
The Live Programming Lecturing Technique:
A Study of the Student Experience in Introductory and

Advanced Programming Courses

Siri Fagernes and Tor-Morten Grønli
Mobile Technology Lab, Department of Technology,

Kristiania University College
Oslo, Norway

Abstract
This paper investigates the topic of teaching programming in higher
education. The teaching method often referred to as live programming
has become a widely applied lecturing strategy for teaching programming
subjects in an interactive fashion. Lectures based on live programming
normally involve live demonstrations, explanations and interaction with the
students. Although this technique seems to be very popular amongst students
and instructors, we hypothesise that it also involves potential challenges. In
this paper, we investigate the perceived difficulty and promise of following
such an approach from a student perspective. We present results from
interviews with 1st and 2nd year IT Bachelor students about their experience
with live programming. Our results indicate that students’ engagement
and desire to learn through active learning techniques still are very much
valid also in introductory and advanced programming courses. Furthermore,
we also interpret from our findings a suggested model of a repeated cycle
of lecture, demo and exercise as highly beneficial to the student learning
process.

1 Introduction
Programming courses constitute an important integral part of most Bachelor programmes
in informatics, information technology, computer science or related programmes in higher
education throughout the world. Despite an increasing focus on exposing kids and young
adults to programming at an early age through initiatives such as the Norwegian project
Kidsa Koder [1], or the related international initiatives Computing at School [2] and
Code Club [3], programming is still primarily taught in higher education. The nature of
programming when coming from a general, non-information technology, background is
the concept of the domain-specific approach and vocabulary, put to use through advanced
tools and they must become proficient within a short timeframe [4].

A combination of student active learning strategies, different pedagogical models, and
combined efforts of lecturers and student assistants, usually encompass the team aimed at

This paper was presented at the NIK-2020 conference; see http://www.nik.no/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BIBSYS: Open Journals Systems

https://core.ac.uk/display/352014105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


solving the task of educating the students. The majority of the students rarely have any
large, structured knowledge base regarding programming and a minority of the cohorts are
usually self-taught from Internet, YouTube and online courses such as Udemy1, Udacity2

or Lynda3. Similarly, a small portion of the students may have prior higher education or
some industry experience which creates a small fundament. However, the lecturers task is
to bring this majority of unexperienced, unexposed and heterogeneous group up to a level
of basic understanding and mastering of the topic of programming.

A much widespread technique to achieve this goal for the lecturer is to use the
concept of live programming. Live programming refers to the process of designing and
implementing a coding project during a lecture [5]. This can be conducted in several
ways. One technique is to create an example application from scratch during the lecture,
often with frequent interaction with the students. Another common approach is to prepare
the "skeleton" of an application in advance, and fill this template with content, either from
copy-paste or from writing line by line throughout the lecture. A third approach is to use
collaborative tools to activate the students in participating in developing an application,
as showcased by Gonzalez and Lauvås [6].

Earlier studies such as [7, 8] investigated live programming used in introductory
courses. However, their focus was primarily on the perspective of the lecturer, and how
live programming can be used as a lecturing technique. We would like to shift the focus to
the perspective of the student. Instead of measuring the learning outcome, we concentrate
this research on their experience of this widespread technique and try to understand how
it is valued by the students. Additionally, we bring a new perspective into this topic by
not only investigating introductory programming courses. To the best of our knowledge,
there is a lack of research investigating this phenomena in non introductory courses, and
we seek to ask the same questions to students of an advanced programming course.

Our research question in this article is from the student’s perspective, what are the
experienced positive and negative effects on their learning process from live programming
lectures?

The rest of the paper is structured as follows. Firstly, we present selected literature
in related work, and then we describe our methodological approach. To follow, our
results are presented and we discuss their implications. Finally, we conclude the paper
and indicate directions for future research.

2 Related Work
As discussed early on by Bonwell et al. [9], and later in-depth investigated by Weltmann
[10], active learning facilitates for larger involvement and increased activity from the
students besides just listening to the lecturer. Reading, writing, discussing, solving
problems, coding, tutorials, and participating in group exercises, are just a snippet of
examples of this educational technique. Engagement in the class room and facilitation
of active learning can very well be many-faceted and are broadly explored in literature,
but still academics diverge rather than agree on a common definition. Following the
thoughts of Prince [11] we find a core characteristic of active learning by seeing it as
a meaningful, cognitive challenging task undertaken by students while a lecture is given -
often in relation to a proposed task or question from the lecturer.

1https://www.udemy.com
2https://www.udacity.com
3https://www.lynda.com



Active learning is not a replacement or substitute for traditional lectures, but rather a
philosophy of conscious choice of strategies for teaching a topic to a group of students.
The effect of active learning was investigated by Freeman et al. [12] and their results
indicated an improved student performance, unrelated of class size, course type or level,
across science, technology, engineering and mathematics (STEM disciplines) which were
investigated. Improving learning outcomes through engaging the students to be more
active in the learning process is not new. The idea was already visited by Bloom [13] in
his early works, then in relation to his taxonomy of learning objectives.

Studying active learning strategies in relation to introductory computer programming
are reported from several studies. An interesting perspective is brought up by Seeling
and Eickhold [14] in their research investigating three varieties of active learning in an
introductory programming course during three semesters. One with traditional lectures,
the second with active learning, and the third with workshop- or lab-based sessions.
They experienced that a shift from traditional lecturing to active learning produced
inconclusive results. Overall exam performance increased, overall course performance
where sustained, and course evaluation of mastery declined. Investigating their data,
they conclude that the active learning enhanced significantly results of lower performing
students, but otherwise were insignificant when compared across all result categories.
Further studies will be conducted in a mix between lab-session and active learning
lectures. Interestingly, they do no investigate or ask the students, on how their experience
on the subject matter is.

We do seem to find abundance of studies about different perspectives of live
programming in introductory programming classes and their positive effect. One such
study is from Rubin [8], which presented a study on evaluating the effectiveness of using
live programming in programming classes. This research analysed the outcome based on
two surveys, and the results indicate that students prefer live programming compared to
only being shown static code examples.

Shannon and Summet [7] did a study investigating the impact of live programming in
a student-active learning context. Their main motivation was to determine how effective
live programming is for specific concepts within programming courses, like if-statements,
loops, methods and arrays, and to explore whether this strategy has more impact for
certain topics than others, and to see the short-term learning effect. Their concept of
live programming referred to students working on programming exercises in class in a
flipped-classroom context. To measure the effect of each session the authors used in-
class quizzes during the course to determine the short-time learning effect. Based on their
study, it is difficult to evaluate the effect of live programming, as this work is really about
active learning techniques. Introducing the quizzes may also have had an effect on the
learning outcome of the sessions.

Gaspar and Langevin [15] investigated the use of so-called student led live
programming, showing the benefits of letting the students engage in active learning during
the programming lectures. The authors emphasise the importance of students learning
the process and strategies behind programming, and not just the syntax of a program.
Their results showed that the student led approach, combined with assignments with more
than one possible solution, was successful in the sense that the students were creative in
applying a range of different techniques to solve the given problem.



3 Methodology
This paper builds upon the qualitative tradition, and data have been gathered through the
use of semi-structured interviews [16]. An interview guide with open ended questions
was developed, and through traversing back and forth in the prepared questions we
investigated the conceptual phenomena. Semi-structured interviews were selected since
we are studying concepts and trying to understand and identify relevant issues from the
student perspective. A total of 10 participants were interviewed over a period of three
weeks.

The Participants
The participants were recruited among students in the first and second year of the Bachelor
in information technology at Westerdals Oslo ACT. The first year students were chosen on
the basis that they are regularly exposed for live programming in their 7.5 ECTS course
of Object Oriented Programming 2. Similarly, the second year students were recruited
from a 7.5 ECTS course in Android programming that exposes them to live programming
on a weekly basis in an advanced course. Table 1 gives an overview of the year of study
distribution over gender and age-span.

Table 1: Participants

Participant Semester Gender Age
P1 4 Male 36
P2 4 Male 24
P3 2 Male 26
P4 2 Female 25
P5 2 Female 22
P6 4 Male 28
P7 2 Female 24
P8 4 Male 25
P9 4 Male 27
P10 4 Male 26

The Interviews
All interviews lasted between 20 and 40 minutes and followed a semi-structured style.
The participants were informed of the purpose of the study, were offered to receive
the finished article when published, and were given the option to end the interview or
withdraw at any time.

Our purpose with the interviews was to get an understanding of the students’
individual learning experience related to the live programming in the lectures they
had attended. We had prepared an interview guide of open-ended questions, and a
conversational approach was followed in the interviews with the students. During the
semi-structured interviews questions related to the following topics were asked:

• The amount of live programming used in the programming courses they had
attended so far in their education, and in what manner the live programming had
been carried out by the instructors.



• How the student chose to engage in the live programming sessions, for instance if
they would try to code along with the instructor throughout the lecture, or if they
would rather pay attention to the programming without coding themselves.

• Their personal opinion of how effective live programming is related to their
learning, with a particular focus on what they regarded potential benefits using this
teaching strategies.

• Any potential challenges or issues related to the live programming sessions.

• If the students had any suggestions to possible improvements that could be done to
the way it has been carried out, based on their experience.

4 Results
Based on the survey as detailed in section 3, we will further present the results in relation
to the topics we used as starting point for our interviews.

Live programming teaching styles
The student responses indicate that live programming is being taught using several
different approaches. While some instructors edit code in prepared code snippets, others
perform live programming of smaller and larger applications from scratch. In some cases,
the live programming is done for shorter intervals during a lecture containing other lecture
components, while others choose to perform the entire lecture in a code-along manner.
The difference in teaching approaches may be related to pedagogical strategies of the
lecturer and his or her individual preference. Some students commented on this as being
an advantage as they were exposed for several different methods, whereas other found
this a distracting factor.

The students reported that there is also a significant difference between lecturers with
the respect to the programming speed during the live sessions, and this referred to both
the coding and the switching between the files being edited in the lecture. It was also
mentioned that there is a lot of variation in how much the instructor explains along the
way. One student said that some instructors are good at explaining, while others that
are very experienced themselves, seem to forget how many small details that need to be
correct for the whole program to work properly.

Some students reported that they mostly have experienced that live programming
involved small snippets of code, and when larger programs are displayed, it is normally
pre-coded, and just modified during the live-session. Other students reported experiences
of lecturers spending a large amount of time on live programming and to produce
programs of larger size and increased complexity.

The students also explained how different kinds of tools are being used by different
lecturers. The Scrimba tool [6], which allows for displaying code from the audience on
the lecturer’s screen, was mentioned as being very useful, although a bit scary at first.

Student activity during lectures
When asked about how they choose to participate during the live programming sessions,
the students varied in their responses. Many of the students said that they would live
code along with the lecturer in the beginning, when the code snippets were small and
the programming speed sufficiently low for them to keep up. Some also reported that



they would often give up, and simple pay attention to what was going on when the
programming speed increased, or that they got lost of other reasons (P7).

P9 described how he initially tried to code along with the lecturer, but how he ended
up simply typing off the lecturer without also perceiving the explanations that were given
along with the code bits. After a while the student chose to skip coding along, and
instead paying attention to the live programming and the explanation. After the lecture,
the student would code the examples from the session on his own.

Another student (P10) explained that he sometimes codes along with the lecturer,
and other times not, and that this is strongly related to the student’s energy level each
particular day. If he is tired, he will normally just pay attention, and if the energy level is
higher, he programs along with the instructor. The student specified how he felt the live
coding is valuable independently of whether he codes along or not since he always has
the opportunity to ask questions during the lecture and participate actively that way.

A couple of students (P3, P9) chose to be active through the live coding by taking
notes throughout the session, and explained how they felt that they got a better overview
of what is going on this way. P3 would sometimes write down some of the code by hand,
to get a better understanding.

Benefits
All of the participants reported that they enjoy and prefer live programming as part of
the programming lectures. P6 stated that he learns most from coding along with the
lecturer, and tries to do a mix of coding along and watching what is being presented.
The participants were also quite uniform in their answers with respect to what they like
about the live programming. Several mentioned how they appreciate experiencing the
process of problem solving, and one specified how this is particularly when it is done
from scratch. Further, when comparing to simply being exposed to pre-coded programs
on a slide, several students specified how they prefer seeing the program being built, and
not only reading text, "just seeing the final code does not give you any hint of how it was
built, or the sequence of how things are done" (P9).

Another element mentioned by several students was the perceived interactivity in the
live programming sessions. Some referred to how it is easier to pay attention because
something happens, and how the lecturer can respond to comments and questions, make
changes to the code and explain better what is going on. It was also commented on how
live programming slows the general lecture speed down, which makes it easier for them
to follow and digest the material (P2). One also reported how he enjoys observing an
experienced programmer, and how he learns the most from how they perform the entire
process from beginning to end.

Challenges
With respect to what is perceived as drawbacks or challenges with live programming
during lectures, most of the students mentioned issues related to the speed of
programming. "If it is done too fast, it is easy to lose track, and difficult to get back
in. Looking down at the wrong time can make you fall out of the coding completely."
(P2) It was also mentioned how it can be perceived as difficult to ask questions if you are
stuck. One of the first-year students (P7) mentioned how syntax errors are frequent and
difficult to spot when you are inexperienced in programming, also adding to the difficulty
of coding along with the lecturer.



While a slow pace was referred to as a good thing by many, one student (P2) stated that
too long periods of live programming without any disruptions can be very dry or boring.
In that context it was advised to use a blend of live coding and other lecturing elements
during the session. P6 mentioned that it could be difficult to stay focused on live coding
during lectures if the code blocks are too large. He also mentioned how sometimes the
lecturers are not able to complete the programming in such cases.

Several students also mentioned how good explanations along the way are necessary.
"It is very difficult if one does not understand individual parts of the code, particularly if
no explanations are given with respect to why the code is there and what it does. That can
be very stressful." It was also mentioned by students in the first year, that it is important to
remember to explain elements that may be obvious to the more experienced programmers.

Context switches were also reported by P3 as a significant challenge, for instance
when the lecturer moves between different windows and files during the programming.
Also, it was stated that complex applications are not suited for live programming, as
this makes the student dividing the attention between paying attention to understand and
typing the code (P2).

Experiencing code that does not compile or work appropriately was also referred to as
problematic and stressful. Some students also commented on how they relied on having
up-to-date software and hardware to be able to keep up with the lecturer, due to technical
problems with running the code otherwise. Some also mentioned how the instructor
sometimes struggle with getting things to work properly, and how this could be very
time-consuming.

How to improve the learning experience
When asked how the learning experience could be improved, several students named
finding the appropriate programming speed to be the most important. Many of them also
expressed a wish for better explanations, like choice of strategy along the way, and other
issues related to the actual problem solving. A highlighted idea was to show the context
of the live programming, for instance through a switch between diagrams or illustrations
and the coding. By doing this, more explanations of trivial matters would be explained
several times, and combined with lower speed, these detailed explanations were expected
to improve the learning process. One student mentioned how important it was to allocate
sufficient time, to avoid time pressure and stress towards the end of the lecture.

P7 mentioned specifically how she struggles when she is not able to grasp the complete
picture of what is being developed during the live coding session. She emphasised the
importance of conveying how the smaller bits fit into a larger whole, and that the lecturers
should focus more on overall programming strategy and goals during the live coding.

The students were a bit torn in regards of the environment for the lecture. Some liked
the use of an auditorium, not a class-room, otherwise you could not see properly from
the back rows (P2, P10). Another student explained learning was better in settings with
fewer students, compared to sitting in a large auditorium (P7). P2 pointed towards time
of day as important, to be able to concentrate and to be awake to keep up. P6 stressed the
importance of lighting, meaning that the lecture room needs to be dark enabling the focus
to be on the screen (and code).



5 Discussion
Interesting aspects to discuss and different student strategies during the lecture emerged
both from surveying related work and were made concrete through the data collection.
From the interviews we learned that students seem to try out a variety of techniques for
engagement, collaboration and learning during the lecture. This is in line with the findings
from Bonwell et al. [9] and Weltmann [10]. All the candidates interviewed reported they
copied (or had tried to copy) the lecturers code simultaneously as it was written. One
filled in that this was a fine technique in the introductory course, but as the topics became
more advanced this stole the focus. Another technique that were used was to take notes of
interesting elements heard or seen during the lecture for then after class returning to these
an investigating them with sufficient time and concentration. A majority also mentioned
that their primary recipe for success was to just pay attention to what was going on. By
doing this it allowed for a bird’s-eye view and by this giving an overview of the code
sample, and it allowed them to focus their attention to what was told by the lecturer
during the walkthrough and coding.

Perceived benefits from live programming where eagerly described by the interviewed
students. A common reported characteristic in our findings is that it is a beneficial
way to learn. They mention it is easy to ask questions, and these can lead to new
examples or demoed changes on the go, as well as interesting diversions. Together with
exemplification, thorough explanations are very well received and reported to be of great
use. Further to this, observing also give the students the possibility to see the bigger
picture and understand strategies applied to solve a problem. As promoted by Gaspar
and Langevin [15], it is more focus on the process, rather than the end product, any with
this they learn more about the programming process and utilised strategies. It is also
mentioned that through this they pick up a variety of tips and tricks connected to the
development tools, shortcuts and other related unrelated information.

Another interesting observation from the interviews is that the audience (students)
perceive this form of lecture to be interactive and active. This do not only go for the
periods while they code simultaneously, but also when purely observing. The students feel
they are being activated. As supported by Freeman et al. [12], active learning strategies
support increased learning outcomes. Their results found this to be supported unrelated
of class size and course type. Our interviews are inconclusive towards this and suggests it
must be further investigated. As presented, some students preferred small classes whereas
others found 1:1 learning ideal.

The interviewed students highlight speed as one important challenge. If the lecturer
goes to fast it is very difficult to be able to understand the topic, comprehend flow and
understand the rationale behind decisions taken during the session. What determines "too
fast" is a subjective opinion, but they commonly point out that they at some stage typically
drop out. This can be due to a surprising shortcut keyboard command doing a magic trick
or being lost between alternating files or unable to understand an explanation. Ones lost,
the interviewed students point out that it is close to impossible to regain attention and
catch up.

Unsatisfactory explanations are also a challenge reported by several. It is energy-
consuming to be able to follow and to be able to understand and learn. The lecturer
must be able to give a precise, accurate and well-reasoned comment or explanation
to the written code. If this fails, then the entered code remains without a contextual
connection, and seemingly lost and without any practical opportunity to be remembered.
As researched by Gaspar and Langevin [15], the learning process of programming is about



more than just syntax and detailed program code. Sometimes it is easy for students to get
to fixated on the details in the code and difficult to grasp the overall picture of what are
doing. Still, it is necessary to see the larger picture to understand what one is doing in the
smaller scale.

We also asked if they could share some thoughts on how this lecture technique
could be further improved. Several of the interviewees immediately answered that better
explanations would be the first thing that comes to mind. The reason for this being that
since this is well known to the lectures s/he is not always stating the obvious. These,
seemingly, unimportant details are essential to the understanding, particularly for the
introductory classes. The second item on the list of improvements relates back to the
results reported for challenges, namely speed. The lack of speed leads to the students
being bored and feeling it becomes to elementary, whereas to high speed loose the
attention of the lecture room. They point out they have no solution to how to balance
speed, but nevertheless it is felt like an active barrier when not matched to their liking.

6 Conclusion and Future Work
We asked the research question from the student’s perspective, what are the experienced
positive and negative effects on their learning process from live programming lectures?
and researched this through gathering data using semi-structured interviews with bachelor
students.

Differentiating from previous works, we sat out to investigate this question purely
from the students’ perspective. Additionally, we added the dimension of studying an
advanced programming course in addition to an introductory course. Some of our findings
such as students’ engagement and desire to learn through active learning techniques are
supported by previous findings [12], and the importance of understanding both the syntax
and the larger picture at an architectural scale [15]. Other findings such as the huge
importance of speed, the re-explanations of already covered material and attention to
details were brought forth as new aspects from the students. This indicates that continues
shift between lecture, demo and exercise, repeated in small iterations throughout the
whole lecture, might be an interesting angle to purse and measure the effect of.

We sincerely think it is a need for more in depth results connected to the phenomena of
live programming from the student perspective, and we especially think advanced courses
must be researched to a greater extent. Measured achieved learning outcome and student
performance are examples of two topics worthy of further pursuit.

Limitations
We acknowledge our research has some limitations. Firstly, we have a limited number of
participants and they are all from the same institution. Although they have experienced
the topic of live programming from multiple lecturers in multiple courses this might still
bias their attitude. Secondly, being a small sample of 10 interviewed students, we cannot
generalise from this study, but rather investigate, question and highlight topics for future
research.

References
[1] Kidsa Koder. Lær kidsa koding. https://kidsakoder.no, 2018. Accessed:

02.04.2018.



[2] Computing at School Initiative. Computing at school. http://www.
computingatschool.org.uk, 2018. Accessed: 02.04.2018.

[3] The Code Club Initiative. Code club. https://www.codeclub.org.uk/, 2018.
Accessed: 02.04.2018.

[4] Leo Porter, Mark Guzdial, Charlie McDowell, and Beth Simon. Success in
introductory programming: what works? Communications of the ACM, 56(8):34–
36, 2013.

[5] John Paxton. Live programming as a lecture technique. Journal of Computing
Sciences in Colleges, 18(2):51–56, 2002.

[6] Per Lauvås and Rolando Gonzalez. An experience report using scrimba: An
interactive and cooperative web development tool in a blended learning setting.
Proceedings of Norsk Informatikkonferanse, 2017.

[7] Amy Shannon and Valerie Summet. Live coding in introductory computer science
courses. Journal of Computing Sciences in Colleges, 31(2):158–164, 2015.

[8] Marc J Rubin. The effectiveness of live-coding to teach introductory programming.
In Proceeding of the 44th ACM technical symposium on Computer science
education, pages 651–656. ACM, 2013.

[9] Charles C Bonwell and James A Eison. Active Learning: Creating Excitement in
the Classroom. 1991 ASHE-ERIC Higher Education Reports. ERIC, 1991.

[10] David Weltman. A comparison of traditional and active learning methods: An
empirical investigation utilizing a linear mixed model. The University of Texas
at Arlington, 2007.

[11] Michael Prince. Does active learning work? a review of the research. Journal of
engineering education, 93(3):223–231, 2004.

[12] Scott Freeman, Sarah L Eddy, Miles McDonough, Michelle K Smith, Nnadozie
Okoroafor, Hannah Jordt, and Mary Pat Wenderoth. Active learning increases
student performance in science, engineering, and mathematics. Proceedings of the
National Academy of Sciences, 111(23):8410–8415, 2014.

[13] Benjamin S Bloom. Taxonomy of Educational Objectives: The Classification of
Educational Goals: By a Committee of College and University Examiners. David
McKay, 1971.

[14] Patrick Seeling and Jesse Eickholt. Levels of active learning in programming skill
acquisition: From lecture to active learning rooms. In Frontiers in Education
Conference (FIE), pages 1–5. IEEE, 2017.

[15] Alessio Gaspar and Sarah Langevin. Active learning in introductory programming
courses through student-led “live coding” and test-driven pair programming. In
International Conference on Education and Information Systems, Technologies and
Applications, Orlando, FL, 2007.

[16] Lioness Ayres. Semi-structured interview. The SAGE encyclopedia of qualitative
research methods, pages 811–813, 2008.


