FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 35, No 3 (2020), 887-898 https://doi.org/10.22190/FUMI2003887A

WEIGHTED STATISTICAL CONVERGENCE OF REAL VALUED SEQUENCES

Abdu Awel Adem and Maya Altınok

© by University of Niš, Serbia | Creative Commons Licence: CC BY-NC-ND **Abstract.** Functions defined in the form " $g : \mathbb{N} \to [0, \infty)$ such that $\lim_{n\to\infty} g(n) = \infty$ and $\lim_{n\to\infty} \frac{n}{g(n)} = 0$ " are called weight functions. Using the weight function, the concept of weighted density, which is a generalization of natural density, was defined by Balcerzak, Das, Filipczak and Swaczyna in the paper "Generalized kinsd of density and the associated ideals", Acta Mathematica Hungarica 147(1) (2015), 97-115.

In this study, the definitions of g-statistical convergence and g-statistical Cauchy sequence for any weight function g are given and it is proved that these two concepts are equivalent. Also, some inclusions of the sets of all weight g_1 -statistical convergent and weight g_2 -statistical convergent sequences for g_1, g_2 which have the initial conditions are given.

 ${\bf Keywords:}\ weight\ functions;\ natural\ density;\ statistical\ convergent\ sequences.$

1. Introduction

In [5], Fast introduced the concept of statistical convergence. In [15], Schoenberg gave some basic properties of statistically convergence and also studied the concept as a summability method. After this works many Mathematician have used these concept in their studies [8, 9, 10, 11]. In [2, 3], the authors proposed a modified version of density by replacing n by n^{α} where $0 < \alpha \leq 1$. In [1], the authors defined a more general kind of density by replacing n^{α} by a function $g : \mathbb{N} \to [0, \infty)$ with $\lim_{n\to\infty} g(n) = \infty$. In this paper, we will study the weighted g-statistically convergence concept.

Let K be a subset of natural numbers. Natural density of K is defined by

$$\delta(K) = \lim_{n \to \infty} \frac{1}{n} |K(n)|$$

where $K(n) = \{k \leq n : k \in K\}$ and the vertical bars denotes the number of elements of K(n).

Received December 02, 2019; accepted February 19, 2020

²⁰¹⁰ Mathematics Subject Classification. Primary 40A05; Secondary 46A45

Let $g: \mathbb{N} \to [0, \infty)$ be a function with $\lim_{n \to \infty} g(n) = \infty$. Let us remember that the definition of density of weight g(n).

Definition 1.1. The density of weight g defined by the formula

$$d_g(A) = \lim_{n \to \infty} \frac{|A(n)|}{g(n)}$$

for $A \subset \mathbb{N}$ [1, 4].

After the study [1], the concept of g-density was applied to various problems related to sequences and interesting results were obtained in [4, 7, 12, 13, 14].

Basically in this study, it will be shown that the results given in [6] can be re-examined by using g-density.

In this paper, we are concerned with the subsets of natural numbers having weight g(n) density zero. To facilitate this, we have introduced the following notation: If x is a sequence such that x_k satisfies property P for all k except a set of weight g(n) density zero, then we say that x_k satisfies P for (weight g almost all k) and it is denoted by (g - a.a.k) for simplicity.

Definition 1.2. Let $x = (x_k)$ be a real valued sequence. x is weight g-statistical convergent to the number L if for each $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{g(n)} = 0,$$

i.e., $|x_k - L| < \varepsilon$ (g - a.a.k). In this case we write $g - st - \lim x_k = L$.

 C_q^{st} denotes the set of all weight g-statistical convergent sequences.

If we take the function g(n) = n we obtain the usual statistical convergence.

It is clear that every convergent sequence is also weight g-statistical convergent. But the converse is not true in general.

Example 1.1. Let us define the function g(n) = 2n and the sequence as

$$x_k = \begin{cases} 3, & k = m^2, & m \in \mathbb{N}, \\ 0, & k \neq 0. \end{cases}$$

Then $|k \leq n : x_k \neq 0| \leq \sqrt{n}$. So, $g - st - limx_k = 0$.

Theorem 1.1. If the sequence (x_n) is weight-g-statistical convergent to L then there is a set $K = \{k_1 < k_2 < ...\}$ such that $d_g(K) = d_g(\mathbb{N})$ and $\lim_{n\to\infty} x_{k_n} = L$.

Proof. Let us assume that $g - st - limx_k = L$. Take $K_i := \{n \in \mathbb{N} : |x_n - L| < \frac{1}{i}\},$ (i = 1, 2, ...). Then by definition we have $d_g(K_i^c) = 0$ and it is clear that $d_g(K_i) = d_q(\mathbb{N}), (i = 1, 2, ...)$. Also it is easy to control that

(1.1)
$$\dots \subset K_{i+1} \subset K_i \subset \dots \subset K_2 \subset K_1$$

Let $\{T_j\}_{j\in\mathbb{N}}$ be a strictly increasing sequence of positive real numbers. Let choose an arbitrary number $a_1 \in K_1$. By (1.1) we can choose an element $a_2 \in K_2$, $a_2 > a_1$ such that for each $n \ge a_2$ we have $\frac{K_2(n)}{g(n)} > T_2$. Moreover choose $a_3 > a_2$, $a_3 \in K_3$ such that for each $n \ge a_3$ we have $\frac{K_3(n)}{g(n)} > T_3$. If we proceed in this way we obtain a sequence $a_1 < a_2 \dots < a_i < \dots$ of positive integers such that

(1.2)
$$a_i \in K_i, \ (i = 1, 2, ...) \text{ and } \frac{K_i(n)}{g(n)} > T_i$$

for each $n \ge a_i, i = 1, 2, ...$

Let us establish the set K as follows: each natural number of the interval $[1, a_1]$ belong to K, moreover, any natural number of the interval $[a_i, a_{i+1}]$ belongs to K if and only if it belongs to K_i (i = 1, 2, ...). From (1.1) and (1.2) we have

$$\frac{K(n)}{g(n)} \ge \frac{K_i(n)}{g(n)} > T_i$$

for each $n, a_i \leq n < a_{i+1}$. By last inequality it is clear that $\overline{d}_q(K) = \infty$.

Let $\varepsilon > 0$, and choose *i* such that $\frac{1}{i} < \varepsilon$. Let $n \ge a_i$, $n \in K$. There exists a number $t \ge i$ such that $a_t \le n < a_{t+1}$. But from the definition of K, $n \in K_t$. Thus $|x_n - L| < \frac{1}{t} \le \frac{1}{i} < \varepsilon$. Hence, $\lim_{n \to \infty} x_{k_n} = L$. \Box

Remark 1.1. The converse of Theorem 1.1 is not true.

Example 1.2. Let us consider the sequence

$$(x_k) := \begin{cases} 1, & k = n^2, \\ 0, & k \neq n^2, \end{cases}$$

and $g(n) = n^{1/4}$. It is clear that the set $K = \{k : k = n^2, n \in \mathbb{N}\} \subset \mathbb{N}$ has the property $\overline{d}_g(K) = \infty$. But $g - st - \lim x_k \neq 1$.

Let us note that every statistical convergent sequence is also weight-g-statistical convergent to the same number. But the converse of this situation is not true.

Example 1.3. Let $a_k = 2^{2^k}$, and

$$g(n) := \begin{cases} a_{2k}, & n \in [a_k, a_{k+1}), \ k = 1, 2, \dots \\ 1, & n < 4. \end{cases}$$

Let $A_k := \{n \in \mathbb{N} : a_k \leq n < 2a_k\}$ and $A := \bigcup_{k \geq 1} A_k$. Let us take account the sequence

$$x_n := \begin{cases} 1, & n \in A, \\ 0, & n \notin A. \end{cases}$$

It is clear that $\frac{1}{2}a_k \leq |A_k| \leq a_k$. Let us check that $x_n \neq 0(st)$. If we put $m_k = \max A_k$, we obtain

$$\frac{|\{k \le n : |x_k - 0| \ge \varepsilon\}|}{n} = \frac{|\{k \le n : x_k \in A\}|}{n} = \frac{|A|}{m_k} \ge \frac{|A_k|}{m_k} \ge \frac{\frac{1}{2}a_k}{2a_k} = \frac{1}{4}$$

for all $k \geq 1$.

Moreover, $g - st - \lim x_k = 0$. For sufficiently large n, we have

$$\frac{|\{k \le n : |x_k - 0| \ge \varepsilon\}|}{g(n)} = \frac{|\{k \le n : x_k \in A\}|}{g(n)} = \frac{|A|}{g(n)}$$
$$= \frac{|\{k \le m_k : x_k \in A\}|}{g(m_k)}$$
$$\le \frac{|A_k|}{a_{2k}} \le \frac{a_k}{a_{2k}} \to 0.$$

Definition 1.3. Let $x = (x_k)$ be a real valued sequence. x is weight g-statistical Cauchy sequence if for each $\varepsilon > 0$ there exists a natural number $N = N(\varepsilon)$ such that

$$\lim_{n \to \infty} \frac{|\{k \le n : |x_k - x_N| \ge \varepsilon\}|}{g(n)} = 0,$$

i.e., $|x_k - x_N| < \varepsilon$ (g - a.a.k). In this case we write x is weight g-Cauchy sequence.

Lemma 1.1. The following statements are equivalent:

(i) x is a weight g-statistically convergent sequence,

(ii) x is a weight g-statistically Cauchy sequence,

(iii) x is a sequence for which there is a convergent sequence y such that $x_k = y_k$ (g - a.a.k).

Proof. $(i) \Rightarrow (ii)$ Let us assume that x is a weight g-statistical convergent sequence. Suppose $\varepsilon > 0$ and $g - st - \lim x = L$. Then $|x_k - L| < \frac{\varepsilon}{2} (g - a.a.k)$ holds.

If we choose a natural number N such that $|x_N - L| < \frac{\varepsilon}{2}$, then we have

$$|x_k - x_N| < |x_k - L| + |x_N - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \ (g - a.a.k).$$

Hence, x is a weight g-statistical Cauchy sequence.

 $(ii) \Rightarrow (iii)$ Let us assume that x is a weight g-statistical Cauchy sequence. Choose N(1) such that the interval $I = [x_{N(1)} - 1, x_{N(1)} + 1]$ contains $x_k (g - a.a.k)$. Also apply (ii) to choose M such that $I' = [x_M - \frac{1}{2}, x_M + \frac{1}{2}]$ contains $x_k (g - a.a.k)$. We claim that

$$I_1 = I \cap I'$$
 contains $x_k (g - a.a.k)$,

for

$$\{k \le n : x_k \notin I \cap I'\} = \{k \le n : x_k \notin I\} \cup \{k \le n : x_k \notin I'\}$$

Thus,

$$\lim_{n \to \infty} \frac{1}{g(n)} |\{k \le n : x_k \notin I \cap I'\}| \le$$
$$\le \quad \lim_{n \to \infty} \frac{1}{g(n)} |\{k \le n : x_k \notin I\}| + \lim_{n \to \infty} \frac{1}{g(n)} |\{k \le n : x_k \notin I'\}| = 0$$

So, I_1 is closed interval of length less than or equal to 1 and contains $x_k (g-a.a.k)$. Now we continue by choosing N(2) such that $I'' = [x_{N(2)} - \frac{1}{4}, x_{N(2)} + \frac{1}{4}]$ contains $x_k (g-a.a.k)$, by the previously argument $I_2 = I_1 \cap I''$ contains $x_k (g-a.a.k)$, and I_2 has length less than or equal to $\frac{1}{2}$. Proceeding inductively we construct a sequence $\{I_m\}_{m=1}^{\infty}$ of closed intervals such that for each m, $I_{m+1} \subseteq I_m$, and the length of I_m is not greater than 2^{1-m} , and $x_k \in I_m (g-a.a.k)$. From the Nested Interval Theorem there is a number α such that $\alpha = \bigcap_{m=1}^{\infty} I_m$. If we use $x_k \in I_m (g-a.a.k)$, we can choose an increasing positive sequence $\{T_m\}_{m=1}^{\infty}$ such that

(1.3)
$$\frac{1}{g(n)} |\{k \le n : x_k \notin I_m\}| < \frac{1}{g(m)} \text{ if } n > T_m.$$

Next define a subsequence z of x consisting of all terms x_k such that $k > T_1$ and if $T_m < k \le T_{m+1}$ then $x_k \notin I_m$.

Now define the sequence y by

$$y_k = \begin{cases} \alpha, & \text{if } x_k \text{ is a term of } z, \\ x_k, & \text{otherwise.} \end{cases}$$

Then $\lim y_k = \alpha$; for , if $\varepsilon > \frac{1}{g(m)} > 0$ and $k > T_m$ then either x_k is a term of z, which means $y_k = \alpha$ or $y_k = x_k \in I_m$ and $|y_k - \alpha| \leq \text{length of } I_m < 2^{1-m}$. We also assert that $x_k = y_k \ (g - a.a.k)$. To confirm this we observe that if $T_m < n < T_{m+1}$ then

$$\{k \le n : y_k \ne x_k\} \subseteq \{k \le n : x_k \notin I_m\}$$

so from (1.3)

$$\frac{1}{g(n)}|\{k \le n : y_k \ne x_k\}| \le \frac{1}{g(n)}|\{k \le n : x_k \notin I_m\}| < \frac{1}{g(m)}$$

is obtained. Thus, the limit as $n \to \infty$ is 0 and $x_k = y_k (g - a.a.k)$.

 $(iii) \Rightarrow (i)$ Let us assume that $x_k = y_k (g - a.a.k)$ and $\lim y_k = L$. Suppose $\varepsilon > 0$. Then for each n,

$$\{k \le n : |x_k - L| > \varepsilon\} \subseteq \{k \le n : x_k \ne y_k\} \cup \{k \le n : |y_k - L| > \varepsilon\}$$

from the assumption $\lim y_k = L$, the second set contains a fixed number of integers, say $l = l(\varepsilon)$. So,

$$\lim_{n \to \infty} \frac{1}{g(n)} |\{k \le n : |x_k - L| > \varepsilon\}| \le \lim_{n \to \infty} \frac{1}{g(n)} |\{k \le n : x_k \ne y_k\}| + \lim_{n \to \infty} \frac{l}{g(n)} = 0$$

because $x_k = y_k$ (g - a.a.k). Hence, $|x_k - L| \le \varepsilon$ (g - a.a.k). So, the proof is complete. \Box

Corollary 1.1. Let x be a real valued sequence. If $g - st - \lim x_k = L$, then x has a subsequence y such that $\lim y_k = L$.

2. Inclusion Between Two g - st-Convergence

Let G denotes the set of all functions $g : \mathbb{N} \to [0, \infty)$ satisfying the condition $g(n) \to \infty$ and $\frac{n}{g(n)} \to 0$. In this section, we will introduce some inclusions between various $g \in G$.

Lemma 2.1. Let $g_1, g_2 \in G$ such that there exist M, m > 0 and $k_0 \in \mathbb{N}$ such that $m \leq \frac{g_1(n)}{g_2(n)} \leq M$ for all $n \geq k_0$. Then $C_{g_1}^{st}(x) = C_{g_2}^{st}(x)$.

Proof. Suppose the sequence x is weight g_1 -statistical convergence to L. This implies that for each $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{g_1(n)} = 0.$$

Together with the fact that $\frac{g_1(n)}{g_2(n)} \leq M$, this implies that

$$\frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{Mg_2(n)} \le \frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{g_1(n)}.$$

for all $n \ge k_0$. This implies

$$\lim_{n \to \infty} \frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{Mg_2(n)} \le \lim_{n \to \infty} \frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{g_1(n)} = 0.$$

From the hypothesis we obtain

$$\lim_{n \to \infty} \frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{g_2(n)} = 0.$$

Thus, the sequence x is weight g_2 -statistical convergent to L. So, $C_{g_1}^{st}(x) \subset C_{g_2}^{st}(x)$. We can prove the iclusion $C_{g_2}^{st}(x) \subset C_{g_1}^{st}(x)$ by similar way. \Box

Lemma 2.2. For each function $f \in G$ there exists a nondecreasing function $g \in G$ such that $C_f^{st}(x) = C_g^{st}(x)$. Moreover,

$$(2.1) g(n) \le f(n)$$

for all $n \in \mathbb{N}$.

Proof. If f is nondecreasing, it is nclear. Otherwise, define the related function $g: \mathbb{N} \to [0, \infty)$ as follows. Let $a_1 = \min\{f(n) : n \in \mathbb{N}\}, i_1 = \max\{i \in \mathbb{N} : f(i) = a_1\}$ and $g(i) = a_1$ for $0 \le i \le i_1$. Next, let $a_2 = \min\{f(n) : n > i_1\}, i_2 = \max\{i \in \mathbb{N} : f(i) = a_2\}$ and $g(i) = a_2$ for $i_1 < i \le i_2$. Rest of the function g is established by induction.

Obviously, the function g is nondecreasing and $g(n) \to \infty$. By the construction, $g(n) \leq f(n)$, for all $n \in \mathbb{N}$. Hence $\frac{n}{f(n)} \leq \frac{n}{g(n)}$ for all n which implies that $\frac{n}{g(n)} \neq 0$. Thus $g \in G$.

Let (x_n) be a weight g-statistical convergent sequence to L. So, for each $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{g(n)} = 0$$

holds. From (2.1) we have following inequality

$$\frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{f(n)} \le \frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{g(n)}.$$

If we take limit when $n \to \infty$ we obtain $f - st - \lim x_k = L$. Thus, the inclusion $C_q^{st} \subset C_f^{st}$.

By construction, for each $n \in \mathbb{N}$ there exist $m \ge n$ such that g(n) = g(m) = f(m). Suppose that $x_n \nrightarrow L$ (g - st). Then there exists a, where $a \in \mathbb{R}^+ \cup \{+\infty\}$ and an inreasing sequence (n_i) of indices such that

$$\lim_{i \to \infty} \frac{|\{k \le n_i : |x_k - L| \ge \varepsilon\}|}{g(n_i)} = a > 0.$$

For each $i \in \mathbb{N}$ we can find $m_i \ge n_i$ such that $g(n_i) = g(m_i) = f(m_i)$. Hence

$$\frac{|\{k \le n_i : |x_k - L| \ge \varepsilon\}|}{g(n_i)} \le \frac{|\{k \le m_i : |x_k - L| \ge \varepsilon\}|}{f(m_i)}$$

holds. So, $x_n \not\rightarrow L (f - st)$. \square

Lemma 2.3. Let $f \in G$ be such that $\frac{n}{f(n)} \to \infty$, L, ε real numbers with $\varepsilon > 0$. Then there exists a sequence (x_n) such that $\left(\frac{|\{k \le n: |x_k - L| \ge \varepsilon\}|}{f(n)}\right)$ is bounded but not convergent to zero. Proof. Firstly, let us assume that f is nondecreasing. Take to the smallest non negative integer, k_0 , such that for $n \ge k_0$, f(n) > 2. Let us define a set $A \subset \mathbb{N}\setminus\{0, 1, 2, \dots, k_0 - 1\}$ inductively, deciding whether $n \ge k_0$ should belong to A or not. Let $n \notin A$ for all $n < k_0$. Suppose that $n \ge k_0$ and then we have defined A(n). If $\frac{|A(n)|}{f(n+1)} < 1$ then let $n \in A$. Otherwise, let $n \notin A$. So, we construct the set A. From this construction and the condition $f(n) \to \infty$, A is infinite.

We assert that $\mathbb{N}\setminus A$ is also infinite. Let us assume that it is finite and choose $n_0 \in \mathbb{N}$ such that $n \in A$ for all $n \ge n_0$. Then, we have

$$\frac{n - n_0}{f(n+1)} \le \frac{|A(n)|}{f(n+1)} < 1$$

for all $n \ge n_0$. But this is impossible because of the assumption, $\frac{n-n_0}{f(n+1)} \to \infty$. Now, we will show that $\frac{|A(n)|}{f(n)} < 2$ for each $n \ge k_0$. It is clear that if $n = k_0$ it is true. Suppose that $\frac{|A(n)|}{f(n)} < 2$ for a fixed $n \ge k_0$.

If $\frac{|A(n)|}{f(n+1)} < 1$, we have

$$\begin{aligned} \frac{|A(n+1)|}{f(n+1)} &= \frac{|A(n)|}{f(n+1)} + \frac{1}{f(n+1)} \\ &\leq \frac{|A(n)|}{f(n+1)} + \frac{1}{f(n)} \\ &\leq 1 + \frac{1}{2} < 2. \end{aligned}$$

If $\frac{|A(n)|}{f(n+1)} > 1$, then $n \notin A$ and so,

$$\frac{|A(n+1)|}{f(n+1)} = \frac{|A(n)|}{f(n+1)} \le \frac{|A(n)|}{f(n)} < 2.$$

Now, let us define a sequence (x_n) as follows:

$$x_n := \left\{ \begin{array}{ll} n & n \in A \\ L & n \notin A \end{array} \right.$$

where $L \in \mathbb{R}$ is a fixed number. It is clear that the sequence $\left(\frac{|\{k \le n: |x_k - L| \ge \varepsilon\}|}{f(n)}\right)$ is bounded from the first part of this proof.

Now, we will show that the sequence $\left(\frac{|\{k \le n: |x_k - L| \ge \varepsilon\}|}{f(n)}\right)$ is not convergent to 0. For this aim consider any $n \ge k_0$. We will find $m \ge n$ such that $\frac{|A(m)|}{f(m)} \ge 1$. If $\frac{|A(n)|}{f(n)} \ge 1$, put m := n. Otherwise, choose the smallest $m \ge n$ such that $m \in \mathbb{N} \setminus A$. Then $\frac{|A(m)|}{f(m+1)} \ge 1$ and so, $\frac{|A(m)|}{f(m)} \ge 1$. Thus, the sequence $\left(\frac{|\{k \le n: |x_k - L| \ge \varepsilon\}|}{f(n)}\right)$ is not convergent to 0. Now, let us back to the general case where $f \in G$ need not be nondecreasing. Then we assume the associated function $g \in G$ from Lemma 2.2. Note that $\frac{n}{g(n)} \to \infty$ since $\frac{n}{g(n)} \ge \frac{n}{f(n)}$ for all n and $\frac{n}{f(n)} \to \infty$. By the above reasons we obtain the respective set A for g. Thus, $\frac{|A(n)|}{g(n)} \to 0$ and the sequence $\left(\frac{|A(n)|}{g(n)}\right)$ is bounded. Then $\frac{|A(n)|}{f(n)} \to 0$, and the sequence $\left(\frac{|\{k \le n: |x_k - L| \ge \varepsilon\}|}{f(n)}\right)$ is bounded since $g(n) \le f(n)$ for all $n \in \mathbb{N}$. \Box

Theorem 2.1. If g_1 , g_2 belong to G such that $\frac{g_2(n)}{g_1(n)} \to \infty$ then $C_{g_1}^{st}(x) \subsetneq C_{g_2}^{st}(x)$. If $g \in G$ and $\frac{n}{g(n)} \to \infty$ then $C_g^{st}(x) \subsetneq C^{st}(x)$.

Proof. To prove the first claim note that the inclusion $C_{g_1}^{st}(x) \subset C_{g_2}^{st}(x)$ follows from Lemma 2.1. Set $f := \sqrt{g_1 \cdot g_2}$. Then

(2.2)
$$\lim_{n \to \infty} \frac{f(n)}{g_1(n)} = \lim_{n \to \infty} \frac{g_2(n)}{f(n)} = \infty.$$

Also we have

$$\frac{n}{g_1(n)} = \frac{n}{g_2(n)} \cdot \frac{g_2(n)}{g_1(n)} \to \infty.$$

So $\frac{n}{f(n)} = \sqrt{\frac{n^2}{g_1(n)g_2(n)}} \to \infty$. Hence f have the assumption of Lemma 2.3. Take the sequence (x_n) obtained in this lemma. Then $x_n \in C_{g_2}^{st}(x)$ but $x_n \notin C_{g_1}^{st}(x)$. Indeed, using (2.2) we have

$$\frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{g_2(n)} = \frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{f(n)} \cdot \frac{f(n)}{g_2(n)} \to 0$$

because $\left(\frac{|\{k \leq n: |x_k - L| \geq \varepsilon\}|}{f(n)}\right)_{n \in \mathbb{N}}$ is bounded from Lemma 2.3. Thus, $x_n \in C_{g_2}^{st}(x)$. To prove that $x_n \notin C_{g_1}^{st}(x)$ observe that

$$\frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{g_1(n)} = \frac{|\{k \le n : |x_k - L| \ge \varepsilon\}|}{f(n)} \frac{f(n)}{g_1(n)}$$

So, $x_n \notin C_{g_1}^{st}(x)$ because $\frac{|\{k \le n: |x_k - L| \ge \varepsilon\}|}{f(n)} \not\rightarrow 0$, and $\frac{f(n)}{g_1(n)} \rightarrow \infty$ from (2.2).

If we take $g_2(n) = n$, for all $n \in \mathbb{N}$, second assertion proved easily from the same way. \Box

Corollary 2.1. Let $0 < \alpha < \beta \leq 1$ and $g_1(n) = n^{\alpha}$, $g_2 = n^{\beta}$ for $n \in \mathbb{N}$. Then $C_{g_1}^{st}(x) \subsetneq C_{g_2}^{st}(x)$.

Example 2.1. Let

$$g_1(n) = \begin{cases} n, & \text{for even } n \in \mathbb{N} \\ \sqrt{n}, & \text{for odd } n \in \mathbb{N} \end{cases}$$

and $g_2(n) = \sqrt{n}$ for $n \in \mathbb{N}$. It is clear that, $\limsup_{n \to \infty} \frac{g_1(n)}{g_2(n)} = \infty$. However, $C_{g_1}^{st}(x) = C_{g_2}^{st}(x)$. Indeed, construct a nondecreasing function $g \in G$ such that $C_g^{st}(x) = C_{g_1}^{st}(x)$, according to the method used in the proof of Lemma 2.1. Then it follows from simple calculations that g is given by

$$g(n) = \begin{cases} \sqrt{n+1} & \text{for even } n \in \mathbb{N} \\ \sqrt{n} & \text{for odd } n \in \mathbb{N}. \end{cases}$$

Obviously, $\frac{1}{2} \leq \frac{g(n)}{g_2(n)} \leq 2$ for all $n \geq 1$. Therefore, by Lemma 2.1 we have $C_g^{st}(x) = C_{g_1}^{st}(x)$.

Theorem 2.2. There exists a function $g \in G$ such that C_g^{st} is different from $C_{n^{\alpha}}^{st}$ with $0 < \alpha < 1$.

Proof. Let a_k and g(n) defined as in Example 1.3. Let $A_k := \{n \in \mathbb{N} : a_{k+1} - (a_{k+1})^{1/4} \le n < a_{k+1}\}$ and $A = \bigcup_{k \ge 2} A_k$. Let us take account the sequence

$$x_n = \begin{cases} n, & n \in A \\ 0, & n \notin A. \end{cases}$$

It is clear that $\frac{1}{2}(a_{k+1})^{1/4} \leq |B_k| \leq (a_{k+1})^{1/4}$. Let us check that $g-st-\lim x_k \neq 0$. For k > 0 we have

$$\frac{|\{k \le a_{k+1} - 1 : |x_k - 0| \ge \varepsilon\}|}{g(a_{k+1} - 1)} \ge \frac{\frac{1}{2}|B_k|}{g(a_k)} \ge \frac{\frac{1}{4}(a_{k+1})^{1/4}}{(a_{k+1})^{1/4}} = \frac{1}{4},$$

so, $g - st - \lim x_k \neq 0$. Furthermore,

$$|\{k \le a_{k+1} : |x_k - 0| \ge \varepsilon\}| \le (a_k)^{1/4} + (a_{k+1})^{1/4} \le 2(a_{k+1})^{1/4}$$

and so,

$$\frac{|\{k \le a_{k+1} : |x_k - 0| \ge \varepsilon\}|}{(a_{k+1})^{1/3}} \le \frac{2(a_{k+1})^{1/4}}{(a_{k+1})^{1/3}} = 2(a_{k+1})^{-1/12} \to 0, \ (k \to \infty)$$

holds.

Now, fix any $n \ge 4$ and choose a unique $k \in \mathbb{N}$ such that $n \in [a_k, a_{k+1})$. If $n < a_{k+1} - (a_{k+1})^{1/4}$ then

$$\frac{|\{k \le n : |x_k - 0| \ge \varepsilon\}|}{n^{1/3}} = \frac{|\{k \le a_k : |x_k - 0| \ge \varepsilon\}|}{n^{1/3}} \\ \le \frac{|\{k \le n : |x_k - 0| \ge \varepsilon\}|}{(a_k)^{1/3}} \le 2(a_k)^{-1/12}$$

If $a_{k+1} - (a_{k+1})^{1/4} \le n < a_{k+1}$ then for b > a > 0, the function

$$f(x) := \frac{a+x}{(b+x)^{1/3}}, \ x \ge 0$$

is increasing, thus

$$\frac{\{k \le n : |x_k - 0| \ge \varepsilon\}|}{n^{1/3}} \le \frac{|\{k \le a_{k+1} : |x_k - 0| \ge \varepsilon\}|}{(a_{k+1})^{1/3}}.$$

So, $x_n \in C^{st}_{n^{1/3}}(x)$.

Now, let $0 < \alpha < 1$, $\alpha \neq \frac{1}{3}$. If $\alpha < \frac{1}{3}$ then from Corollary 2.1 $C_{n^{\alpha}}^{st} \subsetneq C_{n^{1/3}}^{st}$ and $C_g^{st} \setminus C_{n^{\alpha}}^{st} \neq \emptyset$ because $C_g^{st} \setminus C_{n^{1/3}}^{st} \neq \emptyset$. If $\alpha > \frac{1}{3}$ then $C_{n^{\alpha}}^{st} \setminus C_g^{st} \neq \emptyset$. By the same way we can show that $x_n \in C^{st} \setminus C_g^{st}$. So $C_g^{st} \subsetneq C^{st}$. \Box

Acknowledgement

The authors would like to thank Professor Mehmet Küçükaslan for his discussions some steps during the preparation of this paper.

REFERENCES

- 1. M. BALCERZAK, P. DAS, M. FILIPCZAK and J. SWACZYNA: Generalized kinds of density and the associated ideals. Acta Math. Hungar. 147(1) (2015), 97–115.
- S. BHUNIA, P. DAS and S. K. PAL: Restricting statistical convergence. Acta Mathematica Hungarica, 134(1-2) (2012), 153–161.
- 3. R. ÇOLAK: Statistical convergence of order α. Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, India (2010), 121–129.
- P. DAS and E. SAVAŞ: On generalized statistical and ideal convergence of metric-valued sequences. Reprinted in Ukrainian Math. J. 68(12) (2017), 1849–1859. Ukrain. Mat. Zh. 68(12) (2016), 1598–1606.
- 5. H. FAST: Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
- 6. J. A. FRIDY: On statistical convergence. Analysis 5 (1985), 301-313.
- Ş. KONCA, M. KÜÇÜKASLAN and E. GENÇ: I-statistical convergence of double sequences defined by weight functions in a locally solid Riesz space. Konuralp J. Math. 7(1) (2019), 55-61.
- M. KÜÇÜKASLAN and M. YILMAZTÜRK: On deferred statistical convergence of sequences. Kyungpook Math. J., 56 (2006), 357–366.
- M. YILMAZTÜRK, O. MIZRAK and M. KÜÇÜKASLAN: Deferred statistical cluster points of real valued sequences. Univ. J. Appl. Math., 1 (2013), 1–6.
- E. SAVAŞ: On some generalizd sequence spaces defined by modulus. Indian J. Pure Appl. Math., 30(5) (1999), 973–978.
- E. SAVAŞ: Strong almost convergence and almost λ-statistical convergence. Hokkaido Math., 29(3) (2000), 531–536.
- E. SAVAŞ and P. DAS: On I-statistical and I-lacunary statistical convergence of weight g. Bull. Math. Anal. Appl., **11(2)** (2019), 2–11.
- E. SAVAŞ: On I-lacunary statistical convergence of weight g of sequences of sets. Filomat 31(16) (2017), 5315–5322.

A.A. Adem and M. Altınok

- 14. E. SAVAS: I_{θ} -statistical convergence of weight g in topological groups. Mathematics and computing, Springer Proc. Math. Stat., 253, Springer, Singapore, 2018, 43–51.
- 15. I. J. SCHOENBERG: The integrability of certain functions and related summability methods. The American Mathematical Monthly **66(5)** (1959), 361–775.

Abdu Awel Adem Mersin University Faculty of Science and Arts Department of Mathematics 33343 Mersin, Turkey abdua90@gmail.com

Maya Altınok Tarsus University Faculty of Technology Department of Natural and Mathematical Sciences 33460 Mersin, Turkey mayakantar@gmail.com or mayaaltinok@tarsus.edu.tr