File operations 1, 2 Saving and reading of information 1, 2, 3

Laboratories

Operations 1, 2
Experiences with variables and

operations
1, 2

Operations 1, 2, 3
Experiences with variables and

operations
1, 2, 3

Easy loops 1, 2 Repetition of operations 1, 2

Loops and if-sentence 1, 2, 3 Conditions, multi conditions 1, 2, 3

Easy operations with serial port 1, 2, 3, 4
Creating and modification of easy

programs using real measurements
1, 2, 3, 4

Easy operations with serial port 1, 2, 3, 4, 5
Creating and modification of easy

programs using real measurements
1, 2, 3, 4, 5

Discussion
In the courses named in this article, the students are not going to be programmers,

but they need to know how to use programming as a tool for different aspects of their

profession. This creates different approaches to programming and to introducing

programming that is challenging to compare. There is a tendency in the results that the

higher education institutions want the students to learn both theoretical and practical

knowledge about programming, but the analysis of the content of the courses shows that

the practical assessments the students do are in many cases not adequate with the

theoretical knowledge. In other words, the level of observed learning outcomes in the

lesson/theory that was presented for the students, and the activities and assessments the

students were asked to do while working on this theme differ. This leads to the assumption

that the students understand the theory at a higher level than the practical exercises.

Another result showed in this study is that the students in non-IT or non-CS programs

learn a different kind of programming. In some cases, the difference is rather small

(automation-engineers) and mostly consist of different priorities and emphasis on

different parts of the program, data presented in Diagram 2. While in other cases, like the

teaching profession, the programming-theme is highly selected, separated, and used for a

variety of purposes that does not need to be related to IT or CS, data presented in Diagram

1.

This result shows a worrying aspect of programming in today’s society. The aspect

is that programming has become a tool taught and used differently in different fields.

Therefore, a teacher teaching programming in primary school, a teacher teaching

programming in higher education, a teacher teaching programming to engineers or bio

technicians or any other profession, all of those teachers need to have different

pedagogical and didactical competencies, even if all of them teaches programming. The

programming skills in the future may become as essential as reading and writing. And

maybe someday the digital competencies would be much more detailed ether to a certain

programming language or to general methodologies and aspects used in programming.

Table 7: Description of the HVL course content in relation to SOLO-taxonomy for automation-

engineering-students.

11

The challenge today is how to present programming in such a way that supports

understanding programming structures without becoming a programmer (more

experience, individual assessment, peer review of students’ assessment, customize tasks).

 The main difference in these courses is that HVO teaches a course that is organized

and developed from scratch, to give the students the most pedagogical and didactic

approach to programming and how to further teach programming to children. The

advantage of developing new content specific to the profession is to approach students in

a way that is directly relative to their work, and which gives them the possibility to

develop their own ideas in programming. The disadvantages are that the course is so

specific, and the content is so precise that it may be challenging to standardize such skills

or to develop them in further education.

HVL teaches a course that is generally an IT programming, with some elements of

automation. The advantages of teaching students a more general IT programming is that

it fits with everything, with other courses, further development, it is commonly described,

and such skills are fundamental in all work with IT and CS. The disadvantages are that

the students would not learn the need of customizing programming their profession.

What should schools and higher education institutions do? Should programming be

taught with a general IT approach, or should it be customized to the profession and field

of knowledge? What takes more time and resources, or what gives better learning

outcomes, to teach already develop content with few examples of customization, or to

develop new content just for one course, that is not replicable or transmittable to others.

The answer may be not to customize the entire field of programming, but to create a

fundamental base of computational thinking, that does not differ from field to field, and

is not based on any particular programming language, and then customize the “pure”

programming accordingly to the profession the students have.

Conclusion

This paper was trying to answer the research question of if or how can an introduction

to programming-course for non-computer scientists teach higher levels of observed

learning outcomes in programming. By examining the content of two courses for non-

computer scientists, this study has found that the IT-programming that is developed and

observed in these courses is mainly on the Uni-structural and Multi-structural level of

SOLO-taxonomy. Mainly because the professional goal usually deviates from the

purposes and goals of IT and CS programming. To reach higher levels of observed

learning outcomes like Relational or Extended Abstract, the criteria could not be just

about the technical aspects of programming. The results show that the skills in

programming differ from students from different professions.

0%

20%

40%

60%

80%

100%

1 2 3 4 5

IT teacher

0%

20%

40%

60%

80%

100%

1 2 3 4 5

IT automation

Diagram 1: Description of how well the course

from HVO fits the IT and teacher criteria of

SOLO-taxonomy.

Diagram 2: Description of how well the course

from HVL fits the IT and automation criteria of

SOLO-taxonomy,

12

References

Biggs, J. (2012). What the student does: Teaching for enhanced learning. Higher

education research & development, 31(1), 39-55.

Biggs, J. B., & Collis, K. F. (1982). Evaluation the quality of learning: the SOLO

taxonomy (structure of the observed learning outcome). Academic Press.

Bryman, A. (2016). Social research methods. Oxford university press.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). In

Kampylis, P., & Punie, Y.(Eds.), Developing computational thinking in compulsory

education–Implications for policy and practice. Luxembourg: Publications Office of

the European Union.

Bocconi, S., Chioccariello, A. and Earp, J. (2018). The Nordic approach to introducing

Computational Thinking and programming in compulsory education. Report prepared

for the Nordic@BETT2018 Steering Group. https://doi.org/10.17471/54007

Grandell, L., Peltomäki, M., Back, R. J., & Salakoski, T. (2006). Why complicate things?

Introducing programming in high school using Python. In Proceedings of the 8th

Australasian Conference on Computing Education-Volume 52 (pp. 71-80).

Griffin, P., & Care, E. (2015). The ATC21S method. In Assessment and teaching of 21st

Century Skills (pp. 3-33). Springer, Dordrecht.

Hawkins, W., & Hedberg, J. G. (1986). Evaluating LOGO: Use of the SOLO taxonomy.

Australasian Journal of Educational Technology, 2(2).

LK20 (2020). Læreplanverket i Kunnskapsløftet. Utdanningsdirektoratet. Retrieved from

https://www.udir.no/laring-og-trivsel/lareplanverket/

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational

thinking through programming: What is next for K-12?. Computers in Human

Behavior, 41, 51-61.

Mannila, L., & Nordén, L. (2017). Att undervisa i programmering i skolan : Varför, vad

och hur? (Upplaga 1. ed.). Lund: Studentlitteratur.

Mathew, R., Malik, S. I., & Tawafak, R. M. (2019). Teaching Problem Solving Skills

using an Educational Game in a Computer Programming Course. Informatics in

Education, 18(2), 359-373.

Selby, C. C. (2014). How can the teaching of programming be used to enhance

computational thinking skills? (Doctoral dissertation, University of Southampton).

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking about

computing. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 366(1881), 3717-3725.

World Economic Forum. (2016). The future of jobs: Employment, skills and workforce

strategy for the fourth industrial revolution. In Global challenge insight report.

Geneva: World Economic Forum. Retrieved from https://reports.weforum.org/future-

of-jobs-2016/chapter-1-the-future-of-jobs-and-skills/#view/fn-1

https://doi.org/10.17471/54007
https://www.udir.no/laring-og-trivsel/lareplanverket/
https://reports.weforum.org/future-of-jobs-2016/chapter-1-the-future-of-jobs-and-skills/#view/fn-1
https://reports.weforum.org/future-of-jobs-2016/chapter-1-the-future-of-jobs-and-skills/#view/fn-1

