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Abstract 

We will examine the application of Matrix Algebra in forming Hamming Codes. 

Hamming Codes are essential not just in the detection of errors but also in the linear 

concurrent correction of these errors. The matrices we will use have entries that are 

binary units. Binary units are mathematically convenient, and their simplicity permits the 

representation of many open and closed circuits used in communication systems. The 

entries in the matrices will represent a message that is meant for transmission or 

reception, akin to the contemporary application of Hamming Codes in wireless 

communication. We will use Hamming Codes (7,4), which are linear subspaces of the 7-

dimensional vector space over F2, the base field.   
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Hamming Codes 

Hamming Codes were named after the Mathematician Richard Wesley Hamming. 

Hamming, who made several contributions in Computing, Engineering and 

Telecommunications, realized that the detection of errors in the transmission of 

information, in and of itself, was not adequate. The correction of such errors was also an 

integral part of the transmission of the information (Hamming 2). Take for instance, the 

following text transmission:   

Message to be transmitted: “Mr. Bob, your bags arrive at 11:00am.”   

Message that is processed: “Mr. Rob, your rags #$%^^& at _1:00am.”   

After transmission, the message transmitted in the above example will be compromised. 

At the time Mr. Hamming was working on problems like this, there were no error 

correcting codes (Hamming). As such, it was essential for the correction of codes to 

occur in conjunction with the detection of errors. Hence, Mr. Hamming created the codes 

that bear his name—Hamming Codes.   

In this paper, we will assume that the standard unit of all information represented 

in machines is a binary digit or bit. This will enable us to employ bits as the standard unit 

for encoding digital information (Hamming).    
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Description of Terms  

To begin with, we will explain the meaning of some of the terminology that we 

frequently use across this paper. This includes:  

1. Redundancy is the term we will employ to calculate the efficiency of our hamming 

code. To determine redundancy, we will need to figure out how many bits to use 

for the entire information to be transmitted. This will be the sum of:  

I2 + E2  

where:  

I2  = No bits representing information, and  

E2 = No bits representing error detecting and correcting code(E2).  

Thus, the efficiency of our hamming code is given by:  

Redundancy = (I2 + E2) ÷ I2  

  

2. Parity Bits (and parity check): These are bits added to a set of data bits. For 

instance, in Single-error detecting codes, if we have n bits that represent the 

information, we can use (n+1) bits for transmission. The added bit is the parity bit 

that helps detect an error.  If the bit set containing n bits has an even occurrence 

of 1’s, we have even parity and the added bit is 0. If we have an odd number of 

1’s, we have odd parity, and the added bit is 1. The data bits plus the parity bit will 

always have even parity (Hamming).  

3. Parity Check: This is the method that checks the parity bits mentioned above. So, 

if information transmitted employed even parity, and the information received has 

an odd number of 1’s, we know that there is an error (Hamming 3).  
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4. Hamming (n, k) Code: This is a Hamming Code Block that has k (= I2) information 

digits, and n as the block length or total number of bits, including parity bits. Hence, 

n = p + k, where p = parity bits. If there is one error, then there are n possible 

locations for that error. So, 2p = 2n-k, must be at least n+1 (with n possible errors + 

1 extra for no errors). Therefore, n, the total block length, must be at most 2p-1. 

Which also translates to k, the number of information bits, being at most 2p-p-1, 

where p = n - k (Moon, 2005).   
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Parity Checking Bits  

Hamming Codes’ strength lies in their ability to detect and correct errors with a 

relatively low redundancy. For this paper, we will focus on the (7,4) Hamming Code.  This 

code has a redundancy of 1.75, which we calculate following the formula in definition one, 

Redundancy = (I2 + E2) ÷ I2. As an example, let us consider the data:  

  1 0 0 1  

This is a Hamming Binary Code block with k = 4. The data we will transmit will consist of 

7 bits, or n = 7.  

Now we can take:  

1. Take all bit positions that are powers of 2 and mark them as parity bits. Such bits 

would be at positions 1, 2, and 4.  

2. All other bit positions will contain our data (i.e. bits at positions 3, 5, 6 and 7).  

3. Now, each parity bit will be used to determine the parity for sets of bits in the 

code word  

(Downey, 2018).  

The position of the parity bit will help us know which sets of bits to check e.g.  
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Parity bits at  

Position  

Sequence to check 

bits  Set of bit positions to check  

1  check 1 bit, skip 1 bit…  {1,3,5,7}  

2  

check 2 bits, skip 2 

bits…  {2,3,6,7}  

4  

check 4 bits, skip 4 

bits…  {4,5,6,7}  

Table 1. The following table describes, for each parity bit, its position and which 
bits are used to determine even parity for that bit (Downey, 2018)  

4. Finally, the parity bit is set to 1 if the total number of ones in the positions it is 

checking, other than itself, is odd—even parity. Otherwise the parity bit is 0 if the 

total number of ones in the positions it checks is even (Downey, 2018).  
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To transmit our message, we now need to determine value for the parity bits at position:  

 _ _1_001  

Determining parity bits:  

 

Parity 

bits at  

Position  

Sequence to 

check bits  

Parity?  Determine parity 

bit(?)  

  

Set parity bit  

  

1  checks bits 

1,3,5,7  

? _1_001  

Even  

parity  

? = 0  0_1_001  

2  checks bits 

2,3,6,7  

0?1_001  

Even  

parity  

? = 0  001_001  

4  checks bits 

4,5,6,7  

001_001  

Even  

parity  

? = 1  0011001  

Table 2. Using table to explain how to determine parity bits. Complements Venn 
diagram (Downey, 2018).  

 Hamming Code word to transmit: 0011001  
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Similarly, we can use Venn diagrams to find the parity bits. In our case, we will use a 

basic Venn diagram to showcase this implementation (Hamming Codes in TOY). 

 

Figure 1 The Bi are the data bits and Pi are the parity bits. The value of the parity bits can 
be computed by making sure that the sum of the data bits encompassed by the circle of 
a parity bit and the parity bit itself is even (Wolf, 2017). 

 

If for some reason the message received is 0011101, we can detect the error by looking 

at the parity bits and seeing whether even parity is consistent. If not, it means the error 

exists at this location.  

  

  

           
 

P   1 = 
  0 

P   4 = 
  1 P   2 0 

  = 

B 5     = 0   
 

     

B 7   =   1   

       

B3 = 1 

B6 = 0 
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Check parity  Sequence to bits at 

position  check bits  

Parity?  Determine error  

1  

checks bits 1,3,5,7  

0011101  

Not  

even 

parity  

Bit 1  

2  

checks bits 2,3,6,7  

0011101  

Even  

parity  
Ok  

4  

checks bits 4,5,6,7  

0011101  

Not  

even 

parity  

Bit 4  

Table 3. Simple way to detect and correct a single error. In this table, we see that the error 
bit can be determined from Bit 1 and Bit 4, which points to Bit 5. So, we flip Bit 5 to correct 
the error, and the information encoding, which is 0011101 becomes 0011101 (Downey, 
2018).  
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STEP 1: Using Venn Digrams to show the encoding process

 

Figure 1 & 2 – Hamming Codes in TOY. 

https://www.cs.princeton.edu/courses/archive/spr03/cs126/assignments/hamming.html 

STEP 2: Adding parity bits 

 

Figure 3 – Hamming Codes in TOY. 

https://www.cs.princeton.edu/courses/archive/spr03/cs126/assignments/hamming.html 
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Figure 4 – Hamming Codes in TOY. 

https://www.cs.princeton.edu/courses/archive/spr03/cs126/assignments/hamming.html 

 

Having explained the essence of determining parity bits and checking for errors, we can 

now delve deeper into the parity checking matrix that uses the Hamming Code Block 

(7,4) for error correcting using a hamming code generator matrix.  
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The Hamming Code Generator Matrix  

In practice, Hamming codes are generated by way of matrix multiplication. If the 

message has k bits, then the message matrix is a k by 1 matrix. We then multiply an n by 

k matrix called a generator matrix by the message matrix to produce a new matrix which 

represents the bits to be transmitted. An n by k generator matrix multiplies a k by 1 

message matrix. The generator matrix transforms the message matrix into an n by 1 

package matrix which is the original message matrix with n-k parity entries (Wolf, 2017). 

These parity entries describe the other entries in the package matrix, allowing for error 

detection and correction. We are examining the (7, 4) Hamming code. An example of a 

(7,4) generator matrix follows:  

 

 

 

It is worth stating that the orientation and order of matrices in Hamming code generation 

is not standard and entirely arbitrary. One could easily have a 1 by 4 message matrix M 

multiplied a 4 by 7 generator matrix G. All that matters is that the parity check matrix 

matches the generator matrix.  

It is also possible to create new generator matrices by applying elementary row 

operations to G.  
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There are many different valid Hamming generator matrices, and one often sees 

deviation from the standard matrix shown here.  

 

The generator matrix works as so: given a message matrix  

  

And the above generator matrix, the output package matrix will be:  

 

Figure 5 - Data item 1, 2 and 4 correspond to bits 1, 3, 5, and 7 in the transmitted 
message. 

  

The data being transmitted is in binary, so the above raw package matrix will not be 

transmittable. To remedy this, the contents of MP are calculated using arithmetic modulo 

2. This means that the first, second, and fourth entries will, rather than the straight sum, 

show the parity of their respective bits. Since any possible permutation of 4 bits is a 

possible data vector, the valid codewords, or valid package vectors, is the column space 
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of G. A package vector can be multiplied by the parity matrix corresponding to the 

generator matrix to check for errors. We describe the parity matrix in the next section. 

Parity Check Matrix 

The parity check matrix allows us to detect an error and the position of that error in 

our data package. If we multiply a 4-bit data vector by our generator matrix from earlier, 

we end up with a 7-bit vector (d1, d2, ..., d7)T. We will have data bits at d3, d5, d6, and d7 and 

assign our parity bits variables d1, d2, and d4, where d1 is responsible for data with a 1 in 

the least significant place of the subscript when the subscript is converted to binary, d2 is 

responsible for data with a 1 in the second least significant place, and d4 is responsible for 

data with a 1 in the most significant binary place. We can organize these variables into 

the following equations:  

d3 + d5 + d7 = d1 

d3 + d6 + d7 = d2 

d5+ d6 + d7 = d4 

The nature of binary modular arithmetic means that the right side of these equations can 

be added to the left and subtracted from the right while maintaining the system. 

Considering the two possible cases shows us why this is a valid operation. A parity bit of 

0 indicates an even number of 1s. Adding the parity bit to the left of the equation will not 

change the value of the equation modulus 2. If the parity bit is 1, that means that the left 

side of the equation has an odd number of 1s. Adding the parity bit will result in an even 

number of 1s and a result of 0. Adding the parity bit to the left and subtracting from the 

right give us:  

d3 + d5 + d7 + d1 = 0  

d3 + d6 + d7 + d2 = 0  
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d5 + d6 + d7 + d4 = 0  

We can add the missing variables to each equation with a zero coefficient without 

invalidating the equations. After putting the subscripts in order, we get:  

d1  + 0d2 + d3+ 0d4 + d5 + 0d6+ d7  = 0  

0d1  + d2 + d3+ 0d4 + 0d5 + d6+ d7  = 0  

0d1  + 0d2 + 0d3+ d4 + d5 + d6+ d7  = 0  

We can use these equations to create the parity check matrix P, where P is the 3x7 

coefficient matrix where each row is the left side of one of the above equations.  

  

 1  0  1  0  1  0  1  

 0  1  1  0  0  1  1  

 0  0  0  1  1  1  1  

We use this matrix to check for valid data and detect where any error occurred by 

computing Px, where x, the transmission matrix, is an n x 1 matrix consisting of the n 

transmitted bits. If Px = 0, the data is valid. Otherwise, the product Px will result in a 3x1 

vector where the sum of the positions of the 1s in that vector corresponds to the position 

of the error in the original data (transmitted) vector.  

The matching column’s value in binary corresponds to the position of the error in the 

original data vector. This is just one possible parity check matrix. Our scheme for 

organizing the data and parity bits to generate P matches a certain set of codewords, or 

valid data packages. These valid codewords are the null space of P. For the generator 

parity pairing to be valid, the two matrices must satisfy the equation PG = 0.  If we examine 

our equations used to generate our parity bits from earlier:  
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            d3 + d5 + d7 = d1  

d3 + d6 + d7 = d2  

d5+ d6 + d7 = d4  

We can use these equations to create our 7 by 4 generator matrix. Our data is assigned 

subscripts in the following fashion (d3, d5, d6, d7)T. If we append the missing data bit to 

each of our equations with a 0 coefficient, we get the following equations:  

1d3+1d5+0d6+1d7  = d1 

1d3 + 0d5 + 1d6 + 1d7 = d2 

0d3 + 1d5+ 1d6 + 1d7 = d4 

The coefficients of the left side of these equations will become rows 1, 2, and 4 of 

our generator matrix, corresponding to the position of the parity bits they generate in the 

outgoing vector. The remaining rows of the matrix, 3, 5, 6, and 7 will represent data bits. 

Since positions 3, 5, 6, and 7 in our outgoing vector correspond to positions 1, 2, 3 and 4 

in our original data vector, these rows must have a 1 in the position of the bit we want to 

be transmitted, and 0s elsewhere. This gives the generator matrix:  

 

We can confirm this is a valid generator/parity pairing be performing the multiplication 

PG and verifying that we get a 3x4 zero matrix.   
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Conclusion  

In summation, we will discuss some of the applications of Hamming Codes in 

today’s technologies and industries. For instance, in the telecommunications industry, 

whereby wireless transmission of data consistently takes place, Hamming codes have 

been used to ensure that the integrity of the data transmitted is retained or recovered, due 

to the ease with which they can be implemented and the simplicity with which they facilitate 

error detection and correction.  

Additionally, Hamming Codes’ low level of redundancy makes them ideal for use in 

computing systems for memory access and storage (Gupta & Rashmi, 2013). The 

computer memory, which can be made up of thousands of silicon chips is susceptible to 

errors due to the nature in which binary information is represented. The bits are 

represented by the “presence or absence of negative electric charges” on the silicon chips, 

with 0 being represented by the presence of electrons in an allocated chip portion. So, 

when the reading of such a chip portion is higher than a predetermined value, then it is 

read to be a 0, and vice versa. Nonetheless, the chips can be damaged directly 

(physically) or indirectly (from particle bombardments), hence, “one megabyte memory 

consisting of 128 64K chips”, might have 4 rows of 32 chips, and an additional 7 chips for 

error-correction (Key, 2000, p. 301). These Hamming codes are referred to as binary 

extended Hamming codes, since they have an n that is longer than the n = 7, in (7, 4) 

Hamming codes. In the extended case, for the computer memory, the k can be as big as 

57, but the designed preference is k = 32 (Key, 2000). 

In all, we have seen that by using linear algebra to convert packets of bits into self-

correcting codewords, Hamming codes allow error detection and correction in data where 
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errors are relatively infrequent. We have also seen how a Hamming code generator matrix 

takes a data packet of a prespecified length and adds redundant bits that reference the 

parity of the specific bits in the raw data packet. When the transmission is received, simple 

multiplication by a parity check matrix checks the data for errors and detects the position 

of an error that may have occurred. All these reasons and others, showcase how 

Hamming Codes’ application of Matrix Algebra, renders their design simple for practical 

applications in many industries and technologies today.  
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Figures 

Hamming Codes in TOY. (March 2003). 

http://www.cs.princeton.edu/courses/archive/spr03/cs126/assignments/hamming.

html.  
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