
Access*: Interdisciplinary Journal of Student Research and Access*: Interdisciplinary Journal of Student Research and

Scholarship Scholarship

Volume 4 Issue 1 Article 6

2020

Hamming Codes Hamming Codes

Steve Mwangi
University of Washington, Tacoma, xenios@uw.edu

Sterling Quinn
University of Washington, Tacoma, stelrq@uw.edu

Follow this and additional works at: https://digitalcommons.tacoma.uw.edu/access

 Part of the Algebra Commons, Other Applied Mathematics Commons, Other Computer Sciences

Commons, and the Other Mathematics Commons

Recommended Citation Recommended Citation
Mwangi, Steve and Quinn, Sterling (2020) "Hamming Codes," Access*: Interdisciplinary Journal of Student
Research and Scholarship: Vol. 4 : Iss. 1 , Article 6.
Available at: https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

This Undergraduate Research Paper is brought to you for free and open access by the Teaching and Learning
Center at UW Tacoma Digital Commons. It has been accepted for inclusion in Access*: Interdisciplinary Journal of
Student Research and Scholarship by an authorized editor of UW Tacoma Digital Commons.

https://digitalcommons.tacoma.uw.edu/access
https://digitalcommons.tacoma.uw.edu/access
https://digitalcommons.tacoma.uw.edu/access/vol4
https://digitalcommons.tacoma.uw.edu/access/vol4/iss1
https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6
https://digitalcommons.tacoma.uw.edu/access?utm_source=digitalcommons.tacoma.uw.edu%2Faccess%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.tacoma.uw.edu%2Faccess%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=digitalcommons.tacoma.uw.edu%2Faccess%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.tacoma.uw.edu%2Faccess%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.tacoma.uw.edu%2Faccess%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.tacoma.uw.edu%2Faccess%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6?utm_source=digitalcommons.tacoma.uw.edu%2Faccess%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages

Hamming Codes Hamming Codes

Cover Page Footnote Cover Page Footnote
This paper was completed while taking Matrix Algebra and its applications at University of Washington
Tacoma Campus. The views therein are solely for research purposes and do not reflect those of UWT.
Notwithstanding, we would like to acknowledge Professor Jennifer Quinn for inspiring our interest in the
subject.

This undergraduate research paper is available in Access*: Interdisciplinary Journal of Student Research and
Scholarship: https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

2

Abstract

We will examine the application of Matrix Algebra in forming Hamming Codes.

Hamming Codes are essential not just in the detection of errors but also in the linear

concurrent correction of these errors. The matrices we will use have entries that are

binary units. Binary units are mathematically convenient, and their simplicity permits the

representation of many open and closed circuits used in communication systems. The

entries in the matrices will represent a message that is meant for transmission or

reception, akin to the contemporary application of Hamming Codes in wireless

communication. We will use Hamming Codes (7,4), which are linear subspaces of the 7-

dimensional vector space over F2, the base field.

1

Mwangi and Quinn: Hamming Codes

Published by UW Tacoma Digital Commons, 2020

2

Hamming Codes

Hamming Codes were named after the Mathematician Richard Wesley Hamming.

Hamming, who made several contributions in Computing, Engineering and

Telecommunications, realized that the detection of errors in the transmission of

information, in and of itself, was not adequate. The correction of such errors was also an

integral part of the transmission of the information (Hamming 2). Take for instance, the

following text transmission:

Message to be transmitted: “Mr. Bob, your bags arrive at 11:00am.”

Message that is processed: “Mr. Rob, your rags #$%^^& at _1:00am.”

After transmission, the message transmitted in the above example will be compromised.

At the time Mr. Hamming was working on problems like this, there were no error

correcting codes (Hamming). As such, it was essential for the correction of codes to

occur in conjunction with the detection of errors. Hence, Mr. Hamming created the codes

that bear his name—Hamming Codes.

In this paper, we will assume that the standard unit of all information represented

in machines is a binary digit or bit. This will enable us to employ bits as the standard unit

for encoding digital information (Hamming).

2

Access*: Interdisciplinary Journal of Student Research and Scholarship, Vol. 4 [2020], Iss. 1, Art. 6

https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

2

Description of Terms

To begin with, we will explain the meaning of some of the terminology that we

frequently use across this paper. This includes:

1. Redundancy is the term we will employ to calculate the efficiency of our hamming

code. To determine redundancy, we will need to figure out how many bits to use

for the entire information to be transmitted. This will be the sum of:

I2 + E2

where:

I2 = No bits representing information, and

E2 = No bits representing error detecting and correcting code(E2).

Thus, the efficiency of our hamming code is given by:

Redundancy = (I2 + E2) ÷ I2

2. Parity Bits (and parity check): These are bits added to a set of data bits. For

instance, in Single-error detecting codes, if we have n bits that represent the

information, we can use (n+1) bits for transmission. The added bit is the parity bit

that helps detect an error. If the bit set containing n bits has an even occurrence

of 1’s, we have even parity and the added bit is 0. If we have an odd number of

1’s, we have odd parity, and the added bit is 1. The data bits plus the parity bit will

always have even parity (Hamming).

3. Parity Check: This is the method that checks the parity bits mentioned above. So,

if information transmitted employed even parity, and the information received has

an odd number of 1’s, we know that there is an error (Hamming 3).

3

Mwangi and Quinn: Hamming Codes

Published by UW Tacoma Digital Commons, 2020

2

4. Hamming (n, k) Code: This is a Hamming Code Block that has k (= I2) information

digits, and n as the block length or total number of bits, including parity bits. Hence,

n = p + k, where p = parity bits. If there is one error, then there are n possible

locations for that error. So, 2p = 2n-k, must be at least n+1 (with n possible errors +

1 extra for no errors). Therefore, n, the total block length, must be at most 2p-1.

Which also translates to k, the number of information bits, being at most 2p-p-1,

where p = n - k (Moon, 2005).

4

Access*: Interdisciplinary Journal of Student Research and Scholarship, Vol. 4 [2020], Iss. 1, Art. 6

https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

2

Parity Checking Bits

Hamming Codes’ strength lies in their ability to detect and correct errors with a

relatively low redundancy. For this paper, we will focus on the (7,4) Hamming Code. This

code has a redundancy of 1.75, which we calculate following the formula in definition one,

Redundancy = (I2 + E2) ÷ I2. As an example, let us consider the data:

 1 0 0 1

This is a Hamming Binary Code block with k = 4. The data we will transmit will consist of

7 bits, or n = 7.

Now we can take:

1. Take all bit positions that are powers of 2 and mark them as parity bits. Such bits

would be at positions 1, 2, and 4.

2. All other bit positions will contain our data (i.e. bits at positions 3, 5, 6 and 7).

3. Now, each parity bit will be used to determine the parity for sets of bits in the

code word

(Downey, 2018).

The position of the parity bit will help us know which sets of bits to check e.g.

5

Mwangi and Quinn: Hamming Codes

Published by UW Tacoma Digital Commons, 2020

2

Parity bits at

Position

Sequence to check

bits Set of bit positions to check

1 check 1 bit, skip 1 bit… {1,3,5,7}

2

check 2 bits, skip 2

bits… {2,3,6,7}

4

check 4 bits, skip 4

bits… {4,5,6,7}

Table 1. The following table describes, for each parity bit, its position and which
bits are used to determine even parity for that bit (Downey, 2018)

4. Finally, the parity bit is set to 1 if the total number of ones in the positions it is

checking, other than itself, is odd—even parity. Otherwise the parity bit is 0 if the

total number of ones in the positions it checks is even (Downey, 2018).

6

Access*: Interdisciplinary Journal of Student Research and Scholarship, Vol. 4 [2020], Iss. 1, Art. 6

https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

2

To transmit our message, we now need to determine value for the parity bits at position:

 _ _1_001

Determining parity bits:

Parity

bits at

Position

Sequence to

check bits

Parity? Determine parity

bit(?)

Set parity bit

1 checks bits

1,3,5,7

? _1_001

Even

parity

? = 0 0_1_001

2 checks bits

2,3,6,7

0?1_001

Even

parity

? = 0 001_001

4 checks bits

4,5,6,7

001_001

Even

parity

? = 1 0011001

Table 2. Using table to explain how to determine parity bits. Complements Venn
diagram (Downey, 2018).

 Hamming Code word to transmit: 0011001

7

Mwangi and Quinn: Hamming Codes

Published by UW Tacoma Digital Commons, 2020

2

Similarly, we can use Venn diagrams to find the parity bits. In our case, we will use a

basic Venn diagram to showcase this implementation (Hamming Codes in TOY).

Figure 1 The Bi are the data bits and Pi are the parity bits. The value of the parity bits can
be computed by making sure that the sum of the data bits encompassed by the circle of
a parity bit and the parity bit itself is even (Wolf, 2017).

If for some reason the message received is 0011101, we can detect the error by looking

at the parity bits and seeing whether even parity is consistent. If not, it means the error

exists at this location.

P 1 =
 0

P 4 =
 1 P 2 0

 =

B 5 = 0

B 7 = 1

B3 = 1

B6 = 0

8

Access*: Interdisciplinary Journal of Student Research and Scholarship, Vol. 4 [2020], Iss. 1, Art. 6

https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

2

Check parity Sequence to bits at

position check bits

Parity? Determine error

1

checks bits 1,3,5,7

0011101

Not

even

parity

Bit 1

2

checks bits 2,3,6,7

0011101

Even

parity
Ok

4

checks bits 4,5,6,7

0011101

Not

even

parity

Bit 4

Table 3. Simple way to detect and correct a single error. In this table, we see that the error
bit can be determined from Bit 1 and Bit 4, which points to Bit 5. So, we flip Bit 5 to correct
the error, and the information encoding, which is 0011101 becomes 0011101 (Downey,
2018).

9

Mwangi and Quinn: Hamming Codes

Published by UW Tacoma Digital Commons, 2020

2

STEP 1: Using Venn Digrams to show the encoding process

Figure 1 & 2 – Hamming Codes in TOY.

https://www.cs.princeton.edu/courses/archive/spr03/cs126/assignments/hamming.html

STEP 2: Adding parity bits

Figure 3 – Hamming Codes in TOY.

https://www.cs.princeton.edu/courses/archive/spr03/cs126/assignments/hamming.html

10

Access*: Interdisciplinary Journal of Student Research and Scholarship, Vol. 4 [2020], Iss. 1, Art. 6

https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

2

Figure 4 – Hamming Codes in TOY.

https://www.cs.princeton.edu/courses/archive/spr03/cs126/assignments/hamming.html

Having explained the essence of determining parity bits and checking for errors, we can

now delve deeper into the parity checking matrix that uses the Hamming Code Block

(7,4) for error correcting using a hamming code generator matrix.

11

Mwangi and Quinn: Hamming Codes

Published by UW Tacoma Digital Commons, 2020

2

The Hamming Code Generator Matrix

In practice, Hamming codes are generated by way of matrix multiplication. If the

message has k bits, then the message matrix is a k by 1 matrix. We then multiply an n by

k matrix called a generator matrix by the message matrix to produce a new matrix which

represents the bits to be transmitted. An n by k generator matrix multiplies a k by 1

message matrix. The generator matrix transforms the message matrix into an n by 1

package matrix which is the original message matrix with n-k parity entries (Wolf, 2017).

These parity entries describe the other entries in the package matrix, allowing for error

detection and correction. We are examining the (7, 4) Hamming code. An example of a

(7,4) generator matrix follows:

It is worth stating that the orientation and order of matrices in Hamming code generation

is not standard and entirely arbitrary. One could easily have a 1 by 4 message matrix M

multiplied a 4 by 7 generator matrix G. All that matters is that the parity check matrix

matches the generator matrix.

It is also possible to create new generator matrices by applying elementary row

operations to G.

12

Access*: Interdisciplinary Journal of Student Research and Scholarship, Vol. 4 [2020], Iss. 1, Art. 6

https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

2

There are many different valid Hamming generator matrices, and one often sees

deviation from the standard matrix shown here.

The generator matrix works as so: given a message matrix

And the above generator matrix, the output package matrix will be:

Figure 5 - Data item 1, 2 and 4 correspond to bits 1, 3, 5, and 7 in the transmitted
message.

The data being transmitted is in binary, so the above raw package matrix will not be

transmittable. To remedy this, the contents of MP are calculated using arithmetic modulo

2. This means that the first, second, and fourth entries will, rather than the straight sum,

show the parity of their respective bits. Since any possible permutation of 4 bits is a

possible data vector, the valid codewords, or valid package vectors, is the column space

13

Mwangi and Quinn: Hamming Codes

Published by UW Tacoma Digital Commons, 2020

2

of G. A package vector can be multiplied by the parity matrix corresponding to the

generator matrix to check for errors. We describe the parity matrix in the next section.

Parity Check Matrix

The parity check matrix allows us to detect an error and the position of that error in

our data package. If we multiply a 4-bit data vector by our generator matrix from earlier,

we end up with a 7-bit vector (d1, d2, ..., d7)T. We will have data bits at d3, d5, d6, and d7 and

assign our parity bits variables d1, d2, and d4, where d1 is responsible for data with a 1 in

the least significant place of the subscript when the subscript is converted to binary, d2 is

responsible for data with a 1 in the second least significant place, and d4 is responsible for

data with a 1 in the most significant binary place. We can organize these variables into

the following equations:

d3 + d5 + d7 = d1

d3 + d6 + d7 = d2

d5+ d6 + d7 = d4

The nature of binary modular arithmetic means that the right side of these equations can

be added to the left and subtracted from the right while maintaining the system.

Considering the two possible cases shows us why this is a valid operation. A parity bit of

0 indicates an even number of 1s. Adding the parity bit to the left of the equation will not

change the value of the equation modulus 2. If the parity bit is 1, that means that the left

side of the equation has an odd number of 1s. Adding the parity bit will result in an even

number of 1s and a result of 0. Adding the parity bit to the left and subtracting from the

right give us:

d3 + d5 + d7 + d1 = 0

d3 + d6 + d7 + d2 = 0

14

Access*: Interdisciplinary Journal of Student Research and Scholarship, Vol. 4 [2020], Iss. 1, Art. 6

https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

2

d5 + d6 + d7 + d4 = 0

We can add the missing variables to each equation with a zero coefficient without

invalidating the equations. After putting the subscripts in order, we get:

d1 + 0d2 + d3+ 0d4 + d5 + 0d6+ d7 = 0

0d1 + d2 + d3+ 0d4 + 0d5 + d6+ d7 = 0

0d1 + 0d2 + 0d3+ d4 + d5 + d6+ d7 = 0

We can use these equations to create the parity check matrix P, where P is the 3x7

coefficient matrix where each row is the left side of one of the above equations.

 1 0 1 0 1 0 1

 0 1 1 0 0 1 1

 0 0 0 1 1 1 1

We use this matrix to check for valid data and detect where any error occurred by

computing Px, where x, the transmission matrix, is an n x 1 matrix consisting of the n

transmitted bits. If Px = 0, the data is valid. Otherwise, the product Px will result in a 3x1

vector where the sum of the positions of the 1s in that vector corresponds to the position

of the error in the original data (transmitted) vector.

The matching column’s value in binary corresponds to the position of the error in the

original data vector. This is just one possible parity check matrix. Our scheme for

organizing the data and parity bits to generate P matches a certain set of codewords, or

valid data packages. These valid codewords are the null space of P. For the generator

parity pairing to be valid, the two matrices must satisfy the equation PG = 0. If we examine

our equations used to generate our parity bits from earlier:

15

Mwangi and Quinn: Hamming Codes

Published by UW Tacoma Digital Commons, 2020

2

 d3 + d5 + d7 = d1

d3 + d6 + d7 = d2

d5+ d6 + d7 = d4

We can use these equations to create our 7 by 4 generator matrix. Our data is assigned

subscripts in the following fashion (d3, d5, d6, d7)T. If we append the missing data bit to

each of our equations with a 0 coefficient, we get the following equations:

1d3+1d5+0d6+1d7 = d1

1d3 + 0d5 + 1d6 + 1d7 = d2

0d3 + 1d5+ 1d6 + 1d7 = d4

The coefficients of the left side of these equations will become rows 1, 2, and 4 of

our generator matrix, corresponding to the position of the parity bits they generate in the

outgoing vector. The remaining rows of the matrix, 3, 5, 6, and 7 will represent data bits.

Since positions 3, 5, 6, and 7 in our outgoing vector correspond to positions 1, 2, 3 and 4

in our original data vector, these rows must have a 1 in the position of the bit we want to

be transmitted, and 0s elsewhere. This gives the generator matrix:

We can confirm this is a valid generator/parity pairing be performing the multiplication

PG and verifying that we get a 3x4 zero matrix.

16

Access*: Interdisciplinary Journal of Student Research and Scholarship, Vol. 4 [2020], Iss. 1, Art. 6

https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

2

Conclusion

In summation, we will discuss some of the applications of Hamming Codes in

today’s technologies and industries. For instance, in the telecommunications industry,

whereby wireless transmission of data consistently takes place, Hamming codes have

been used to ensure that the integrity of the data transmitted is retained or recovered, due

to the ease with which they can be implemented and the simplicity with which they facilitate

error detection and correction.

Additionally, Hamming Codes’ low level of redundancy makes them ideal for use in

computing systems for memory access and storage (Gupta & Rashmi, 2013). The

computer memory, which can be made up of thousands of silicon chips is susceptible to

errors due to the nature in which binary information is represented. The bits are

represented by the “presence or absence of negative electric charges” on the silicon chips,

with 0 being represented by the presence of electrons in an allocated chip portion. So,

when the reading of such a chip portion is higher than a predetermined value, then it is

read to be a 0, and vice versa. Nonetheless, the chips can be damaged directly

(physically) or indirectly (from particle bombardments), hence, “one megabyte memory

consisting of 128 64K chips”, might have 4 rows of 32 chips, and an additional 7 chips for

error-correction (Key, 2000, p. 301). These Hamming codes are referred to as binary

extended Hamming codes, since they have an n that is longer than the n = 7, in (7, 4)

Hamming codes. In the extended case, for the computer memory, the k can be as big as

57, but the designed preference is k = 32 (Key, 2000).

In all, we have seen that by using linear algebra to convert packets of bits into self-

correcting codewords, Hamming codes allow error detection and correction in data where

17

Mwangi and Quinn: Hamming Codes

Published by UW Tacoma Digital Commons, 2020

2

errors are relatively infrequent. We have also seen how a Hamming code generator matrix

takes a data packet of a prespecified length and adds redundant bits that reference the

parity of the specific bits in the raw data packet. When the transmission is received, simple

multiplication by a parity check matrix checks the data for errors and detects the position

of an error that may have occurred. All these reasons and others, showcase how

Hamming Codes’ application of Matrix Algebra, renders their design simple for practical

applications in many industries and technologies today.

18

Access*: Interdisciplinary Journal of Student Research and Scholarship, Vol. 4 [2020], Iss. 1, Art. 6

https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

2

References

Downey, T. (October 2018). Calculating the Hamming Code.

https://users.cs.fiu.edu/~downeyt/cop3402/hamming.html

Gupta, B.K. & Rashmi, S. (April 2013). Novel Hamming code for error correction and

detection of higher data bits using VHDL.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.7849&rep=rep1&ty

pe=p df.

Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell System

Technical Journal 29(2), 2.

Key, J. D. (2000). Some error-correcting codes and their applications. In D. R. Shier , K.

T. Wallenius, eds., Applied Mathematical Modeling: A Multidisciplinary Approach

(pp. 291-314). Boca Raton, FL, CRC Press.

Moon, T.K. (2005). Error correction coding: Mathematical methods and algorithms.

WileyInterscience, John Wiley & Sons, Inc.

Wolf, J.K. (March 2017). An introduction to error correcting codes, part 2 [web pdf].

 http://circuit.ucsd.edu/~yhk/ece154c-spr17/pdfs/ErrorCorrectionII.pdf.

19

Mwangi and Quinn: Hamming Codes

Published by UW Tacoma Digital Commons, 2020

about:blank

2

Figures

Hamming Codes in TOY. (March 2003).

http://www.cs.princeton.edu/courses/archive/spr03/cs126/assignments/hamming.

html.

20

Access*: Interdisciplinary Journal of Student Research and Scholarship, Vol. 4 [2020], Iss. 1, Art. 6

https://digitalcommons.tacoma.uw.edu/access/vol4/iss1/6

	Hamming Codes
	Recommended Citation

	Hamming Codes
	Cover Page Footnote

	tmp.1604606278.pdf.Gx9xq

